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Abstract

How do we scale information extraction to the mas-
sive size and unprecedented heterogeneity of the
Web corpus? Beginning in 2003, our KnowItAll
project has sought to extract high-quality knowl-
edge from the Web.
In 2007, we introduced the Open Information Ex-
traction (Open IE) paradigm which eschews hand-
labeled training examples, and avoids domain-
specific verbs and nouns, to develop unlexical-
ized, domain-independent extractors that scale to
the Web corpus. Open IE systems have extracted
billions of assertions as the basis for both common-
sense knowledge and novel question-answering
systems.
This paper describes the second generation of Open
IE systems, which rely on a novel model of how
relations and their arguments are expressed in En-
glish sentences to double precision/recall compared
with previous systems such as TEXTRUNNER and
WOE.

1 Introduction

Ever since its invention, text has been the fundamental repos-
itory of human knowledge and understanding. With the in-
vention of the printing press, the computer, and the explosive
growth of the Web, we find that the amount of readily ac-
cessible text has long surpassed the ability of humans to read
it. This challenge has only become worse with the explo-
sive popularity of new text production engines such as Twitter
where hundreds of millions of short “texts” are created daily
[Ritter et al., 2011]. Even finding relevant text has become in-
creasingly challenging. Clearly, automatic text understanding
has the potential to help, but the relevant technologies have to
scale to the Web.

Starting in 2003, the KnowItAll project at the Univer-
sity of Washington has sought to extract high-quality col-
lections of assertions from massive Web corpora. In 2006,
we wrote: “The time is ripe for the AI community to set its
sights on Machine Reading—the automatic, unsupervised

understanding of text.” [Etzioni et al., 2006]. In response
to the challenge of Machine Reading, we have investigated
the Open Information Extraction (Open IE) paradigm, which
aims to scale IE methods to the size and diversity of the Web
corpus [Banko et al., 2007].

Typically, Information Extraction (IE) systems learn an ex-
tractor for each target relation from labeled training examples
[Kim and Moldovan, 1993; Riloff, 1996; Soderland, 1999].
This approach to IE does not scale to corpora where the num-
ber of target relations is very large, or where the target re-
lations cannot be specified in advance. Open IE solves this
problem by identifying relation phrases—phrases that denote
relations in English sentences [Banko et al., 2007]. The auto-
matic identification of relation phrases enables the extraction
of arbitrary relations from sentences, obviating the restriction
to a pre-specified vocabulary.

Open IE systems avoid specific nouns and verbs at all costs.
The extractors are unlexicalized—formulated only in terms of
syntactic tokens (e.g., part-of-speech tags) and closed-word
classes (e.g., of, in, such as). Thus, Open IE extractors fo-
cus on generic ways in which relationships are expressed in
English—naturally generalizing across domains.

Open IE systems have achieved a notable measure of suc-
cess on massive, open-domain corpora drawn from the Web,
Wikipedia, and elsewhere. [Banko et al., 2007; Wu and Weld,
2010; Zhu et al., 2009]. The output of Open IE systems has
been used to support tasks like learning selectional prefer-
ences [Ritter et al., 2010], acquiring common-sense knowl-
edge [Lin et al., 2010], and recognizing entailment rules
[Schoenmackers et al., 2010; Berant et al., 2011]. In addition,
Open IE extractions have been mapped onto existing ontolo-
gies [Soderland et al., 2010].

This paper outlines our recent efforts to develop the sec-
ond generation systems for Open Information Extraction. An
important aspect of our methodology is a thorough linguistic
analysis of randomly sampled sentences. Our analysis ex-
posed the simple canonical ways in which verbs express rela-
tionships in English. This analysis guided the design of these
Open IE systems, resulting in a substantially higher perfor-
mance over previous work.

Specifically, we describe two novel Open IE systems: RE-
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VERB1 and R2A2 [Fader et al., 2011; Christensen et al.,
2011a], which substantially improve both precision and recall
when compared to previous extractors such as TEXTRUNNER
and WOE. In particular, REVERB implements a novel relation
phrase identifier based on generic syntactic and lexical con-
straints. R2A2 adds an argument identifier, ARGLEARNER,
to better extract the arguments for these relation phrases.
Both systems are based on almost five years of experience
with Open IE systems, including TEXTRUNNER, WOE, and a
careful analysis of their errors.

The remainder of the paper is organized as follows. We
first define the Open IE task and briefly describe previous
Open IE systems in Section 2. Section 3 outlines the architec-
ture of REVERB and Section 4 compares this to the existing
Open IE extractors. We present R2A2’s argument learning
component in Section 5. We compare R2A2 and REVERB
in Section 6. Section 7 describes some recent research re-
lated to large scale IE. We conclude with directions for future
research in Section 8.

2 Open Information Extraction

Open IE systems make a single (or constant number of)
pass(es) over a corpus and extract a large number of relational
tuples (Arg1, Pred, Arg2) without requiring any relation-
specific training data. For instance, given the sentence, “Mc-
Cain fought hard against Obama, but finally lost the elec-
tion,” an Open IE system should extract two tuples, (Mc-
Cain, fought against, Obama), and (McCain, lost, the elec-
tion). The strength of Open IE systems is in their efficient
processing as well as ability to extract an unbounded number
of relations.

