
LIMES — A Time-Efficient Approach for
Large-Scale Link Discovery on the Web of Data

Axel-Cyrille Ngonga Ngomo, Sören Auer

AKSW/BIS, Institut für Informatik
Universität Leipzig

Postfach 100920, 04009 Leipzig, Germany
{ngonga|auer}@informatik.uni-leipzig.de

Abstract

The Linked Data paradigm has evolved into a pow-
erful enabler for the transition from the document-
oriented Web into the Semantic Web. While the
amount of data published as Linked Data grows
steadily and has surpassed 25 billion triples, less
than 5% of these triples are links between knowl-
edge bases. Link discovery frameworks provide the
functionality necessary to discover missing links
between knowledge bases. Yet, this task requires
a significant amount of time, especially when it is
carried out on large data sets. This paper presents
and evaluates LIMES, a novel time-efficient ap-
proach for link discovery in metric spaces. Our ap-
proach utilizes the mathematical characteristics of
metric spaces during the mapping process to filter
out a large number of those instance pairs that do
not suffice the mapping conditions. We present the
mathematical foundation and the core algorithms
employed in LIMES. We evaluate our algorithms
with synthetic data to elucidate their behavior on
small and large data sets with different configura-
tions and compare the runtime of LIMES with an-
other state-of-the-art link discovery tool.

1 Introduction

The core idea behind the Linked Data paradigm is to facilitate
the transition from the document-oriented Web to the Seman-
tic Web by extending the Web with a data commons consist-
ing of interlinked data sources [Volz et al., 2009]. While the
number of triples in data sources increases steadily and has
surpassed 25 billions, links still constitute less than 5% of the
total number of triples available on the Linked Data Web1.
In addition, while the number of tools for publishing Linked
Data on the Web grows steadily, there is a significant lack of
time-efficient solutions for discovering links between these
data sets. Yet, links between knowledge bases play a key role
in important tasks such as cross-ontology question answer-
ing [Lopez et al., 2009], large-scale inferences [Urbani et al.,
2010] and data integration [Ben-David et al., 2010].

1http://www4.wiwiss.fu-berlin.de/lodcloud/

To carry out a matching task, the distance measure as de-
fined by the user is usually applied to the value of some prop-
erties of instances from the source S and target T so as to de-
tect instances that should be linked. Instances whose distance
is lower or equal to a given threshold are considered to be can-
didates for linkage. The a-priori complexity of a matching
task is proportional to |S||T |, an unpractical proposition as
soon as the source and target knowledge bases become large.
For example, discovering duplicate cities in DBpedia [Auer et
al., 2008] alone would necessitate approximately 0.15× 109

distance computations. Hence, the provision of time-efficient
approaches for the reduction of the time complexity of link
discovery is a key challenge of the Linked Data.

In this paper, we present LIMES (Link Discovery Frame-
work for metric spaces) - a time-efficient approach for the dis-
covery of links between Link Data sources. LIMES addresses
the scalability problem of link discovery by utilizing the tri-
angle inequality in metric spaces to compute pessimistic es-
timates of instance similarities. Based on these approxima-
tions, LIMES can filter out a large number of instance pairs
that cannot suffice the matching condition set by the user. The
real similarities of the remaining instance pairs are then com-
puted and the matching instances are returned. We show that
LIMES requires a significantly smaller number of compar-
isons than brute force approaches by using synthetic data. In
addition, we show that our approach is superior to state-of-
the-art link discovery frameworks by comparing their runtime
in real-world use cases. Our contributions are as follows:

• We present a lossless and time-efficient approach for the
large-scale matching of instances in metric spaces.

• We present two novel algorithms for the efficient ap-
proximation of distances within metric spaces based on
the triangle inequality.

• We evaluate LIMES on synthetic data by using the num-
ber of comparisons necessary to complete the given
matching task and with real data against the SILK frame-
work [Volz et al., 2009] with respect to the runtime.

The remainder of this paper is structured as follows: after
reviewing related work in Section 2 we develop the math-
ematical framework underlying LIMES in Section 3. We
present the LIMES approach in Section 4 and report on the re-
sults of an experimental evaluation in Section 5. We conclude
with a discussion and an outlook on future work in Section 6.

