<img src="https://github.com/deezer/spleeter/raw/master/images/spleeter_logo.png" height="80" />
[](https://github.com/deezer/spleeter/actions)  [](https://badge.fury.io/py/spleeter) [](https://anaconda.org/deezer-research/spleeter) [](https://hub.docker.com/deezer/spleeter) [](https://colab.research.google.com/github/deezer/spleeter/blob/master/spleeter.ipynb) [](https://gitter.im/spleeter/community) [](https://joss.theoj.org/papers/259e5efe669945a343bad6eccb89018b)
> :warning: [Spleeter 2.1.0](https://pypi.org/project/spleeter/) release introduces some breaking changes, including new CLI option naming for input, and the drop
> of dedicated GPU package. Please read [CHANGELOG](CHANGELOG.md) for more details.
## About
**Spleeter** is [Deezer](https://www.deezer.com/) source separation library with pretrained models
written in [Python](https://www.python.org/) and uses [Tensorflow](https://tensorflow.org/). It makes it easy
to train source separation model (assuming you have a dataset of isolated sources), and provides
already trained state of the art model for performing various flavour of separation :
* Vocals (singing voice) / accompaniment separation ([2 stems](https://github.com/deezer/spleeter/wiki/2.-Getting-started#using-2stems-model))
* Vocals / drums / bass / other separation ([4 stems](https://github.com/deezer/spleeter/wiki/2.-Getting-started#using-4stems-model))
* Vocals / drums / bass / piano / other separation ([5 stems](https://github.com/deezer/spleeter/wiki/2.-Getting-started#using-5stems-model))
2 stems and 4 stems models have [high performances](https://github.com/deezer/spleeter/wiki/Separation-Performances) on the [musdb](https://sigsep.github.io/datasets/musdb.html) dataset. **Spleeter** is also very fast as it can perform separation of audio files to 4 stems 100x faster than real-time when run on a GPU.
We designed **Spleeter** so you can use it straight from [command line](https://github.com/deezer/spleeter/wiki/2.-Getting-started#usage)
as well as directly in your own development pipeline as a [Python library](https://github.com/deezer/spleeter/wiki/4.-API-Reference#separator). It can be installed with [pip](https://github.com/deezer/spleeter/wiki/1.-Installation#using-pip) or be used with
[Docker](https://github.com/deezer/spleeter/wiki/2.-Getting-started#using-docker-image).
### Projects and Softwares using **Spleeter**
Since it's been released, there are multiple forks exposing **Spleeter** through either a Guided User Interface (GUI) or a standalone free or paying website. Please note that we do not host, maintain or directly support any of these initiatives.
That being said, many cool projects have been built on top of ours. Notably the porting to the *Ableton Live* ecosystem through the [Spleeter 4 Max](https://github.com/diracdeltas/spleeter4max#spleeter-for-max) project.
**Spleeter** pre-trained models have also been used by professionnal audio softwares. Here's a non-exhaustive list:
* [iZotope](https://www.izotope.com/en/shop/rx-8-standard.html) in its *Music Rebalance* feature within **RX 8**
* [SpectralLayers](https://new.steinberg.net/spectralayers/) in its *Unmix* feature in **SpectralLayers 7**
* [Acon Digital](https://acondigital.com/products/acoustica-audio-editor/) within **Acoustica 7**
* [VirtualDJ](https://www.virtualdj.com/stems/) in their stem isolation feature
* [Algoriddim](https://www.algoriddim.com/apps) in their **NeuralMix** and **djayPRO** app suite
ð **Spleeter** is a baseline in the ongoing [Music Demixing Challenge](https://www.aicrowd.com/challenges/music-demixing-challenge-ismir-2021)!
## Quick start
Want to try it out but don't want to install anything ? We have set up a [Google Colab](https://colab.research.google.com/github/deezer/spleeter/blob/master/spleeter.ipynb).
Ready to dig into it ? In a few lines you can install **Spleeter** and separate the vocal and accompaniment parts from an example audio file.
You need first to install `ffmpeg` and `libsndfile`. It can be done on most platform using [Conda](https://github.com/deezer/spleeter/wiki/1.-Installation#using-conda):
```bash
# install dependencies using conda
conda install -c conda-forge ffmpeg libsndfile
# install spleeter with pip
pip install spleeter
# download an example audio file (if you don't have wget, use another tool for downloading)
wget https://github.com/deezer/spleeter/raw/master/audio_example.mp3
# separate the example audio into two components
spleeter separate -p spleeter:2stems -o output audio_example.mp3
```
> :warning: Note that we no longer recommend using `conda` for installing spleeter.
> â ï¸ There are known issues with Apple M1 chips, mostly due to TensorFlow compatibility. Until these are fixed, you can use [this workaround](https://github.com/deezer/spleeter/issues/607#issuecomment-828352392)
You should get two separated audio files (`vocals.wav` and `accompaniment.wav`) in the `output/audio_example` folder.
For a detailed documentation, please check the [repository wiki](https://github.com/deezer/spleeter/wiki/1.-Installation)
## Development and Testing
This project is managed using [Poetry](https://python-poetry.org/docs/basic-usage/), to run test suite you
can execute the following set of commands:
```bash
# Clone spleeter repository
git clone https://github.com/Deezer/spleeter && cd spleeter
# Install poetry
pip install poetry
# Install spleeter dependencies
poetry install
# Run unit test suite
poetry run pytest tests/
```
## Reference
* Deezer Research - Source Separation Engine Story - deezer.io blog post:
* [English version](https://deezer.io/releasing-spleeter-deezer-r-d-source-separation-engine-2b88985e797e)
* [Japanese version](http://dzr.fm/splitterjp)
* [Music Source Separation tool with pre-trained models / ISMIR2019 extended abstract](http://archives.ismir.net/ismir2019/latebreaking/000036.pdf)
If you use **Spleeter** in your work, please cite:
```BibTeX
@article{spleeter2020,
doi = {10.21105/joss.02154},
url = {https://doi.org/10.21105/joss.02154},
year = {2020},
publisher = {The Open Journal},
volume = {5},
number = {50},
pages = {2154},
author = {Romain Hennequin and Anis Khlif and Felix Voituret and Manuel Moussallam},
title = {Spleeter: a fast and efficient music source separation tool with pre-trained models},
journal = {Journal of Open Source Software},
note = {Deezer Research}
}
```
## License
The code of **Spleeter** is [MIT-licensed](LICENSE).
## Disclaimer
If you plan to use **Spleeter** on copyrighted material, make sure you get proper authorization from right owners beforehand.
## Troubleshooting
**Spleeter** is a complex piece of software and although we continously try to improve and test it you may encounter unexpected issues running it. If that's the case please check the [FAQ page](https://github.com/deezer/spleeter/wiki/5.-FAQ) first as well as the list of [currently open issues](https://github.com/deezer/spleeter/issues)
### Windows users
It appears that sometimes the shortcut command `spleeter` does not work properly on windows. This is a known issue that we will hopefully fix soon. In the meantime replace `spleeter separate` by `python -m spleeter separate` in command line and it should work.
## Contributing
If you would like to participate in the development of **Spleeter** you are more than welcome to do so. Don't hesitate to throw us a pull reques
没有合适的资源?快使用搜索试试~ 我知道了~
Deezer 的(Tensorflow)音源分离库,可用命令行直接提取音乐中的人声、钢琴、鼓声等-python