Several Open IE systems have been proposed before now,
including TEXTRUNNER [Banko et al., 2007], WOE [Wu and
Weld, 2010], and StatSnowBall [Zhu et al., 2009]. All these
systems use the following three-step method:

1. Label: Sentences are automatically labeled with extrac-
tions using heuristics or distant supervision.

2. Learn: A relation phrase extractor is learned using a
sequence-labeling graphical model (e.g., CRF).

3. Extract: the system takes a sentence as input, identi-
fies a candidate pair of NP arguments (Arg1, Arg2) from
the sentence, and then uses the learned extractor to label
each word between the two arguments as part of the re-
lation phrase or not.

The extractor is applied to the successive sentences in the cor-
pus, and the resulting extractions are collected.

The first Open IE system was TEXTRUNNER [Banko et
al., 2007], which used a Naive Bayes model with unlexi-
calized POS and NP-chunk features, trained using examples
heuristically generated from the Penn Treebank. Subsequent
work showed that utilizing a linear-chain CRF [Banko and
Etzioni, 2008] or Markov Logic Network [Zhu et al., 2009]
can lead to improved extractions. The WOE systems made use
of Wikipedia as a source of training data for their extractors,
which leads to further improvements over TEXTRUNNER

1Downloadable at http://reverb.cs.washington.edu

Sentence Incoherent Relation

The guide contains dead links
and omits sites.

contains omits

The Mark 14 was central to the
torpedo scandal of the fleet.

was central torpedo

They recalled that Nungesser
began his career as a precinct
leader.

recalled began

Table 1: Examples of incoherent extractions. Incoherent extrac-
tions make up approximately 13% of TEXTRUNNER’s output, 15%
of WOEpos’s output, and 30% of WOEparse’s output.

is is an album by, is the author of, is a city in
has has a population of, has a Ph.D. in, has a cameo in
made made a deal with, made a promise to
took took place in, took control over, took advantage of
gave gave birth to, gave a talk at, gave new meaning to
got got tickets to see, got a deal on, got funding from

Table 2: Examples of uninformative relations (left) and their com-
pletions (right). Uninformative extractions account for approxi-
mately 4% of WOEparse’s output, 6% of WOEpos’s output, and 7%
of TEXTRUNNER’s output.

[Wu and Weld, 2010]. They also show that dependency parse
features result in a dramatic increase in precision and recall
over shallow linguistic features, but at the cost of extraction
speed.

2.1 Limitations in Previous Open IE Systems

We identify two significant problems in all prior Open IE sys-
tems: incoherent extractions and uninformative extractions.
Incoherent extractions are cases where the extracted relation
phrase has no meaningful interpretation (see Table 1 for ex-
amples). Incoherent extractions arise because the learned ex-
tractor makes a sequence of decisions about whether to in-
clude each word in the relation phrase, often resulting in in-
comprehensible relation phrases.

The second problem, uninformative extractions, occurs
when extractions omit critical information. For example,
consider the sentence “Hamas claimed responsibility for the
Gaza attack”. Previous Open IE systems return the uninfor-
mative: (Hamas, claimed, responsibility) instead of (Hamas,
claimed responsibility for, the Gaza attack). This type of er-
ror is caused by improper handling of light verb construc-
tions (LVCs). An LVC is a multi-word predicate composed
of a verb and a noun, with the noun carrying the seman-
tic content of the predicate [Grefenstette and Teufel, 1995;
Stevenson et al., 2004; Allerton, 2002]. Table 2 illustrates
the wide range of relations expressed with LVCs, which are
not captured by previous open extractors.

3 ReVerb Extractor for Verb-based Relations

In response to these limitations, we introduce REVERB,
which implements a general model of verb-based relation
phrases, expressed as two simple constraints. We first de-
scribe the constraints and later, the REVERB architecture.

3.1 Syntactic Constraint

The syntactic constraint serves two purposes. First, it elimi-
nates incoherent extractions, and second, it reduces uninfor-
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V | V P | VW ∗P
V = verb particle? adv?
W = (noun | adj | adv | pron | det)
P = (prep | particle | inf. marker)

Figure 1: A simple part-of-speech-based regular expression re-
duces the number of incoherent extractions like was central torpedo
and covers relations expressed via light verb constructions like made
a deal with.

mative extractions by capturing relation phrases expressed via
light verb constructions.

The syntactic constraint requires relation phrase to match
the POS tag pattern shown in Figure 1. The pattern limits
relation phrases to be either a simple verb phrase (e.g., in-
vented), a verb phrase followed immediately by a preposition
or particle (e.g., located in), or a verb phrase followed by a
simple noun phrase and ending in a preposition or particle
(e.g., has atomic weight of). If there are multiple possible
matches in a sentence for a single verb, the longest possible
match is chosen.

Finally, if the pattern matches multiple adjacent sequences,
we merge them into a single relation phrase (e.g., wants to
extend). This refinement enables the model to readily handle
relation phrases containing multiple verbs. A consequence of
this pattern is that the relation phrase must be a contiguous
span of words in the sentence.