2312

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

2 Related Work

Using the triangle inequality for improving the runtime of
algorithms is not a novel idea. This inequality has been
used for tasks such as data clustering [Cilibrasi and Vitanyi,
2005], spatial matching [Wong et al., 2007] and query pro-
cessing [Yao et al., 2003]. Yet, to the best of our knowledge,
it has never been used previously for link discovery.

Current frameworks for link discovery on the Web of
Data can be subdivided into two categories: domain-specific
and universal frameworks. Domain-specific link discov-
ery frameworks aim at discovering links between knowledge
bases from a particular domain. For example, the RKB
knowledge base (RKB-CRS) [Glaser et al., 2009] computes
links between universities and conferences while GNAT [Rai-
mond et al., 2008] discovers links between music data sets.

Universal link discovery frameworks are designed to carry
out mapping tasks independently from the domain of the
source and target knowledge bases. For example, RDF-
AI [Scharffe et al., 2009] implements a five-step approach
that comprises the preprocessing, matching, fusion, interlink
and post-processing of data sets. SILK [Volz et al., 2009]
(Version 2.0) is a time-optimized tool for link discovery. In-
stead of utilizing the characteristics of metric spaces, SILK
uses rough index pre-matching to reach a quasi-linear time-
complexity. The drawback of the pre-matching approach is
that the recall is not guaranteed to be 1. In addition, SILK al-
lows the manual configuration of data blocks to minimize the
runtime of the matching process. Yet, this blocking approach
is not lossless.

The task of discovering links between knowledge bases is
closely related with record linkageand de-duplication [Blei-
holder and Naumann, 2008]. The database community has
produced a vast amount of literature on efficient algorithms
for solving these problems. Different blocking techniques
such as standard blocking, sorted-neighborhood, bigram in-
dexing, canopy clustering and adaptive blocking (see e.g.
[Köpcke et al., 2009]) have been developed to address the
problem of the quadratic time complexity of brute force com-
parison methods. The rationale is to filter out obvious non-
matches efficiently before executing the more detailed and
time-consuming comparisons.

The difference between the approaches described above
and our approach is that LIMES uses the triangle inequal-
ity to portion the metric space. Each of these portions of the
space is then represented by an exemplar [Frey and Dueck,
2007] that allows to compute an accurate approximation of
the distance between each instance in this region and others
instances. By these means, we can discovery links between
Linked Data sources efficiently without sacrificing precision.

3 Mathematical Framework

In this section, we present the mathematical principles under-
lying the LIMES framework. We present the formal defini-
tion of a matching task within metric spaces. Then, we use
this definition to infer upper and lower boundary conditions
for distances based on the triangle inequality. Finally, we
show how these boundary conditions can be used to reduce
the number of comparisons necessary to complete a mapping.

3.1 Preliminaries

In the remainder of this paper, we use the following notation.
Let A be an affine space. m, m1, m2, m3 symbolize metrics
on A; x, y and z represent points from A and α, β, γ and δ
are scalars, i.e., elements of R. Furthermore, we assume that
(A,m) is a metric space.
Definition 1 (Matching task) Given two sets S (source) and
T (target) of instances, a metric m and a threshold θ ∈
[0,∞[, the goal of a matching task is to compute the set M
of triples (i.e., the matching) (s, t,m(s, t)) of all instances
s ∈ S and t ∈ T such that m(s, t) ≤ θ.

We call each computation of the distance m(s, t) a com-
parison. The time complexity of a mapping task can be mea-
sured by the number of comparisons necessary to complete
this task. A-priori, the completion of a matching task re-
quires O(|S||T |) comparisons. In this paper, we show how
the number of comparisons necessary to map two knowledge
bases can be reduced significantly by using the mathematical
characteristics of metric spaces. For this purpose, we make
particularly use of the triangle inequality (TI) that holds in
metric spaces.

