<div align="center">
<img width="100%" src="https://github.com/open-mmlab/mmpose/assets/13503330/5b637d76-41dd-4376-9a7f-854cd120799d"/>
</div>
# RTMPose: Real-Time Multi-Person Pose Estimation toolkit based on MMPose
> [RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose](https://arxiv.org/abs/2303.07399)
<div align="center">
English | [ç®ä½ä¸æ](README_CN.md)
</div>
______________________________________________________________________
## Abstract
Recent studies on 2D pose estimation have achieved excellent performance on public benchmarks, yet its application in the industrial community still suffers from heavy model parameters and high latency.
In order to bridge this gap, we empirically study five aspects that affect the performance of multi-person pose estimation algorithms: paradigm, backbone network, localization algorithm, training strategy, and deployment inference, and present a high-performance real-time multi-person pose estimation framework, **RTMPose**, based on MMPose.
Our RTMPose-m achieves **75.8% AP** on COCO with **90+ FPS** on an Intel i7-11700 CPU and **430+ FPS** on an NVIDIA GTX 1660 Ti GPU.
To further evaluate RTMPose's capability in critical real-time applications, we also report the performance after deploying on the mobile device. Our RTMPose-s achieves **72.2% AP** on COCO with **70+ FPS** on a Snapdragon 865 chip, outperforming existing open-source libraries.
With the help of MMDeploy, our project supports various platforms like CPU, GPU, NVIDIA Jetson, and mobile devices and multiple inference backends such as ONNXRuntime, TensorRT, ncnn, etc.