共75个文件
py:29个
json:11个
md:8个

19 下载量 94 浏览量
2021-06-18
18:42:15
上传
评论 4
收藏 1.33MB ZIP 举报
温馨提示
Deezer 的(Tensorflow)音源分离库,可用命令行直接提取音乐中的人声、钢琴、鼓声等 关于 Spleeter 是 Deezer 源代码分离库,带有用 Python 编写的预训练模型,并使用 Tensorflow。 它可以轻松训练源分离模型(假设您有一个孤立源的数据集),并提供已经训练好的最先进的模型来执行各种风格的分离:人声(歌声)/伴奏分离(2 个词干)人声 /鼓/贝斯/其他分离(4个词干) 人声/鼓/贝斯/钢琴/其他分离(5个词干) 2个词干和4个词干模型在musdb数据集上有很高的表现。 Spleeter 也非常快,因为在 GPU 上运行时,它可以将音频文件分离为 4 个词干,比实时速度快 100 倍。 我们设计了 Spleeter,因此您可以直接从命令行使用它,也可以直接在您自己的开发管道中作为 Python 库使用它。 它可以与 Conda、pip 一起安装或与 Docker 一起使用。 快速入门 想尝试但不想安装任何东西? 我们已经设置了一个 Google Colab。 准备好深入了解了吗? 在几行中,您可以使用 Conda 安装 Spleete
资源详情
资源评论
资源推荐
收起资源包目录
































































































共 75 条
- 1















格式:zip 资源大小:600.2KB

格式:zip 资源大小:20.7MB














黄文池
- 粉丝: 40
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 基于单片机的交流电机转动控制系统方案设计书.doc
- 《项目管理决策分析与评价》摸底评测.doc
- 综合布线设计方案.docx
- 区块链技术在金融领域应用的风险管理策略研究.docx
- 数据库应用技术知识点.doc
- ATS单片机停车场车位设计.doc
- 2018年度四川省大数据时代的互联网信息安全试题及答案1.doc
- 数据库设计报告1111111111111.doc
- 项目管理在农用飞机维修工程中的应用.docx
- 基于物联网的智能家居系统的设计与应用.docx
- kubernetes系列03—kubeadm安装部署K8S集群.docx
- 基于服务器虚拟化的政务云平台设计.docx
- C语言程序设计工业和信息化普通高等教育“十二五”规划教材立项项目-赵山林-高媛.doc
- matlab电炉温度控制算法比较及仿真研究分析.doc
- 电力调度自动化系统的网络安全问题与对策分析.docx
- 大数据时代人力资源管理创新策略初探.docx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

评论0