3.2 Distance Approximation Based on the Triangle
Inequality

Given a metric space (A,m) and three points x, y and z in A,
the TI entails that

m(x, y) ≤ m(x, z) +m(z, y). (1)
Without restriction of generality, the TI also entails that

m(x, z) ≤ m(x, y) +m(y, z), (2)
thus leading to the following boundary conditions in metric
spaces:
m(x, y)−m(y, z) ≤ m(x, z) ≤ m(x, y) +m(y, z). (3)

Inequality 3 has two major implications. First, the distance
from a point x to any point z in a metric space can be ap-
proximated when knowing the distance from x to a reference
point y and the distance from the reference point y to z. We
call such a reference point an exemplar (following [Frey and
Dueck, 2007]). The role of an exemplar is to be used as a
sample of a portion of the metric space A. Given an input
point x, knowing the distance from x to an exemplar y allows
to compute lower and upper bounds of the distance from x to
any other point z at a known distance from y.

The second implication of inequality 3 is that the real dis-
tance from x to z can only be smaller than θ if the lower
bound of the approximation of the distance from x to z via
any exemplar y is also smaller than θ. Thus, if the lower
bound of the approximation of the distance m(x, z) is larger
than θ, then m(x, z) itself must be larger than θ. Formally,

m(x, y)−m(y, z) > θ ⇒ m(x, z) > θ. (4)
Supposing that all distances from instances t ∈ T to exem-

plars are known, reducing the number of comparisons simply
consists of using inequality 4 to compute an approximation
of the distance from all s ∈ S to all t ∈ T and computing the
real distance only for the (s, t) pairs for which the first term
of inequality 4 does not hold. This is the core of the approach
implemented by LIMES.

2313

4 The LIMES framework

In this section, we present the LIMES framework in more
detail. First, we give an overview of the workflow it imple-
ments. Thereafter, we present the two core algorithms under-
lying our framework. Finally, we present the architecture of
the current implementation.

4.1 Overview

�������	

����������

�����	���

���������

������	���

����������

��	����������

���������

��	���

Figure 1: General Workflow of LIMES

The general workflow implemented by the LIMES frame-
work comprises four steps (as depicted in Figure 1). Given
the source S, the target T and the threshold θ, LIMES first
computes a set E of exemplars for T (step 1). This process
is concluded by matching each point t ∈ T to the exemplar
closest to it. In step 2 and 3, the matching per se is carried
out. For each s ∈ S and each e ∈ E, the distance m(s, e) is
computed. This distance is used to approximate the distance
from s to every t ∈ T (step 2). We call this step filtering.
The filtering step implements the central innovation of our
approach. The main advantage here is that since pessimistic
estimates are used, it is guaranteed to lead to exactly the same
matching as a brute force approach while at the same time re-
ducing the number of comparisons dramatically. After the
filtering, the real distance between the remaining s ∈ S and
the t ∈ T for which the first term of inequality 4 did not hold
are computed (step 3). Finally, the matchings (s, t,m(s, t))
with m(s, t) ≤ θ are stored in a user-specified format such as
NTriples (step 4).

4.2 Computation of Exemplars

The role of exemplars is to represent a portion of a metric
space. Accordingly, the best distribution of exemplars should
achieve a homogeneous portioning of this metric space. The
rationale behind the computation of exemplars in LIMES is
to select a set of instances in the metric space underlying the
matching task in such a way that they are distributed in a uni-
form way in the metric space. One way of achieving this goal
is by ensuring that the exemplars are very dissimilar, i.e. very
distant from each other. The approach we use to generate
such exemplars is shown in Algorithm 1.