While this syntactic pattern identifies relation phrases with
high precision, to what extent does it limit recall? To an-
swer this, we analyzed Wu and Weld’s set of 300 Web sen-
tences, manually identifying all verb-based relationships be-
tween noun phrase pairs. This resulted in a set of 327 relation
phrases.

For each relation phrase, we checked whether it satisfies
the REVERB syntactic constraint. We found that 85% of the
relation phrases do satisfy the constraints. Of the remaining
15%, we identified some of the common cases where the con-
straints were violated, summarized in Table 3. Many of these
cases involve long-range dependencies between words in the
sentence. As we show in Section 4, attempting to cover these
harder cases using a dependency parser can actually reduce
recall as well as precision.

3.2 Lexical Constraint

While the syntactic constraint greatly reduces uninformative
extractions, it can sometimes match relation phrases that are
so specific that they have only a few possible instances, even
in a Web-scale corpus. Consider the sentence

The Obama administration is offering only modest green-
house gas reduction targets at the conference.

The POS pattern will match the phrase:

is offering only modest greenhouse gas reduction targets at (1)

Thus, there are phrases that satisfy the syntactic constraint,
but are not useful relations.

To overcome this limitation, we introduce a lexical con-
straint that is used to separate valid relation phrases from
over-specified relation phrases, like the example in (1). The
constraint is based on the intuition that a valid relation phrase
should take many distinct arguments in a large corpus. The

Binary Verbal Relation Phrases

85% Satisfy Constraints

8% Non-Contiguous Phrase Structure
Coordination: X is produced and maintained by Y
Multiple Args: X was founded in 1995 by Y
Phrasal Verbs: X turned Y off

4% Relation Phrase Not Between Arguments
Intro. Phrases: Discovered by Y, X . . .
Relative Clauses: . . . the Y that X discovered

3% Do Not Match POS Pattern
Interrupting Modifiers: X has a lot of faith in Y
Infinitives: X to attack Y

Table 3: Approximately 85% of the binary verbal relation phrases
in a sample of Web sentences satisfy our constraints.

phrase in (1) will not be extracted with many argument pairs,
so it is unlikely to represent a bona fide relation. We describe
the implementation details of the lexical constraint in Section
3.3.

3.3 The ReVerb Architecture

This section introduces REVERB, a novel open extractor
based on the constraints defined in the previous sections. RE-
VERB first identifies relation phrases that satisfy the syntactic
and lexical constraints, and then finds a pair of NP arguments
for each identified relation phrase. The resulting extractions
are then assigned a confidence score using a logistic regres-
sion classifier trained on 1,000 random Web sentences with
shallow syntactic features.

This algorithm differs in three important ways from previ-
ous methods. First, the relation phrase is identified “holisti-
cally” rather than word-by-word. Second, potential phrases
are filtered based on statistics over a large corpus (the imple-
mentation of our lexical constraint). Finally, REVERB is “re-
lation first” rather than “arguments first”, which enables it to
avoid a common error made by previous methods—confusing
a noun in the relation phrase for an argument, e.g. the noun
responsibility in claimed responsibility for.

REVERB takes as input a POS-tagged and NP-chunked
sentence and returns a set of (x, r, y) extraction triples.2
Given an input sentence s, REVERB uses the following ex-
traction algorithm:

1. Relation Extraction: For each verb v in s, find the
longest sequence of words rv such that (1) rv starts at
v, (2) rv satisfies the syntactic constraint, and (3) rv sat-
isfies the lexical constraint. If any pair of matches are
adjacent or overlap in s, merge them into a single match.

2. Argument Extraction: For each relation phrase r iden-
tified in Step 1, find the nearest noun phrase x to the left
of r in s such that x is not a relative pronoun, WH-term,
or existential “there”. Find the nearest noun phrase y to
the right of r in s. If such an (x, y) pair could be found,
return (x, r, y) as an extraction.

2REVERB uses OpenNLP for POS tagging and NP chunking:
http://opennlp.sourceforge.net/
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We check whether a candidate relation phrase rv satisfies
the syntactic constraint by matching it against the regular ex-
pression in Figure 1.

To determine whether rv satisfies the lexical constraint, we
use a large dictionary D of relation phrases that are known
to take many distinct arguments. In an off-line step, we con-
struct D by finding all matches of the POS pattern in a corpus
of 500 million Web sentences. For each matching relation
phrase, we heuristically identify its arguments (as in Step 2
above). We set D to be the set of all relation phrases that take
at least k distinct argument pairs in the set of extractions. In
order to allow for minor variations in relation phrases, we
normalize each relation phrase by removing inflection, auxil-
iary verbs, adjectives, and adverbs. Based on experiments on
a held-out set of sentences, we find that a value of k = 20
works well for filtering out over-specified relations. This re-
sults in a set of approximately 1.7 million distinct normalized
relation phrases, which are stored in memory at extraction
time.

