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Abstract

Information retrieval may suggest a document, and
information extraction may tell us what it says, but
which information sources do we trust and which
assertions do we believe when different authors
make conflicting claims? Trust algorithms known
as fact-finders attempt to answer these questions,
but consider only which source makes which claim,
ignoring a wealth of background knowledge and
contextual detail such as the uncertainty in the in-
formation extraction of claims from documents,
attributes of the sources, the degree of similar-
ity among claims, and the degree of certainty ex-
pressed by the sources. We introduce a new, gen-
eralized fact-finding framework able to incorpo-
rate this additional information into the fact-finding
process. Experiments using several state-of-the-
art fact-finding algorithms demonstrate that gener-
alized fact-finders achieve significantly better per-
formance than their original variants on both semi-
synthetic and real-world problems.

1 Introduction

The Information Age has created an explosion of data, but has
also lowered the barriers of entry for producers of that data.
Databases were once ledgers written by hand by a single per-
son; today they can be vast stores of information agglomer-
ated from a myriad of disparate sources, much of it of un-
certain veracity. The mass media, formerly limited to news-
papers and television programs held to journalistic standards,
has expanded to include collaborative content such as blogs,
wikis, and message boards. Documents covering nearly every
topic abound on the Internet, but the motives of the authors
and accuracy of the content are frequently unknown to the
reader. Even personal communication has transformed from
traceable and (relatively) costly mail and telephone services
to cheap, anonymous email and VoIP. Regardless of whether
the consumer is a human or an algorithm, the vast quantity
of information now at hand is tempered by a newfound igno-
rance as to its quality.

Information sources each make one or more claims. Since
sources often make claims that are contradictory (“Obama
was born in Hawaii” and “Obama was born in Kenya”), which

claims do we believe, and which sources do we trust? The
simplest method, voting, simply chooses the claim made by
the most sources. However, not all sources are equally trust-
worthy; consequently, a class of algorithms called fact-finders
instead iteratively calculate the trustworthiness of each source
given the belief in its claims, and the belief in each claim
given the trustworthiness of its sources.

However, fact-finders can only consider “who claims
what” in their trust decision, despite the plethora of addi-
tional background knowledge and contextual detail available.
For example, information extraction may give us a distri-
bution over possible claims made by a source instead of a
simple binary prediction (the claim was certainly made or it
certainly wasn’t). Furthermore, we often face ambiguities
in both a document’s semantics (does “Barack Obama was
born in Kenya” refer to President Obama or his father, Barack
Obama, Sr.?) and its attribution (e.g. if “Barack Obama” is
listed as the author). Alternatively, the sources themselves
may not be entirely sure of their claim (“I’m 90% sure Obama
was born in Hawaii”). We can also judge the similarity among
competing claims to determine, for example, that a source
claiming “Kenya” implicitly prefers neighboring “Uganda”
over “Hawaii”. Or we may know the group membership
of a source (a source belonging to the Tea Party movement
can hardly be considered impartial) and other background
knowledge of its attributes, such as (depending on the type
of source) age, educational attainment, number of employees,
sophistication of a document’s layout, and so on.

Building upon our preliminary work in [Pasternack and
Roth, 2011], our principal contribution is a framework for
incorporating such diverse, commonly-available information
by generalizing fact-finding algorithms, allowing them to
consider important new factors in their trust decisions. In do-
ing so, we are able to achieve better results than were previ-
ously possible, as demonstrated by our experiments utilizing
state-of-the-art fact-finding algorithms.

2 Related Work

Fact-finders consider a set of sources, each of which makes
a set of claims. Often, sets of claims are mutually exclusive
with one another (e.g. putative Obama birthplaces), and the
goal of the fact-finder is to determine which of these alter-
natives is correct. They do this by iteratively calculating the
trustworthiness of each source given the belief in the claims
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it makes, and the belief in each claim given the trustwor-
thiness of the sources asserting it, in the same manner of
[Kleinberg, 1999]’s Hubs and Authorities. TruthFinder [Yin
et al., 2008], for example, calculates the trustworthiness of
a source as the mean belief in its claims. Further, [Paster-
nack and Roth, 2010] introduces the Investment, PooledIn-
vestment, and Average·Log algorithms, and demonstrates that
these perform markedly better than the previous state-of-the-
art on a number of datasets.