Let n be the desired number of exemplars and E the set of
all exemplars. In step 1 and 2, we initialize E by picking a
random point e1 in the metric space (T,m) and setting E =
{e1}. Then, we compute the similarity from the exemplar e1
to every other point in T (step 3). As long as the size of E
has not reached n, we iterate steps 4 to 6: In step 4, we pick

Data: Number of exemplars n, target knowledge base T
Result: Set E of exemplars and their matching to the

instances in T
1. Pick random point e1 ∈ T ;
2. Set E = E ∪ {e1}, η = e1;
3. Compute the distance from e1 to all t ∈ T ;
while |E| < n do

4. Get a random point e′ such that
e′ ∈ argmaxt

∑

t∈T

∑

e∈E

m(t, e);

5. E = E ∪ {e′}; 6. Compute the distance from e′ to
all t ∈ T ;

end
7. Map each point in t ∈ T to one of the exemplars
e ∈ E such that m(t, e) is minimal;
8. Return E;

Algorithm 1: Computation of Exemplars

Data: Set of exemplars E, point s, metric m, threshold θ
Result: matching M for s
1. M = ∅;
for e ∈ |E| do

if m(s, e) ≤ θ then
2. M = M ∪ {e};

end
for i = 1...|Le| do

if (m(s, e)−m(e, λe
i)) ≤ θ then

Ifm(s, λe
i) ≤ θ 3. M = M ∪ {λe

i}
else

break;
end

end

end
4. return M ;

Algorithm 2: Comparison algorithm

a point e′ ∈ T such that the sum of the distances from e′ to
the exemplars e ∈ E is maximal (there can be many of these
points). This point is chosen as new exemplar and added to
E (step 5). Then, we compute the distance from e′ to all
other points in T (step 6). Once E has reached the size n,
we terminate the iteration. Finally, we map each point to the
exemplar to which it is most similar (step 7). This algorithm
has a constant time complexity of O(|E||T |).

4.3 Matching Based on Exemplars

The instances associated with an exemplar e ∈ E in step 7 of
Algorithm 1 are stored in a list Le sorted in descending order
with respect to their distance to e. Let λe

1...λ
e
m be the ele-

ments of the list Le. The goal of matching an instance s from
a source knowledge base to a target knowledge base w.r.t. a
metric m is to find all instances t of the target knowledge
source such that m(s, t) ≤ θ, where θ is a given threshold.
The matching algorithm based on exemplars is shown in Al-
gorithm 2.

We only carry out a comparison when the approximation

2314

of the distance is less than the threshold. We terminate the
similarity computation for an exemplar e as soon as the first
λe is found such that the lower bound of the distance is larger
than θ. This is possible since the list Le is sorted, i.e., if
m(s, e) − m(e, λe

i) > θ, then the same inequality holds for
all λe

j with j > i. In the worst case, our matching algorithm
has the time complexity O(|S||T |), leading to a total worst-
time complexity of O((|E| + |S|)|T |), which is larger than
that of the brute force approach. However, as our evaluation
with both synthetic and real data shows, a correct parameter-
ization of LIMES leads to dramatically reduced comparisons
and runtime.

5 Evaluation

Our evaluation is based on the implementation of the LIMES
framework consisting of seven main modules (including a
dashboard) of which each can be extended to accommodate
new or improved functionality2

We elucidate the following four central evaluation ques-
tions:

Q1: What is the best number of exemplars?
Q2: What is the relation between the threshold θ and the

total number of comparisons?
Q3: Does the assignment of S and T matter?
Q4: How does LIMES compare to other approaches?
To answer Q1 to Q3, we performed an evaluation on syn-

thetic data as described in the subsequent section. Q4 was
elucidated by comparing the runtimes of LIMES and SILK
on three different real-world matching tasks.

5.1 Evaluation with Synthetic Data

The general experimental setup for the evaluation on syn-
thetic data was as follows: The source and target knowl-
edge bases were filled with random strings having a maxi-
mal length of 10 characters. We used the Levenshtein metric
to measure string similarity. Each of the matching tasks was
carried out five times and we report average values in the fol-
lowing.

To address the first Q1 and Q2, we considered four match-
ing tasks on knowledge bases of sizes between 2, 000 and
10, 000. We varied the thresholds between 0.95 and 0.75 and
the number of exemplars between 10 and 300. We measured
the average number of comparisons necessary to carry out
each of the matching tasks (see Figure 2). Two main conclu-
sions can be inferred from the results. First, the results clearly
indicate that the best number of exemplars diminishes when
the similarity threshold θ is increased. In general, the best
value for |E| lies around

√|T | for θ ≥ 0.9, which answers
Q1. The relation between θ and |E| is a direct cause of our
approach being based on the triangle inequality. Given a high
threshold, even a rough approximation of the distances is suf-
ficient to rule out a significant number of target instances as
being similar to a source instance. However, a low threshold
demands a high number of exemplars to be able to rule out a
significant number of target instances.