4 ReVerb Experimental Results

We compare REVERB to the following systems:

• REVERB¬lex - The REVERB system described in the
previous section, but without the lexical constraint.
REVERB¬lex uses the same confidence function as RE-
VERB.

• TEXTRUNNER - Banko and Etzioni’s 2008 extractor,
which uses a second order linear-chain CRF trained on
extractions heuristically generated from the Penn Tree-
bank. TEXTRUNNER uses shallow linguistic features in
its CRF, which come from the same POS tagger and NP-
chunker that REVERB uses.

• WOEpos - Wu and Weld’s modification to
TEXTRUNNER, which uses a model of relations
learned from extractions heuristically generated from
Wikipedia.

• WOEparse - Wu and Weld’s parser-based extractor,
which uses a large dictionary of dependency path pat-
terns learned from extractions heuristically generated
from Wikipedia.

Each system is given a set of sentences as input, and returns
a set of binary extractions as output. We created a test set
of 500 sentences sampled from the Web, using Yahoo’s ran-
dom link service.3 After running each extractor over the input
sentences, two human judges independently evaluated each
extraction as correct or incorrect. The judges reached agree-
ment on 86% of the extractions, with an agreement score of
κ = 0.68. We report results on the subset of the data where
the two judges concur. The judges labeled uninformative ex-
tractions (where critical information was dropped from the
extraction) as incorrect. This is a stricter standard than was
used in previous Open IE evaluations.

Each system returns confidence scores for its extractions.
For a given threshold, we can measure the precision and recall
of the output. Precision is the fraction of returned extractions

3http://random.yahoo.com/bin/ryl
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Figure 2: REVERB identifies correct relation phrases with substan-
tially higher precision and recall than state-of-the-art open extrac-
tors, including WOEparse that uses patterns learned over dependency
parse paths.
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Figure 3: REVERB has AUC more than twice that of
TEXTRUNNER or WOEpos, and 30% higher than WOEparse for ex-
tracting both relation and arguments.

that are correct. Recall is the fraction of correct extractions
in the corpus that are returned. We use the total number of
extractions from all systems labeled as correct by the judges
as our measure of recall for the corpus.

We begin by evaluating how well REVERB and other
Open IE systems identify correct relation phrases. As Fig-
ure 2 shows, REVERB has high precision in finding relation
phrases, well above precision for the comparison systems.

The full extraction task, identifying both a relation and
its arguments, produced relatively similar precision-recall
curves for each system, but with a lower precision. Fig-
ure 3 shows the area under the curve (AUC) for each sys-
tem. REVERB achieves an AUC that is 30% higher than
WOEparse and is more than double the AUC of WOEpos or
TEXTRUNNER. The lexical constraint provides a significant
boost in performance, with REVERB achieving an AUC 23%
higher than REVERB¬lex.

4.1 ReVerb Error Analysis

To better understand the limitations of REVERB, we per-
formed a detailed analysis of its errors in precision (incorrect
extractions returned) and its errors in recall (correct extrac-
tions that it missed). We found that 65% of the incorrect
extractions returned by REVERB were cases where a rela-
tion phrase was correctly identified, but the argument-finding
heuristics failed. Of the remaining errors, a common prob-
lem was to mistake an n-ary relation as a binary relation. For
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example, extracting (I, gave, him) from the sentence “I gave
him 15 photographs”.

As with the false positive extractions, the majority of false
negatives (52%) were due to the argument-finding heuristics
choosing the wrong arguments, or failing to extract all possi-
ble arguments (in the case of coordinating conjunctions). We
now turn to a system that is able to identify arguments with
much higher precision than REVERB’s simple heuristics.

5 Learning Arguments

In addition to the relation phrases, the Open IE task also re-
quires identifying the proper arguments for these relations.
Previous research and REVERB use simple heuristics such as
extracting simple noun phrases or Wikipedia entities as argu-
ments. Unfortunately, these heuristics are unable to capture
the complexity of language. A large majority of extraction
errors by Open IE systems are from incorrect or improperly-
scoped arguments. Recall from previous section that 65% of
REVERB’s errors had a correct relation phrase but incorrect
arguments.

For example, from the sentence “The cost of the war
against Iraq has risen above 500 billion dollars,” REVERB’s
argument heuristics truncate Arg1:

(Iraq, has risen above, 500 billion dollars)
On the other hand, in the sentence “The plan would reduce

the number of teenagers who begin smoking,” Arg2 gets trun-
cated:

(The plan, would reduce the number of, teenagers)
In this section, we describe an argument learning compo-

nent, ARGLEARNER, that reduces such errors.

5.1 Linguistic-Statistical Analysis of Extractions

Our goal is to find the largest subset of language from which
we can extract reliably and efficiently. To this cause, we first
analyze a sample of 250 random Web sentences to understand
the frequent argument classes. We hope to answer questions
such as: What fraction of arguments are simple noun phrases?
Are Arg1s structurally different from Arg2s? Is there typical
context around an argument that can help us detect its bound-
aries?

