The Evolution of Primate Litter Size
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Methods—Statistical Analyses
2.2. Analytical Methods—Ancestral State Reconstruction
3. Results
3.1. Phylogenetic Signal
3.2. Phylogenetic Generalized Least Squares (PGLS) Analyses
3.3. Principal Component Analyses (PCA) and Correlations
3.4. Ancestral State Reconstruction—Boreoeutherian Dataset
4. Discussion
4.1. Evolution of Primate Litter Size
4.2. Callitrichids as a Model for the Evolution of Human Reproduction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ernest, S.K.M. Life History Characteristics of Placental Nonvolant Mammals: Ecological Archives E084-093. Ecology 2003, 84, 3402. [Google Scholar] [CrossRef]
- Leutenegger, W. Evolution of Litter Size in Primates. Am. Nat. 1979, 114, 525–531. [Google Scholar] [CrossRef]
- Dunbar, R.I.M. The Mating System of Callitrichid Primates: I. Conditions for the Coevolution of Pair Bonding and Twinning. Anim. Behav. 1995, 50, 1057–1070. [Google Scholar] [CrossRef]
- Martin, R.D. Reproductive Characteristics of New World Monkeys. Int. Zoo Yearb. 2012, 46, 95–108. [Google Scholar] [CrossRef]
- Ross, C.N.; Fite, J.E.; Jensen, H.; French, J.A. Demographic Review of a Captive Colony of Callitrichids (Callithrix kuhlii). Am. J. Primatol. 2007, 69, 234–240. [Google Scholar] [CrossRef]
- Blickstein, I.; Keith, L.G. Multiple Pregnancy: Epidemiology, Gestation & Perinatal Outcome, 2nd ed.; Taylor & Francis: London, UK, 2005; ISBN 978-1-84214-239-4. [Google Scholar]
- Ananth, C.V.; Chauhan, S.P. Epidemiology of Twinning in Developed Countries. Semin. Perinatol. 2012, 36, 156–161. [Google Scholar] [CrossRef]
- Frynta, D.; Fraňková, M.; Čížková, B.; Skarlandtová, H.; Galeštoková, K.; Průšová, K.; Šmilauer, P.; Šumbera, R. Social and Life History Correlates of Litter Size in Captive Colonies of Precocial Spiny Mice (Acomys). Acta Theriol. (Warsz.) 2011, 56, 289–295. [Google Scholar] [CrossRef]
- Itô, Y.; Iwasa, Y. Evolution of Litter Size. Res. Popul. Ecol. 1981, 23, 344–359. [Google Scholar] [CrossRef]
- Walker, R.S.; Gurven, M.; Burger, O.; Hamilton, M.J. The Trade-Off between Number and Size of Offspring in Humans and Other Primates. Proc. Biol. Sci. 2008, 275, 827–833. [Google Scholar] [CrossRef]
- MacArthur, R.H. The Theory of Island Biogeography; Monographs in Population Biology; Princeton University Press: Princeton, NJ, USA, 1967. [Google Scholar]
- Stearns, S.C.; Koella, J.C. The Evolution of Phenotypic Plasticity in Life-History Traits: Predictions of Reaction Norms for Age and Size at Maturity. Evolution 1986, 40, 893–913. [Google Scholar] [CrossRef]
- Pagel, M.D.; Harvey, P.H. How Mammals Produce Large-Brained Offspring. Evolution 1988, 42, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Stearns, S.C. The Evolution of Life Histories; Oxford University Press: Oxford, UK, 1992; ISBN 9780198577416. [Google Scholar]
- DeSilva, J.M.; Lesnik, J.J. Brain Size at Birth throughout Human Evolution: A New Method for Estimating Neonatal Brain Size in Hominins. J. Hum. Evol. 2008, 55, 1064–1074. [Google Scholar] [CrossRef] [PubMed]
- Aiello, L.C.; Wells, J.C.K. Energetics and the Evolution of the Genus Homo. Annu. Rev. Anthropol. 2002, 31, 323–338. [Google Scholar] [CrossRef]
- Fokidis, H.B.; Risch, T.S. The Burden of Motherhood: Gliding Locomotion in Mammals Influences Maternal Reproductive Investment. J. Mammal. 2008, 89, 617–625. [Google Scholar] [CrossRef]
- Garbino, G.S.T.; Feijó, A.; Beltrão-Mendes, R.; Da Rocha, P.A. Evolution of Litter Size in Bats and Its Influence on Longevity and Roosting Ecology. Biol. J. Linn. Soc. 2021, 132, 676–684. [Google Scholar] [CrossRef]
- Carranza, J. Sexual Selection for Male Body Mass and the Evolution of Litter Size in Mammals. Am. Nat. 1996, 148, 81–100. [Google Scholar] [CrossRef]
- Harvey, P.H.; Clutton-Brock, T.H. Life History Variation in Primates. Evolution 1985, 39, 559–581. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.E. Comparative Reproductive Energetics of Human and Nonhuman Primates. Annu. Rev. Anthropol. 2013, 42, 287–304. [Google Scholar] [CrossRef]
- Leutenegger, W. Maternal-Fetal Weight Relationships in Primates. Folia Primatol. 1973, 20, 280–293. [Google Scholar] [CrossRef]
- Burger, J.R.; George, M.A., Jr.; Leadbetter, C.; Shaikh, F. The Allometry of Brain Size in Mammals. J. Mammal. 2019, 100, 276–283. [Google Scholar] [CrossRef]
- Capellini, I.; Venditti, C.; Barton, R.A. Placentation and Maternal Investment in Mammals. Am. Nat. 2011, 177, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Fredrickson, D. Hexaprotodon liberiensis (Madagascan Pygmy Hippopotamus). Available online: https://animaldiversity.org/accounts/Hexaprotodon_liberiensis/ (accessed on 1 February 2023).