______________________________________________________________________
## ð Table of Contents
- [𥳠ð What's New](#--whats-new-)
- [ð Introduction](#-introduction-)
- [ð Community](#-community-)
- [â¡ Pipeline Performance](#-pipeline-performance-)
- [ð Model Zoo](#-model-zoo-)
- [ð Visualization](#-visualization-)
- [ð Get Started](#-get-started-)
- [ð¨âð« How to Train](#-how-to-train-)
- [ðï¸ How to Deploy](#ï¸-how-to-deploy-)
- [ð Common Usage](#ï¸-common-usage-)
- [ð Inference Speed Test](#-inference-speed-test-)
- [ð Model Test](#-model-test-)
- [ð Citation](#-citation-)
## 𥳠ð What's New [ð](#-table-of-contents)
- Dec. 2023:
- Update RTMW models. The RTMW-l model achieves 70.1 mAP on COCO-Wholebody val set.
- Sep. 2023:
- Add RTMW models trained on combined datasets. The alpha version of RTMW-x model achieves 70.2 mAP on COCO-Wholebody val set. You can try it [Here](https://openxlab.org.cn/apps/detail/mmpose/RTMPose). The technical report will be released soon.
- Add YOLOX and RTMDet models trained on HumanArt dataset.
- Aug. 2023:
- Support distilled 133-keypoint WholeBody models powered by [DWPose](https://github.com/IDEA-Research/DWPose/tree/main).
- You can try DWPose/RTMPose with [sd-webui-controlnet](https://github.com/Mikubill/sd-webui-controlnet) now! Just update your sd-webui-controlnet >= v1.1237, then choose `dw_openpose_full` as preprocessor.
- You can try our DWPose with this [Demo](https://openxlab.org.cn/apps/detail/mmpose/RTMPose) by choosing `wholebody`!
- Jul. 2023:
- Add [Online RTMPose Demo](https://openxlab.org.cn/apps/detail/mmpose/RTMPose).
- Support 17-keypoint Body models trained on Human-Art.
- Jun. 2023:
- Release 26-keypoint Body models trained on combined datasets.
- May. 2023:
- Exported SDK models (ONNX, TRT, ncnn, etc.) can be downloaded from [OpenMMLab Deploee](https://platform.openmmlab.com/deploee).
- [Online Conversion](https://platform.openmmlab.com/deploee/task-convert-list) of `.pth` models into SDK models (ONNX, TensorRT, ncnn, etc.).
- Add [code examples](./examples/) of RTMPose, such as:
- Pure Python inference without MMDeploy, MMCV etc.
- C++ examples with ONNXRuntime and TensorRT backends.
- Android examples with ncnn backend.
- Release Hand, Face, Body models trained on combined datasets.
- Mar. 2023: RTMPose is released. RTMPose-m runs at 430+ FPS and achieves 75.8 mAP on COCO val set.
## ð Introduction [ð](#-table-of-contents)
<div align=center>
<img src="https://user-images.githubusercontent.com/13503330/221138554-110240d8-e887-4b9a-90b1-2fbdc982e9de.gif" width=400 height=300/><img src="https://user-images.githubusercontent.com/13503330/221125176-85015a13-9648-4f0d-a17c-1cbb469efacf.gif" width=250 height=300/><img src="https://user-images.githubusercontent.com/13503330/221125310-7eeb2212-907e-427f-97af-af799d70a4c5.gif" width=250 height=300/>
</div>
<div align=center>
<img src="https://github.com/open-mmlab/mmpose/assets/13503330/38aa345e-4ceb-4e73-bc37-5e082735e336" width=450 height=300/><img src="https://user-images.githubusercontent.com/13503330/221125888-15c20faf-0ad5-4afb-828b-a71ccb064582.gif" width=450 height=300/>
</div>
<div align=center>
<img src="https://github.com/open-mmlab/mmpose/assets/13503330/2ecbf9f4-6963-4a14-9801-da10c0a65dac" width=300 height=350/><img src="https://user-images.githubusercontent.com/13503330/221138017-10431ab4-e515-4c32-8fa7-8748e2d17a58.gif" width=600 height=350/>
</div>
### ⨠Major Features
- ð **High efficiency and high accuracy**
| Model | AP(COCO) | CPU-FPS | GPU-FPS |
| :---: | :------: | :-----: | :-----: |
| t | 68.5 | 300+ | 940+ |
| s | 72.2 | 200+ | 710+ |
| m | 75.8 | 90+ | 430+ |
| l | 76.5 | 50+ | 280+ |
| l-384 | 78.3 | - | 160+ |
- ð ï¸ **Easy to deploy**
- Step-by-step deployment tutorials.
- Support various backends including
- ONNX
- TensorRT
- ncnn
- OpenVINO
- etc.
- Support various platforms including
- Linux
- Windows
- NVIDIA Jetson
- ARM
- etc.
- ðï¸ **Design for practical applications**
- Pipeline inference API and SDK for
- Python
- C++
- C#
- JAVA
- etc.
## ð Community [ð](#-table-of-contents)
RTMPose is a long-term project dedicated to the training, optimization and deployment of high-performance real-time pose estimation algorithms in practical scenarios, so we are looking forward to the power from the community. Welcome to share the training configurations and tricks based on RTMPose in different business applications to help more community users!
⨠⨠â¨
- **If you are a new user of RTMPose, we eagerly hope you can fill out this [Google Questionnaire](https://docs.google.com/forms/d/e/1FAIpQLSfzwWr3eNlDzhU98qzk2Eph44Zio6hi5r0iSwfO9wSARkHdWg/viewform?usp=sf_link)/[Chinese version](https://uua478.fanqier.cn/f/xxmynrki), it's very important for our work!**
⨠⨠â¨
Feel free to join our community group for more help:
- WeChat Group:
<div align=left>
<img src="https://user-images.githubusercontent.com/13503330/222647056-875bed70-85ec-455c-9016-c024772915c4.jpg" width=200 />
</div>
- Discord Group:
- ð https://discord.gg/raweFPmdzG ð
## â¡ Pipeline Performance [ð](#-table-of-contents)
**Notes**
- Pipeline latency is tested under skip-frame settings, the detection interval is 5 frames by defaults.
- Flip test is NOT used.
- Env Setup:
- torch >= 1.7.1
- onnxruntime 1.12.1
- TensorRT 8.4.3.1
- ncnn 20221128
- cuDNN 8.3.2
- CUDA 11.3
- **Updates**: We recommend you to try `Body8` models trained on combined datasets, see [here](#body-2d).
| Detection Config | Pose Config | Input Size<sup><br>(Det/Pose) | Model AP<sup><br>(COCO) | Pipeline AP<sup><br>(COCO) | Params (M)<sup><br>(Det/Pose) | Flops (G)<sup><br>(Det/Pose) | ORT-Latency(ms)<sup><br>(i7-11700) | TRT-FP16-Latency(ms)<sup><br>(GTX 1660Ti) |
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论























收起资源包目录





































































































共 1990 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论


OrigamiSun
- 粉丝: 36
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 网站项目管理规范手册.doc
- 模式识别及其在图像处理中的应用.doc
- 项目管理—如何搞好竣工结算.doc
- 人口健康信息化实践与总体规划培训课件.pptx
- 主机网络存储维保服务技术方案.docx
- XMSinaSwift-Swift资源
- 综合布线系统设计模板样本.doc
- 乐购网络商业街创业计划书.docx
- 广告创意与表现课程基于网络考核方案.doc
- HP虚拟化计算技术解决方案.doc
- 网络建设项目解决方案.doc
- 微软招聘过程与经验(1).ppt
- 嵌入式课程设计学生信息管理系统.doc
- 网络信息辨真伪活动方案.doc
- 【推荐】郭秀花--医学大数据分析策略与数据挖掘.ppt
- 毕业设计装卸料小车多方式运行的PLC控制系统设计.doc
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