Table 4 reports our observations for frequent argument cat-
egories, both for Arg1 and Arg2. By far the most com-
mon patterns for arguments are simple noun phrases such as
“Obama,” “vegetable seeds,” and “antibiotic use.” This ex-
plains the success of previous open extractors that use simple
NPs. However, we found that simple NPs account for only
65% of Arg1s and about 60% of Arg2s. This naturally dic-
tates an upper bound on recall for systems that do not handle
more complex arguments. Fortunately, there are only a hand-
ful of other prominent categories – for Arg1: prepositional
phrases and lists, and for Arg2: prepositional phrases, lists,
Arg2s with independent clauses and relative clauses. These
categories cover over 90% of the extractions, suggesting that
handling these well will boost the precision significantly.

We also explored arguments’ position in the overall sen-
tence. We found that 85% of Arg1s are adjacent to the re-
lation phrase. Nearly all of the remaining cases are due to
either compound verbs (10%) or intervening relative clauses

(5%). These three cases account for 99% of the relations in
our sample.

An example of compound verbs is from the sentence
“Mozart was born in Salzburg, but moved to Vienna in 1781”,
which results in an extraction with a non-adjacent Arg1:

(Mozart, moved to, Vienna)
An example with an intervening relative clause is from

the sentence “Starbucks, which was founded in Seattle, has
a new logo”. This also results in an extractions with non-
adjacent Arg1:

(Starbucks, has, a new logo)
Arg2s almost always immediately follow the relation

phrase. However, their end delimiters are trickier. There are
several end delimiters of Arg2 making this a more difficult
problem. In 58% of our extractions, Arg2 extends to the end
of the sentence. In 17% of the cases, Arg2 is followed by a
conjunction or function word such as “if”, “while”, or “al-
though” and then followed by an independent clause or VP.
Harder to detect are the 9% where Arg2 is directly followed
by an independent clause or VP. Hardest of all is the 11%
where Arg2 is followed by a preposition, since prepositional
phrases could also be part of Arg2. This leads to the well-
studied but difficult prepositional phrase attachment problem.
For now, we use limited syntactic evidence (POS-tagging,
NP-chunking) to identify arguments, though more semantic
knowledge to disambiguate prepositional phrases could come
in handy for our task.

5.2 Design of ARGLEARNER

Our analysis of syntactic patterns reveals that the majority
of arguments fit into a small number of syntactic categories.
Similarly, there are common delimiters that could aid in de-
tecting argument boundaries. This analysis inspires us to de-
velop ARGLEARNER, a learning-based system that uses these
patterns as features to identify the arguments, given a sen-
tence and relation phrase pair.

ARGLEARNER divides this task into two subtasks - find-
ing Arg1 and Arg2 - and then subdivides each of these sub-
tasks again into identifying the left bound and the right bound
of each argument. ARGLEARNER employs three classifiers
to this aim (Figure 4). Two classifiers identify the left and
right bounds for Arg1 and the last classifier identifies the right
bound of Arg2. Since Arg2 almost always follows the relation
phrase, we do not need a separate Arg2 left bound classifier.

We use Weka’s REPTree [Hall et al., 2009] for identify-
ing the right boundary of Arg1 and sequence labeling CRF
classifier implemented in Mallet [McCallum, 2002] for other
classifiers. Our standard set of features include those that de-
scribe the noun phrase in question, context around it as well as
the whole sentence, such as sentence length, POS-tags, capi-
talization and punctuation. In addition, for each classifier we
use features suggested by our analysis above. For example,
for right bound of Arg1 we create regular expression indi-
cators to detect whether the relation phrase is a compound
verb and whether the noun phrase in question is a subject of
the compound verb. For Arg2 we create regular expression
indicators to detect patterns such as Arg2 followed by an in-
dependent clause or verb phrase. Note that these indicators
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Category Patterns Frequency Arg1 Frequency Arg2

Basic NP NN, JJ NN, etc 65% 60%
Chicago was founded in 1833. Calcium prevents osteoporosis.

Prepositional NP PP+ 19% 18%
Attachments The forest in Brazil Lake Michigan is one of the five

is threatened by ranching. Great Lakes of North America.
List NP (,NP)* ,? 15% 15%

and/or NP Google and Apple are A galaxy consists of
headquartered in Silicon Valley. stars and stellar remnants.

Independent (that|WP|WDT)? 0% 8%
Clause NP VP NP Google will acquire YouTube, Scientists estimate that 80%

announced the New York Times. of oil remains a threat.
Relative NP (that|WP|WDT) <1% 6%
Clause VP NP? Chicago, which is located in Illinois, Most galaxies appear to be

has three million residents. dwarf galaxies, which are small.

Table 4: Taxonomy of arguments for binary relationships. In each sentence, the argument is bolded and the relational phrase is italicized.
Multiple patterns can appear in a single argument so percentages do not need to add to 100. In the interest of space, we omit argument
structures that appear in less than 5% of extractions. Upper case abbreviations represent noun phrase chunk abbreviations and part-of-speech
abbreviations.