Other fact-finders enhance this basic formula. AccuVote
[Dong et al., 2009] computes source dependence (where one
source copies another) and gives greater credence to more
“independent” sources. 3-Estimates [Galland et al., 2010]
estimates the “difficulty” of claims in its calculation, and cor-
rectly asserting a difficult claim (for which there is a high
degree of disagreement) confers more trustworthiness for a
source than asserting something that is “obvious”. Finally,
[Pasternack and Roth, 2010] presents a method for incor-
porating prior knowledge (especially common-sense knowl-
edge) about the relationships among claims (such as “Obama
was born in Hawaii ⇒ Obama is a U.S. citizen”) into fact-
finding to improve performance. These approaches are or-
thogonal to our work; e.g. we can generalize the 3-Estimates
algorithm, and can apply common-sense to a generalized fact-
finder just as we can to a standard one.

3 Fact-Finding Algorithms

Before we discuss generalized fact-finding, we describe the
standard fact-finding algorithm. We have a set of sources, S, a
set of claims C, the claims Cs asserted by each source s ∈ S,
and the set of sources Sc asserting each claim c ∈ C. The
sources and claims can be viewed as a bipartite graph, where
an edge exists between each s and c if c ∈ Cs. In each iter-
ation i, we estimate the trustworthiness T i(s) of each source
s given Bi−1(Cs), the belief in the claims it asserts, and esti-
mates the belief Bi(c) in each claim c given T i(Sc), the trust-
worthiness of the sources asserting it, continuing until con-
vergence or a stop condition. An initial set of beliefs, B0(C),
serve as priors for each algorithm; our experiments use those
given by [Pasternack and Roth, 2010]. As a concrete exam-
ple, consider the simple Sums fact-finder based on Hubs and
Authorities [Kleinberg, 1999]; here T i(s) =

∑
c∈Cs

Bi−1(c)

and Bi(c) =
∑

s∈Sc
T i(s), with B0(c) = 1 for all c ∈ C.

The mutual exclusion set Mc ⊆ C is the set of claims that
are mutually exclusive to one another (e.g. Obama’s birth-
places) to which c belongs; if c is not mutually exclusive to
any other claims, Mc = {c}. For each mutual exclusion set
M containing true claim c, the goal of the fact-finder is to
ensure argmaxc∈Mc

Bf (c) = c at the final iteration f ; the re-
ported accuracies in our experiments are thus the percentage
of mutual exclusion sets we correctly predict over, discount-
ing cases where this is trivial (|M | = 1) or no correct claim
is present (c /∈ M ).

Notice that a fact-finder can be specified with just three
things: a trustworthiness function T (s), a belief function
B(c), and the set of priors B0(C). We use a number of
fact-finders in our experiments: the aforementioned Sums,
3-Estimates [Galland et al., 2010], TruthFinder [Yin et al.,

2008], and Average · Log, Investment, and PooledInvestment
[Pasternack and Roth, 2010].

4 Generalized Fact-Finding

The key technical idea behind generalized fact-finding is
that we can quite elegantly encode the relevant background
knowledge and contextual detail by replacing the bipartite
graph of standard fact-finders with a new weighted k-partite
graph, transitioning from binary assertions to weighted ones
(“source s claims c with weight x”) and adding additional
“layers” of nodes to the graph to represent source groups and
attributes. We then need only modify the fact-finding algo-
rithms to function on this new graph.

4.1 Encoding Information in Weighted Assertions

Weighted assertions, where each source s asserts a claim c
with weight ω(s, c) = [0, 1], allow us to incorporate a variety
of factors into the model:

• Uncertainty in information extraction: we have a [0, 1]
probability that source s asserted claim c.

• Uncertainty of the source: a source may qualify his as-
sertion (“I’m 90% certain that...”)

• Similarity between claims: a source asserting one claim
also implicitly asserts (to a degree) similar claims.

• Group membership: the other members of the groups to
which a source belongs implicitly support (to a degree)
his claims.