2LIMES is available as an open-source framework at http://
limes.sf.net.

Table 1: Average number of comparisons (in millions) for
matching knowledge bases of different sizes (in thousands).
The columns are the size of the source knowledge base, while
the rows are the size of the target knowledge base.

2 3 4 5 6 7 8 9 10

2 0.6 0.9 1.2 1.4 1.6 2.0 2.3 2.5 2.7
3 0.9 1.2 1.6 2.0 2.1 2.7 2.9 3.4 3.6
4 1.1 1.6 2.0 2.5 2.9 3.1 3.6 3.9 4.5
5 1.4 1.9 2.3 2.8 3.4 3.9 4.2 4.8 5.5
6 1.6 2.1 2.8 3.3 3.9 4.4 5.0 5.4 6.1
7 1.9 2.6 3.2 3.7 4.4 5.1 5.7 6.4 6.6
8 2.0 2.8 3.4 4.1 5.0 5.5 6.6 7.1 7.5
9 2.4 3.0 3.9 4.7 5.4 6.3 6.9 7.6 8.2
10 2.6 3.5 4.3 5.0 6.0 6.3 7.8 8.3 9.2

An analysis of the results displayed in Figure 2 also allows
to answer Q2. The higher the value of θ, the smaller the num-
ber of comparisons. This is due to the stricter filtering that
results from the higher threshold and consequently leads to a
smaller number of required comparisons. An important ob-
servation is that, the larger the size of the knowledge bases S
and T , the higher the speedup obtained by using the LIMES
approach. For example, while LIMES necessitates approxi-
mately 7 times less comparisons than a brute force approach
for the knowledge bases of size 2, 000 and θ = 0.95 in the
best case, it requires approximately 17 times less comparisons
for knowledge bases of size 10, 000 with the same threshold
settings.

To address Q3, we measured the average number of com-
parisons required to map synthetic knowledge bases of sizes
between 1,000 and 10,000 in all possible combinations of
sizes for S and T . For this experiment, the number of ex-
emplars was set to

√|T |. θ was set to 0.9. The results of this
experiment are summarized in Table 1.

Overall, the experiment shows that whether source or target
knowledge base is larger does not affect the number of com-
parisons significantly. It appears that the results are slightly
better when |T | ≤ |S|. Yet, the difference between the num-
ber of comparisons lies below 5% in most cases and is thus
not significant. Therefore, the link discovery can always be
carried out by simply following the specification of the user
with respect to which endpoint is source resp. target of the
matching.

5.2 Evaluation with Real Data

To answer the question Q4, we evaluated the performance of
LIMES on real data by comparing its runtime with that of the
(to the best of our knowledge) only time-optimized link dis-
covery framework SILK. Non-optimized frameworks would
perform like a brute-force approach, which is clearly infe-
rior to LIMES. To ensure an objective comparison of the run-
times, we only considered the time necessary for both frame-
works to carry out the comparisons in our evaluation . Each of
the time measurements was carried out three times and only
the best runtime was considered. Note that there was no sig-
nificant different between the different runtimes of LIMES.
Every time measurement experiment was carried out as a sin-

2315

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300

10
5
co
m
pa

ri
so
ns

Exemplars

0.75

0.8

0.85

0.9

0.95

Brute force

(a) Size = 2000

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

10
5
co
m
pa

ri
so
ns

Exemplars

0.75

0.8

0.85

0.9

0.95

Brute force

(b) Size = 3000

0

50

100

150

200

250

300

0 50 100 150 200 250 300

10
5
co
m
pa

ri
so
ns

Exemplars

0.75

0.8

0.85

0.9

0.95

Brute force

(c) Size = 5000

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300

10
5
co
m
pa

ri
so
ns

Exemplars

0.75

0.8

0.85

0.9

0.95

Brute force

(d) Size = 10000

Figure 2: Comparisons required by LIMES for different numbers of exemplars on knowledge bases of different sizes. The
x-axis shows the number of exemplars, the y-axis the number of comparisons in multiples of 105.

gle thread on a 32-bit system with a 2.5GHz Intel Core Duo
CPU and 4GB RAM. For our experiments, we used version
0.3.2 of LIMES and version 2.0 of SILK. We did not use
SILK’s blocking feature because it loses some links and we
were interested in lossless approaches. The number of exem-
plars for LIMES was set to

√|T |.