Relation 
Extractor 

Sentences 

Arg1 Right 
Bound Classifier 

Arg1 Left 
Bound Classifier 

Arg2 Right 
Bound Classifier 

Extractions 

Argument Extractor 

Training Data 
Constructor 

CoNLL 
Training Data 

Training 

Reranker 

Figure 4: ARGLEARNER’s system architecture.

will not match all possible sentence structures, but act as use-
ful features to help the classifier identify the categories. We
design several features specific to these different classifiers.

The other key challenge for a learning system is training
data. Unfortunately, there is no large training set available
for Open IE. We build a novel training set by adapting data
available for semantic role labeling (SRL), which is shown
to be closely related to Open IE [Christensen et al., 2011b].
We found that a set of post-processing heuristics over SRL
data can easily convert it into a form meaningful for Open IE
training.

We used a subset of the training data adapted from the
CoNLL 2005 Shared Task [Carreras and Marquez, 2005].
Our dataset consists of 20,000 sentences and generates about
29,000 Open IE tuples. The cross-validation accuracies of the
classifiers on the CoNLL data are 96% for Arg1 right bound,
92% for Arg1 left bound and 73% for Arg2 right bound. The
low accuracy for Arg2 right bound is primarily due to Arg2’s
more complex categories such as relative clauses and inde-
pendent clauses and the difficulty associated with preposi-
tional attachment in Arg2.

Additionally, we train a confidence metric on a hand-
labeled development set of random Web sentences. We use
Weka’s implementation of logistic regression, and use the
classifier’s weight to order the extractions.

We name our final system that combines REVERB relation
phrases with ARGLEARNER’s arguments as R2A2. We eval-
uate R2A2 against REVERB next.

REVERB R2A2

Web Arg1 0.69 0.81

Arg2 0.53 0.72

News Arg1 0.75 0.86

Arg2 0.58 0.74

Table 5: R2A2 has substantially higher F1 score than REVERB for
both Argument 1 and Argument 2.

6 R2A2 Experimental Results

We conducted experiments to answer the following questions.
(1) Does R2A2 improve argument detection compared to ar-
guments returned by REVERB’s simple heuristics? and (2)
What kind of errors does R2A2 reduce and which errors re-
quire more research?

We tested the systems on two datasets. The first dataset
consists of 200 random sentences from the New York Times.
The second dataset is made up of 200 random Web sentences.
Three judges with linguistic backgrounds evaluated the out-
put of the systems, labeling whether the relation phrase was
correct, and, if so, whether arguments 1 and 2 were the cor-
rect arguments for the relation.

We used a stricter criterion for correct arguments than pre-
vious Open IE evaluations, which counted an extraction as
correct if its arguments were reasonable, even if they omitted
relevant information. The annotators were instructed to mark
an argument correct only if the argument was as informative
as possible, but did not include extraneous information.

For example, “the President of Brazil” is a correct Arg2
for the relation “spoke to” in the sentence “President Obama
spoke to the President of Brazil on Thursday”, but the less
informative “the President” is considered incorrect, as is “the
President of Brazil on Thursday”. The inter-annotator agree-
ment for the three judges is 95%.

In this evaluation, we are primarily concerned with the ef-
fect of ARGLEARNER, hence do not consider possibly cor-
rect extractions missed by REVERB, since neither system has
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Figure 5: R2A2 has substantially higher recall and precision than
REVERB.

a chance of extracting them. In other words, our recall cal-
culations use the total number of correct extractions possible
using REVERB relation phrases as the denominator.

R2A2 has both precision and recall substantially above
that of REVERB. Table 5 compares F1 for each argument
on both data sets at the confidence values that produce the
highest F1 on a development set. R2A2 increases the F1 by
11 - 19 points. Figure 5 shows recall and precision for the en-
tire extraction on the combined set of Web and newswire sen-
tences. R2A2 has over 0.20 higher precision than REVERB
over nearly all the precision-recall curve as well as higher re-
call.

We also analyzed how R2A2 performs on the argument
types and context patterns identified in Section 5.1. R2A2
had high F1 (from 0.82 to 0.95) on the major patterns of Arg1:
simple NP, prepositional attachment, and list. For the exam-
ple sentence given at the beginning of Section 5, R2A2 cor-
rectly extracts “The cost of war against Iraq” as Arg1 instead
of “Iraq.”

Its performance on adjacent Arg1 is high (0.93), but could
be improved on compound verbs (0.69) and intervening rel-
ative clauses (0.73). R2A2 also has difficulty recognizing
when the given relation has no valid Arg1, such as in, “If in-
terested in this offer, please contact us,” with relation phrase
“contact.” Future systems could make better use of negative
training data to correct this issue.

For Arg2, R2A2 performs well on simple noun phrases,
with an F1 of 0.87. However, F1 is between 0.62 and 0.71
for all other syntactic patterns for Arg2. This is consider-
ably above REVERB’s F1 of 0.0 to 0.19 on these patterns, but
still leaves considerable room for improvement. In contrast to
REVERB, R2A2 also gets the second example sentence from
the previous section extracting (The plan, would reduce the
number of, teenagers who begin smoking).