We separately calculate ωu for uncertainty in information
in extraction, ωp for uncertainty expressed by the source, ωσ

for the source’s implicit assertion of similar claims, and ωg

for a source’s implicit assertion of claims made by the other
members of the groups to which he belongs. These are or-
thogonal, allowing us to calculate the final assertion weight
ω(s, c) as: ωu(s, c) × ωp(s, c) + ωσ(s, c) + ωg(s, c). Here,
ωu(s, c)×ωp(s, c) can be seen as our expectation of the [0, 1]
belief the source s has in claim c given the possibility of an er-
ror in information extraction, while ωσ(s, c) and ωg(s, c) re-
distribute weight based on claim similarity and source group
membership, respectively.

Uncertainty in Information Extraction

The information extractor may be uncertain whether an asser-
tion occurs in a document due to intrinsic ambiguities in the
document or error from the information extractor itself (e.g.
an optical character recognition mistake, an unknown verb,
etc.); in either case, the weight is given by the probability
ωu(s, c) = P (s → c).

Uncertainty of the Source

Alternatively, the source himself may be unsure. This may
be specific (“I am 60% certain that Obama was born in...”)
or vague (“I am pretty sure that...”); in the latter case, we
assume that the information extractor will assign a numerical
certainty for us, so that in either event we have ωp(s, c) =
Ps(c), where Ps(c) is the estimate provided by source s of
the probability of claim c.
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Similarity Between Claims

Oftentimes a meaningful similarity function exists among the
claims in a mutual exclusion set. For example, when com-
paring two possible birthdays for Obama, we can calculate
their similarity as the inverse of the time between them, e.g.
|days(date1) − days(date2)|−1 (where days measures the
number of days relative to an arbitrary reference date). A
source claiming date1 then also claims date2 with a weight
proportional to this degree of similarity, the idea being that
while date2 is not what he claimed, he will prefer it over
other dates that are even more dissimilar. Given a [0, 1] simi-
larity function σ(c1, c2), we can calculate:

ωσ(s, c) =
∑

d∈Mc,d �=c

ωu(s, d)ωp(s, d)σ(c, d)

Notice that a self-consistent source will not as-
sert multiple claims in mutual exclusion set M with∑

c∈M ωu(s, c)ωp(s, c) > 1, and thus the addition of
ωσ(s, c) to ω(s, c) will never result in ω(s, c) > 1; it is
possible, however, that

∑
c∈M ω(s, c) > 1 for a given source

s. One way to avoid this is to redistribute weight rather than
add it; we introduce the parameter α to control the degree of
redistribution and obtain:

ωα
σ (s, c) =

∑
d∈Mc,d �=c

(
αωu(s, d)ωp(s, d)σ(c, d)∑

e∈Md,e �=d σ(d, e)

)

− αωu(s, c)ωp(s, c)

This function ensures that only a portion α of the source’s
expected belief in the claim, ωu(s, c)ωp(s, c), is redistributed
among other claims in Mc (proportional to their similarity
with c), at a cost of αωu(s, c)ωp(s, c).

[Yin et al., 2008] previously used a form of additive simi-
larity as “Implication” functions in TruthFinder; however, the
our formalization generalizes this idea and allows us to apply
it to other fact-finders as well.

Group Membership via Weighted Assertions

Oftentimes a source belongs to one or more groups; for exam-
ple, a journalist may be a member of professional associations
and an employee of one or more publishers. Our assumption
is that these groups are meaningful, that is, sources belonging
to the same group tend to have similar degrees of trustworthi-
ness. A prestigious, well-known group (e.g. the group of ad-
ministrators in Wikipedia) will presumably have more trust-
worthy members (in general) than a discredited group (e.g.
the group of blocked Wikipedia editors). The approach dis-
cussed in this section encodes these groups using ωg; a more
flexible approach, discussed later, is to use additional “layers”
of groups and attributes instead.