Table 2: Overview of runtime experiments. |S| is the size
of the source knowledge base, |T | is the size of the target
knowledge base and |E| is the number of exemplars used by
LIMES during the experiment.

Drugs SimCities Diseases

|S| 4,346 12,701 23,618
|T | 4,772 12,701 5,000
|E| 69 112 70

Source DBpedia DBpedia MESH
Target Drugbank DBpedia LinkedCT

The experiments on real data were carried out in three dif-
ferent settings as shown in Table 2. The goal of the first ex-
periment, named Drugs, was to map drugs in DBpedia3 and
Drugbank4 by comparing their labels. The goal of the second
experiment, named SimCities, was to detect duplicate cities
within DBpedia by comparing their labels. The purpose of
the last experiment, named Diseases, was to map diseases

3http://dbpedia.org/sparql
4http://www4.wiwiss.fu-berlin.de/drugbank/sparql

from MESH5 with the corresponding diseases in LinkedCT6

by comparing their labels. The configuration files for all three
experiments are available in the LIMES distribution.

Table 3: Absolute runtimes of LIMES and SILK. All times
are given in seconds. The values in the second row of the
table are the similarity thresholds.

LIMES SILK

0.95 0.9 0.85 0.8 0.75
Drugs 86 120 175 211 252 1,732

SimCities 523 979 1,403 1,547 1,722 33,786
Diseases 546 949 1,327 1,784 1,882 17,451

Figure 3 shows a relative comparison of the runtimes of
SILK and LIMES. The absolute runtimes are given in Ta-
ble 3. LIMES outperforms SILK in all experimental settings.
It is important to notice that the difference in performance
grows with the (product of the) size of the source and target
knowledge bases. While LIMES (θ = 0.75) necessitates ap-
proximately 30% of SILK’s computation time for the Drugs
experiment, it requires only roughly 5% of SILK’s time for
the SimCities experiments. The difference in performance is
even more significant when the threshold is set higher. For
example, θ = 0.95 leads to LIMES necessitating only 1.6%
of SILK’s runtime in the SimCities experiment. The poten-
tial of our approach becomes even more obvious when one

5http://mesh.bio2rdf.org/sparql
6http://data.linkedct.org/sparql

2316

takes into consideration that we did not vary the number of
exemplars in this experiment. Setting optimal values for the
number of exemplars would have led to even smaller runtimes
as shown by our experiments with synthetic data.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Drugbank SimCities Diseases

LIMES (0.95)

LIMES (0.90)

LIMES (0.85)

LIMES (0.80)

LIMES (0.75)

SILK

Figure 3: Comparison of the relative runtimes of SILK and
LIMES. The number in brackets in the legend are the values
of the θ threshold.

6 Discussion and Future Work

We presented the LIMES framework, which implements a
very time-efficient approach for the discovery of links be-
tween knowledge bases on the Linked Data Web. We eval-
uated our approach both with synthetic and real data and
showed that it outperforms state-of-the-art approaches with
respect to the number of comparisons and runtime. In partic-
ular, we showed that the speedup of our approach grows with
the a-priori time complexity of the mapping task, making our
framework especially suitable for handling large-scale match-
ing tasks (cf. results of the SimCities experiment).