7 Related Work

Web-scale information extraction has received considerable
attention in the last few years. Pre-emptive Information
Extraction and Open Information Extraction are the first
paradigms that relax the restriction of a given vocabulary of
relations and scale to all relation phrases expressed in text
[Shinyama and Sekine, 2006; Banko et al., 2007; Banko and
Etzioni, 2008; Wu and Weld, 2010]. Preemptive IE relies on

document and entity clustering, which is too costly for Web-
scale IE. Open IE favors speed over deeper processing, which
aids in scaling to Web-scale corpora.

There is recent work on incorporating distant supervision
from manually constructed knowledge bases such as Free-
Base or Wikipedia to automatically learn extractors for the
large number of relations in the KB [Mintz et al., 2009;
Hoffmann et al., 2010; 2011]. These approaches use heuristic
methods to generate training data by mapping the entities of
the KB to sentences mentioning them in text. This reduces the
relation extraction problem to a multi-class supervised learn-
ing problem.

The Never Ending Language Learner (NELL) project aims
to learn a macro-reading agent that gets better and better at
reading as it reads the same text multiple times [Carlson et
al., 2010a; 2010b]. Essentially, NELL learns newer extrac-
tion patterns using previous system extraction instances as
training data. Such pattern learning systems in the past have
been prone to concept drift. NELL largely overcomes concept
drift by employing coupled-training, which generates nega-
tive training for one concept based on the positive example of
another and known mutual exclusions between types. There
is also a sophisticated mechanism to advance a hypothesized
extraction to an accepted extraction.

NELL and the distant supervision approaches differ from
our Open IE paradigm in an important way – they all learn
extractors for a known set of relations. Distant supervision
approaches have scaled to a few thousand relations, whereas
NELL knowledge base is much smaller, extracting around a
hundred relations. In contrast, our recent-most run of Open
IE on a Web-scale corpus returned about 1.5 million distinct
relation phrases. In other words, Open IE can be applied as
is to any domain and any corpora of English text and it will
extract meaningful information. The flip side to Open IE is
its unnormalized output. Open IE has key challenges due to
polysemous and synonymous relation phrases. Our follow-
up work attempts to learn synonymous relations [Yates and
Etzioni, 2009] as well as proposes a first solution to normal-
ize open relation phrases to a domain ontology with minimal
supervision [Soderland et al., 2010].

8 Conclusions

We have described the second generation Open Information
Extraction systems, REVERB, and R2A2. The key differ-
entiating characteristic of these systems is a linguistic analy-
sis that guides the design of the constraints in REVERB and
features in R2A2. REVERB focuses on identifying a more
meaningful and informative relation phrase and outperforms
the previous Open IE systems by significant margins. R2A2
adds an argument learning component, ARGLEARNER, and
almost doubles the area under precision-recall curve com-
pared to REVERB. Both these systems are amazingly scal-
able, since they require only shallow syntactic features.

There are three key directions to pursue this work fur-
ther. First, while Open IE systems have primarily focused
on binary extractions, not all relationships are binary. Events
have time and locations. Numerous verbs naturally take three
arguments (e.g., “Singh gifted the French President a tra-
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ditional painting.”). We need to extend Open IE to han-
dle n-ary and even nested extractions. Secondly, not all
important relationships are expressed in verbs. For exam-
ple, the sentence “Seattle Mayor Bloomberg said that...” ex-
presses (Bloomberg, is the Mayor of, Seattle). However, such
noun-based extractions are challenging to get at high preci-
sion, since exposing the semantics hidden in these compound
nouns is tricky. For example, “Seattle Symphony Orchestra”
does not imply that (Orchestra, is the Symphony of, Seattle).
Finally, as our current Open IE systems learn general charac-
teristics of the English language, we recognize that the tech-
niques to handle another language, say Chinese, will likely
be quite different. However, we believe that the general Open
IE paradigm will extend to other languages.

Acknowledgments: This research was supported in part by
NSF grant IIS-0803481, ONR grant N00014-08-1-0431, and
DARPA contract FA8750-09-C-0179.

References
[Allerton, 2002] David J. Allerton. Stretched Verb Constructions in

English. Routledge Studies in Germanic Linguistics. Routledge
(Taylor and Francis), New York, 2002.

[Banko and Etzioni, 2008] Michele Banko and Oren Etzioni. The
tradeoffs between open and traditional relation extraction. In
ACL’08, 2008.

[Banko et al., 2007] Michele Banko, Michael J. Cafarella, Stephen
Soderland, Matt Broadhead, and Oren Etzioni. Open information
extraction from the web. In IJCAI, 2007.

[Berant et al., 2011] Jonathan Berant, Ido Dagan, and Jacob Gold-
berger. Global learning of typed entailment rules. In ACL’11,
2011.

[Carlson et al., 2010a] Andrew Carlson, Justin Betteridge, Bryan
Kisiel, Burr Settles, Estevam R. Hruschka Jr., and Tom M.
Mitchell. Toward an architecture for never-ending language
learning. In AAAI’10, 2010.

[Carlson et al., 2010b] Andrew Carlson, Justin Betteridge,
Richard C. Wang, Estevam R. Hruschka Jr., and Tom M.
Mitchell. Coupled semi-supervised learning for information
extraction. In WSDM 2010, 2010.