Let Gs be the set of groups to which a source s belongs.
If a source s and source u are both members of the same
group g, we interpret this as an implicit assertion by u in Cs,
and by s in Cu—that is, group members mutually assert each
others’ claims to a degree. We use a redistribution parameter
β such that the original weight of a member’s assertion is split
between the member (proportional to 1 − β) and the other
members of the groups to which he belongs (proportional to

β). This gives us:

ωβ
g (s, c) = β

∑
g∈Gs

∑
u∈g

ωu(u, c)ωp(u, c) + ωσ(u, c)

|Gu| · |Gs| ·
∑

v∈g |Gv|−1

− β(ωu(s, c)ωp(s, c) + ωσ(s, c))∑
v∈g |Gv|−1 in the denominator gives greater credence

to “small” groups (where members belonging to many other
groups weigh less heavily), with the intuition that smaller
groups have more similar members. Note that in the worst
case (where all sources belong to a single group and each
assert a unique set of k claims) this can effectively create as
many as (k·|S|)2−k·|S| new assertions, with a corresponding
increase in computational cost when running the fact-finder.

4.2 Rewriting Fact-Finders for Assertion Weights

After calculating the weight functions ω(s, c) for all s ∈ S
and c ∈ C, we need to rewrite each fact-finder’s T (s), B(c)
and B0(c) functions to use these weights in the generalized
fact-finding process by qualifying previously “whole” asser-
tions as “partial”, weighted assertions. We start by redefin-
ing Sc as {s : s ∈ S, ω(s, c) > 0}, and Cs as {c : c ∈
C, ω(s, c) > 0}. The basic rewriting rules are:

• Replace |Sc| with
∑

s∈Sc
ω(s, c)

• Replace |Cs| with
∑

c∈Cs
ω(s, c)

• In T i(s), replace Bi−1(c) with ω(s, c)Bi−1(c)

• In Bi(c), replace T i(s) with ω(s, c)T i(s)

These rules suffice for all the linear fact-finders we encoun-
tered; one, TruthFinder, is instead log-linear, so an exponent
rather than a coefficient is applied, but such exceptions are
straightforward. For brevity, we list only three of the rewrit-
ten fact-finders here as examples.

Generalized Sums (Hubs and Authorities)

T i(s) =
∑
c∈Cs

ω(s, c)Bi−1(c) Bi(c) =
∑
s∈Sc

ω(s, c)T i(s)

Generalized Average·Log

Average·Log employs the same B function as Sums, so we
provide only the trustworthiness function:

T i(s) = log

(∑
c∈Cs

ω(s, c)

)
·
∑

c∈Cs
ω(s, c)Bi−1(c)∑

c∈Cs
ω(s, c)

Generalized Investment

The Investment algorithm requires sources to “invest” their
trust uniformly in their claims; we rewrite this such that these
investments are weighted by ω. As per [Pasternack and Roth,
2010], we used the same G(x) = x1.2 in our experiments.

T i(s) =
∑
c∈Cs

ω(s, c)Bi−1(c)T i−1(s)∑
c∈Cs

ω(s, c) ·∑r∈Sc

ω(r,c)T i−1(r)∑
b∈Cr

ω(r,b)

Bi(c) = G
(∑

s∈Sc

ω(s, c)T i(s)∑
c∈Cs

ω(s, c)

)
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Figure 1: A fact-finding problem with a single group layer.
Edges between sources and groups denote membership.

4.3 Groups and Attributes as Layers

Instead of using weighted assertions, we can add additional
“layers” to represent groups and attributes directly. Each node
in these layers will represent a group or attribute, with edges
linking to its adjoining layers (either the sources or other
groups/attributes), creating a k-partite graph (with k > 3
used to encode meta-groups and meta-attributes.) An stan-
dard fact-finder iteratively alternates between calculating the
first layer (the claims) and the second layer (the sources), us-
ing the B and T functions, respectively. Now we replace
these with generic “up” and “down” functions for each layer.
For a k-partite graph with layers L1...k, we define U i

j(Lj)

over j = 2...k and Di
j(Lj) over j = 1...k − 1, with special

cases U i
1(L1) = Di−1

1 (L1) and Di
k(Lk) = U i

k(Lk). The Uj

and Dj functions may differ for each j, or they may be the
same over all layers. In each iteration i, we calculate the val-
ues U i

j(Lj) for layers j = 2 to k, and then calculate Di
j(Lj)

for layers j = k − 1 to 1. For example, to extend Sums to k
layers, we calculate Uj(e) and Dj(e) as follows for e ∈ Lj :