The current approach to the computation of exemplars does
not take the distribution of data in the metric into considera-
tion. In future work, we will integrate this feature. The main
drawback of LIMES is that it is restricted to metric spaces.
Thus, some popular semi-metrics such as JaroWinkler [Win-
kler, 1999] can not be accelerated with LIMES. To ensure
that our framework can be used even with these measures,
we have implemented the brute force approach as a fall-back
for comparing instances in such cases. One can easily show
that our approach can be extended to semi-metrics. In future
work, we will take a closer look at semi-metrics and aim at
finding a relaxed triangular inequality that applies to each of
them. Based on these inequalities, our framework will also
use semi-metrics to compute exemplar and render link dis-
covery based on these measures more efficient. We also aim
to explore the combination of LIMES with active learning
strategies in a way, that a manual configuration of the tool
becomes unnecessary.

Acknowledgement

This work was supported by the Eurostars grant SCMS
E!4604 and the EU FP7 grant LOD2 (GA no. 257943).

References
[Auer et al., 2008] Sören Auer, Chris Bizer, Georgi Kobi-

larov, Jens Lehmann, Richard Cyganiak, and Zachary Ives.
DBpedia: A nucleus for a web of open data. In ISWC2008,
pages 722–735. Springer, 2008.

[Ben-David et al., 2010] David Ben-David, Tamar Domany,
and Abigail Tarem. Enterprise data classification using
semantic web technologies. In ISWC2010, 2010.

[Bleiholder and Naumann, 2008] Jens Bleiholder and Felix
Naumann. Data fusion. ACM Comput. Surv., 41(1):1–41,
2008.

[Cilibrasi and Vitanyi, 2005] R. Cilibrasi and P.M.B. Vi-
tanyi. Clustering by compression. IEEE Transactions on
Information Theory, 51(4):1523–1545, April 2005.

[Frey and Dueck, 2007] Brendan J. Frey and Delbert Dueck.
Clustering by passing messages between data points. Sci-
ence, 315:972–976, 2007.

[Glaser et al., 2009] Hugh Glaser, Ian C. Millard, Won-
Kyung Sung, Seungwoo Lee, Pyung Kim, and Beom-Jong
You. Research on linked data and co-reference resolution.
Technical report, University of Southampton, 2009.

[Köpcke et al., 2009] Hanna Köpcke, Andreas Thor, and Er-
hard Rahm. Comparative evaluation of entity resolution
approaches with fever. Proc. VLDB Endow., 2(2):1574–
1577, 2009.

[Lopez et al., 2009] Vanessa Lopez, Victoria Uren,
Marta Reka Sabou, and Enrico Motta. Cross ontol-
ogy query answering on the semantic web: an initial
evaluation. In K-CAP ’09, pages 17–24, 2009.

[Raimond et al., 2008] Yves Raimond, Christopher Sutton,
and Mark Sandler. Automatic interlinking of music
datasets on the semantic web. In 1st Workshop about
Linked Data on the Web, 2008.

[Scharffe et al., 2009] Franois Scharffe, Yanbin Liu, and
Chuguang Zhou. Rdf-ai: an architecture for rdf datasets
matching, fusion and interlink. In Proc. IJCAI 2009 IR-
KR Workshop, 2009.

[Urbani et al., 2010] Jacopo Urbani, Spyros Kotoulas, Jason
Maassen, Frank van Harmelen, and Henri Bal. Owl rea-
soning with webpie: calculating the closure of 100 billion
triples. In ESWC2010, 2010.

[Volz et al., 2009] Julius Volz, Christian Bizer, Martin
Gaedke, and Georgi Kobilarov. Discovering and main-
taining links on the web of data. In ISWC 2009, pages
650–665. Springer, 2009.

[Winkler, 1999] William Winkler. The state of record link-
age and current research problems. Technical report, U.S.
Bureau of the Census, 1999.

[Wong et al., 2007] Raymond Chi-Wing Wong, Yufei Tao,
Ada Wai-Chee Fu, and Xiaokui Xiao. On efficient spatial
matching. In VLDB, pages 579–590, 2007.

[Yao et al., 2003] Zhengrong Yao, Like Gao, and X. Sean
Wang. Using triangle inequality to efficiently process con-
tinuous queries on high-dimensional streaming time series.
In SSDBM, pages 233–236. IEEE, 2003.

2317