[Carreras and Marquez, 2005] Xavier Carreras and Lluis Marquez.
Introduction to the CoNLL-2005 Shared Task: Semantic Role
Labeling, 2005.

[Christensen et al., 2011a] Janara Christensen, Mausam, Stephen
Soderland, and Oren Etzioni. Learning Arguments for Open In-
formation Extraction. Submitted, 2011.

[Christensen et al., 2011b] Janara Christensen, Mausam, Stephen
Soderland, and Oren Etzioni. The tradeoffs between syntactic
features and semantic roles for open information extraction. In
Knowledge Capture (KCAP), 2011.

[Etzioni et al., 2006] Oren Etzioni, Michele Banko, and Michael J.
Cafarella. Machine reading. In Proceedings of the 21st National
Conference on Artificial Intelligence, 2006.

[Fader et al., 2011] Anthony Fader, Stephen Soderland, and Oren
Etzioni. Identifying Relations for Open Information Extraction.
Submitted, 2011.

[Grefenstette and Teufel, 1995] Gregory Grefenstette and Simone
Teufel. Corpus-based method for automatic identification of sup-
port verbs for nominalizations. In EACL’95, 1995.

[Hall et al., 2009] Mark Hall, Eibe Frank, Geoffrey Holmes, Bern-
hard Pfahringer, Peter Reutemann, and Ian H. Witten. The weka
data mining software: An update. SIGKDD Explorations, 1(1),
2009.

[Hoffmann et al., 2010] Raphael Hoffmann, Congle Zhang, and
Daniel S. Weld. Learning 5000 relational extractors. In ACL
’10, 2010.

[Hoffmann et al., 2011] Raphael Hoffmann, Congle Zhang, Xiao
Ling, Luke Zettlemoyer, and Daniel S. Weld. Distant supervi-
sion for information extraction of overlapping relations. In ACL
’11, 2011.

[Kim and Moldovan, 1993] J. Kim and D. Moldovan. Acquisition
of semantic patterns for information extraction from corpora. In
Procs. of Ninth IEEE Conference on Artificial Intelligence for
Applications, pages 171–176, 1993.

[Lin et al., 2010] Thomas Lin, Mausam, and Oren Etzioni. Identi-
fying Functional Relations in Web Text. In EMNLP’10, 2010.

[McCallum, 2002] Andres McCallum. Mallet: A machine learning
for language toolkit. http://mallet.cs.umass.edu, 2002.

[Mintz et al., 2009] Mike Mintz, Steven Bills, Rion Snow, and Dan
Jurafsky. Distant supervision for relation extraction without la-
beled data. In ACL-IJCNLP’09, 2009.

[Riloff, 1996] E. Riloff. Automatically constructing extraction pat-
terns from untagged text. In AAAI’96, 1996.

[Ritter et al., 2010] Alan Ritter, Mausam, and Oren Etzioni. A La-
tent Dirichlet Allocation Method for Selectional Preferences. In
ACL, 2010.

[Ritter et al., 2011] Alan Ritter, Sam Clark, Mausam, and Oren Et-
zioni. Named Entity Recognition in Tweets: An Experimental
Study. Submitted, 2011.

[Schoenmackers et al., 2010] Stefan Schoenmackers, Oren Etzioni,
Daniel S. Weld, and Jesse Davis. Learning first-order horn
clauses from web text. In EMNLP’10, 2010.

[Shinyama and Sekine, 2006] Yusuke Shinyama and Satoshi
Sekine. Preemptive Information Extraction using Unrestricted
Relation Discovery. In NAACL’06, 2006.

[Soderland et al., 2010] Stephen Soderland, Brendan Roof, Bo Qin,
Shi Xu, Mausam, and Oren Etzioni. Adapting open information
extraction to domain-specific relations. AI Magazine, 31(3):93–
102, 2010.

[Soderland, 1999] S. Soderland. Learning Information Extraction
Rules for Semi-Structured and Free Text. Machine Learning,
34(1-3):233–272, 1999.

[Stevenson et al., 2004] Suzanne Stevenson, Afsaneh Fazly, and
Ryan North. Statistical measures of the semi-productivity of light
verb constructions. In 2nd ACL Workshop on Multiword Expres-
sions, pages 1–8, 2004.

[Wu and Weld, 2010] Fei Wu and Daniel S. Weld. Open informa-
tion extraction using Wikipedia. In Proceedings of the 48th An-
nual Meeting of the Association for Computational Linguistics,
ACL ’10, pages 118–127, Morristown, NJ, USA, 2010. Associa-
tion for Computational Linguistics.

[Yates and Etzioni, 2009] A. Yates and O. Etzioni. Unsupervised
methods for determining object and relation synonyms on the
web. Journal of Artificial Intelligence Research, 34(1):255–296,
2009.

[Zhu et al., 2009] Jun Zhu, Zaiqing Nie, Xiaojiang Liu, Bo Zhang,
and Ji-Rong Wen. StatSnowball: a statistical approach to extract-
ing entity relationships. In WWW’09, 2009.

10