U i
j(e) =

∑
f∈Lj−1

ω(e, f)U i
j−1(f)

Di
j(e) =

∑
f∈Lj+1

ω(e, f)Di
j+1(f)

Where ω(e, f) = ω(f, e) is the edge weight between nodes
e and f ; if e or f is a group or attribute, ω(e, f) is 1 if e
has attribute or group f or vice-versa, and 0 otherwise. In
many cases, though, we may benefit from using an exist-
ing fact-finder over the claim and source layers, while us-
ing a different set of functions to mediate the interaction be-
tween the source and group/attribute layers. In particular, an
information bottleneck often exists when calculating trust-
worthiness of a source in the “down phase”, as it will be
wholly dependent upon the trustworthiness of the groups to
which it belongs: a source belonging to one overall-mediocre
group may make many correct claims, but still be assigned
a low trustworthiness score by the D function because of its
group membership. This type of problem can be resolved
by incorporating both the layer below and the layer above

in each calculation; for example, for a given Dj(e), we can
define ωchildren =

∑
f∈Lj−1

ω(e, f) and Dsmooth
j (e) =

(1+ωchildren)
−1Dj(e) +ωchildren(1 +ωchildren)

−1Uj(e),
which returns a mixture of the value derived from e’s an-
cestors, Dj(e) and the value derived from e’s descendants,
Uj(e), according to the (weighted) number of children e pos-
sesses, the intuition being that with more children Uj(e) is
more certain and should be weighted more highly, whereas
with fewer children we should depend more upon our ances-
tors. We will use Dsmooth

j (e) in our experiments.

5 Experiments

5.1 Datasets

We use [Pasternack and Roth, 2010]’s Population dataset,
extracted from Wikipedia infoboxes [Wu and Weld, 2007]
(semi-structured tables with various fields within Wikipedia
articles), and [Yin et al., 2008]’s Books dataset, extracted
from online bookstore websites. The Population dataset is
a collection of 44,761 claims of the populations of cities in
a particular year (e.g. triples such as (New York, 1400000,
2005)) from 171,171 sources (“editors”, in Wikipedia par-
lance), with a test set of 308 true claims taken from census
data (omitting the many cases where editors did not con-
test the population, or where all claims in Wikipedia were
wrong). The Books dataset is a collection of 14,287 claims
of the authorship of various books by 894 websites, where a
website asserts that a person was an author of a book (e.g.
(Bronte, “Jane Eyre”)) explicitly by including them in the list
of authors, or implicitly asserts a person was not an author
(e.g. (¬Bronte, “Jane Eyre”)) by omitting them from the list
(when at least one other website lists that person as an author
of the book—if nobody lists a person as an author, his non-
authorship is not disputed and can be ignored). The test set is
605 true claims collected by examining the books’ covers.

5.2 Tuned Assertion Certainty

A user modifying a field of interest in an infobox (e.g. the
population total field) is clearly asserting the corresponding
claim (“population = x”), but what if he edits another part of
the infobox, or somewhere else on the page? Did he also read
and approve the fields containing the claims we are interested
in, implicitly asserting them? [Pasternack and Roth, 2010]
opted to simply consider only direct edits of a field containing
a claim to be an assertion of that claim, but this ignores the
large number of potential assertions that may be implicit in
an editor’s decision to not change the field.

This may be considered either uncertainty in information
extraction (since we are not able to extract the author’s true in-
tent) or uncertainty of the part of the authors (an editor leaves
a field unaltered because he believes it is “probably” true). In
either case, we can weight the assertions to model this uncer-
tainty in the generalized fact-finder. The information extrac-
tor provides a list of all edits and their type (editing the field
of interest, another field in the infobox, or elsewhere in the
document), and each type of edit implies a different certainty
(a user editing another field in the infobox is more likely to
have read and approved the neighboring field of interest than
a user editing a different portion of the document), although
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Data Weights Vote Sum 3Est TF A·L Inv1.2 Pool1.4

Pop Unweighted 81.49 81.82 81.49 84.42 80.84 87.99 80.19
Pop Tuned 81.90 82.90 82.20 87.20 83.90 90.00 80.60
Pop Best 81.82 83.44 82.47 87.66 86.04 90.26 81.49

Table 1: Experimental Results for Tuned Assertion Certainty. All values are percent accuracy.

we do not know what those levels of certainty are. These
can be discovered by tuning with a subset of the test set (and
evaluating on the remainder), varying the relative weights of
the “infobox”, “elsewhere”, and “field of interest” assertions.
Our results are shown in Table 1; the algorithms we compare
on are Vote (weighted voting, where belief in a claim c is
given by

∑
s∈Sc

ω(s, c)), Sum (Hubs and Authorities), 3Est
(3-Estimates), TF (TruthFinder), A·L (Average·Log), Inv1.2
(Investment with G = x1.2) and Pool1.4 (PooledInvestment
with G = x1.4). Each fact-finder was run for 20 iterations.
Note that in the “unweighted” case only direct edits to the
“field of interest” are considered, and “infobox” and “else-
where” edits are ignored (giving all edits equal weight fares
much worse).

We tuned over 208 randomly-chosen examples and eval-
uated on the remaining 100, repeating the experiment ten
times. We also tuned (and tested) with all 308 labeled exam-
ples to get the “Best” results, only slightly better than those
from legitimate tuning. As expected, assigning a smaller
weight to the “infobox” assertions (relative to the “field of
interest”) and a much lower weight to the “elsewhere” asser-
tions yielded the greatest results, confirming our common-
sense assumption that edits close to a field of interest con-
fer more supervision and implicit approval than those else-
where on the page. We found a significant gain across all
fact-finders, notably improving the top Investment result to
90.00%, a greater improvement than what [Pasternack and
Roth, 2010] achieved using common-sense knowledge about
the claims and demonstrating that generalized fact-finders can
dramatically increase performance.

5.3 Uncertainty in Information Extraction

We next consider the case where the information extractor is
uncertain about the putative claims, but provides an (accurate)
estimate of ωu(s, c) = P (s → c), the probability that source
s made a given claim c.

For the Population dataset, we augment each mutual ex-
clusion set M with an additional (incorrect) claim, ensur-
ing |M | ≥ 2. For each assertion s → c we select an-
other c′ ∈ Mc, and draw a p from a Beta(4,1) distribu-
tion (E(p) = 0.8 ⇒ 20% chance of error). We then set
ωu(s, c) = p and ωu(s, c

′) = 1 − p. In the unweighted case
(where edge weights must be 0 or 1), we keep the edge be-
tween s and c if p ≥ 0.5, and replace that edge with one
between s and c′ if p < 0.5.

For the Books dataset, each mutual exclusion set had ex-
actly two claims (a person is either an author of a book or he
is not) and thus did not require augmentation. Here we drew
p from a Beta(2,1) distribution (E(p) = 2/3), corresponding
to a greater (33%) chance of error. Our results are shown in

Table 2; on both datasets, generalized fact-finders easily out-
perform their standard counterparts.

5.4 Groups as Weighted Assertions

Using the Population data we considered three groups of ed-
itors: administrators, blocked users, and regular users with
at least one template on their user page (intended to capture
more serious editors). To keep things simple, we allowed
each user to belong to at most one of these groups—if an
administrator had been blocked, he nonetheless belonged to
the administrator group; if an otherwise “regular” user were
blocked, he (of course) belonged to the blocked group. Given
that administrators are promoted to that position by being
trusted by other Wikipedia editors, and that blocked users
are blocked by trusted administrators for (presumable) mis-
behavior, we expected that administrators will be relatively
trustworthy on the whole, while blocked users will be more
untrustworthy, with serious editors somewhere in between.
We then encoded these groups as weighted assertions, using
ωg with arbitrarily chosen β parameters, as shown in Table 3.
We see improved performance with all β values tested, with
the exception of the Investment algorithm, which requires a
much lower β; we can conclude from this that β should be
tuned independently on each fact-finder for best results.

5.5 Groups as Additional Layers

We next took the same three groupings of editors (admin-
istrators, blocked users, and regular users) and added them
as a third layer in our generalized fact-finders, continuing to
use the same Population dataset as before. For most fact-
finders, we can directly adapt the T and B functions as U
and D functions, respectively, though this excludes Pooled-
Investment (which depends on mutual exclusion sets) and 3-
Estimates (whose “claim difficulty” parameters are not read-
ily extended to groups). In the former case, we can calcu-
late the trustworthiness of the groups in the third layer as a
weighted average of the trustworthiness of its members, giv-
ing us U i

3(g) =
∑

s∈g U
i
2(s)/|g|, where g is a group and |g|

is the number of sources it contains. Likewise, we can cal-
culate the trustworthiness a source inherits from its groups
as the weighted average of the groups’ trustworthiness, giv-
ing Di

2(s) =
∑

g∈Gs
Di

3(g)/|Gs|, where Gs is the set of
groups to which source s belongs (recall that, since there are
three layers, Di

3(g) = U i
3(g)). We can use these new U3

and D2 functions to handle the interaction between the group
layer and the source layer, while continuing to use an exist-
ing fact-finder to mediate the interaction between the source
layer and claim layer. We apply this hybrid approach to two
fact-finders, giving us Inv1.2/Avg, and Pool1.4/Avg. Finally,
note that regardless of the choice of D2, we are discarding the
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Data Assertions Vote Sum 3Est TF A·L Inv1.2 Pool1.4

Pop Unweighted 71.10 77.92 71.10 78.57 76.95 78.25 74.35
Pop Generalized (Weighted) 76.95 78.25 76.95 80.19 78.90 84.09 78.25

Books Unweighted 80.63 77.93 80.74 80.56 79.21 77.83 81.20
Books Generalized (Weighted) 81.88 81.13 81.88 82.90 81.96 80.50 81.93

Table 2: Experimental Results for Uncertainty in Information Extraction

β Vote Sum 3Est TF A·L Inv1.2 Pool1.4

(No groups) 81.49 81.82 81.49 84.42 80.84 87.99 80.19
0.7 84.09 84.09 84.42 85.71 84.74 84.74 83.44
0.5 83.77 84.09 84.42 85.06 84.09 87.01 82.79
0.3 82.47 83.77 83.77 84.74 83.77 87.01 82.79

0.00001 83.44 82.14 83.44 84.42 81.49 88.96 80.51

Table 3: Experimental Results for Groups using Weighted Assertions.

Description Sum TF A·L Inv1.2 Inv1.2/Avg Pool1.4/Avg
No Groups 81.82 84.42 80.84 87.99 87.99 80.19

Group Layer 83.77 83.44 84.42 52.92 88.64 64.94
Group Layer with Dsmooth

2 84.74 84.09 82.79 88.96 89.61 84.74

Tuned + Group Layer 86.10 83.30 87.00 88.50 90.00 77.90
Tuned + Group Layer with Dsmooth

2 83.20 85.30 84.20 87.40 90.00 83.50

Table 4: Experimental Results for Groups as an Additional Layer.

trustworthiness of each source as established by its claims in
favor of the collective trustworthiness of its groups, an infor-
mation bottleneck. When we have ample claims for a source,
its group membership is less important; however, when there
are few claims, group membership becomes much more im-
portant due to the lack of other “evidence”. The previously
described Dsmooth

j captures this idea by scaling the impact
of groups on a source by the (weighted) number of claims
made by that source. We show results both with and without
this smoothing in Table 4.

Except for TruthFinder, groups always improve the results,
although “smoothing” may be required. We also tuned the as-
sertion certainty as we did in Table 1 in conjunction with the
use of groups; here we find no relative improvement for In-
vestment or TruthFinder, but gain over both tuning and groups
alone for all other fact-finders.

6 Conclusion

Generalized fact-finding allow us to incorporate new factors
into our trust decisions, such as information extraction and
source uncertainty, similarity between the claims (previously
evaluated with success by [Yin et al., 2008], but applicable
only to TruthFinder), and source groupings and attributes.
As our experiments have shown, this additional information
provides a substantial performance advantage across a broad
range of fact-finders.
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