- Ridgway, S.H.; Carlin, K.P.; Van Alstyne, K.R. Delphinid Brain Development from Neonate to Adulthood with Comparisons to Other Cetaceans and Artiodactyls. Mar. Mammal Sci. 2018, 34, 420–439. [Google Scholar] [CrossRef]
- Sacher, G.A.; Staffeldt, E.F. Relation of Gestation Time to Brain Weight for Placental Mammals: Implications for the Theory of Vertebrate Growth. Am. Nat. 1974, 108, 593–615. [Google Scholar] [CrossRef]
- Shefferly, N. Papio papio (Guinea Baboon). Available online: https://animaldiversity.org/accounts/Papio_papio/ (accessed on 1 February 2023).
- Shefferly, N. Papio anubis (Anubis Baboon). Available online: https://animaldiversity.org/accounts/Papio_anubis/ (accessed on 1 February 2023).
- Tacutu, R.; Thornton, D.; Johnson, E.; Budovsky, A.; Barardo, D.; Craig, T.; Diana, E.; Lehmann, G.; Toren, D.; Wang, J.; et al. Human Ageing Genomic Resources: New and Updated Databases. Nucleic Acids Res. 2018, 46, D1083–D1090. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, S.H.; Mundy, N.I. Parallel Episodes of Phyletic Dwarfism in Callitrichid and Cheirogaleid Primates. J. Evol. Biol. 2013, 26, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Eisert, R.; Potter, C.W.; Oftedal, O.T. Brain Size in Neonatal and Adult Weddell Seals: Costs and Consequences of Having a Large Brain. Mar. Mammal Sci. 2014, 30, 184–205. [Google Scholar] [CrossRef]
- Jerison, H.J. Animal Intelligence as Encephalization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1985, 308, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Posit Team RStudio: Integrated Development Environment for R. 2022. Available online: http://www.posit.co/ (accessed on 25 February 2023).
- R Core Team. R: A Language and Environment for Statistical Computing. 2022. Available online: https://www.R-project.org/ (accessed on 25 February 2023).
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research. 2023. Available online: https://CRAN.R-project.org/package=psych (accessed on 23 March 2023).
- Paradis, E.; Blomberg, S.; Bolker, B.; Brown, J.; Claramunt, S.; Claude, J.; Cuong, H.S.; Desper, R.; Didier, G.; Durand, B.; et al. Ape: Analyses of Phylogenetics and Evolution. 2022. Available online: https://CRAN.R-project.org/package=ape (accessed on 2 February 2023).
- Upham, N.S.; Esselstyn, J.A.; Jetz, W. Inferring the Mammal Tree: Species-Level Sets of Phylogenies for Questions in Ecology, Evolution, and Conservation. PLoS Biol. 2019, 17, e3000494. [Google Scholar] [CrossRef]
- Johanson, D.C.; White, T.D. A Systematic Assessment of Early African Hominids. Science 1979, 203, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2020. Available online: https://cloud.r-project.org/web/packages/factoextra/index.html (accessed on 14 March 2024).
- Kassambara, A.; Patil, I. Ggcorrplot: Visualization of a Correlation Matrix Using “Ggplot2”. 2023. Available online: https://cran.r-project.org/web/packages/ggcorrplot/index.html (accessed on 14 March 2024).
- Orme, D.; Freckleton, R.; Thomas, G.; Petzoldt, T.; Fritz, S.; Isaac, N.; Pearse, W. Caper: Comparative Analyses of Phylogenetics and Evolution in R. 2018. Available online: https://CRAN.R-project.org/package=caper (accessed on 2 February 2023).
- Diniz-Filho, J.A.F.; Santos, T.; Rangel, T.F.; Bini, L.M. A Comparison of Metrics for Estimating Phylogenetic Signal under Alternative Evolutionary Models. Genet. Mol. Biol. 2012, 35, 673–679. [Google Scholar] [CrossRef]
- Revell, L.J. Phytools: An R Package for Phylogenetic Comparative Biology (and Other Things): Phytools: R Package. 2012. Available online: https://onlinelibrary.wiley.com/doi/10.1111/j.2041-210X.2011.00169.x (accessed on 2 February 2023).
- Molina-Venegas, R.; Rodríguez, M.Á. Revisiting Phylogenetic Signal; Strong or Negligible Impacts of Polytomies and Branch Length Information? BMC Evol. Biol. 2017, 17, 53. [Google Scholar] [CrossRef] [PubMed]
- Blomberg, S.P.; Garland, T., Jr.; Ives, A.R. Testing for Phylogenetic Signal in Comparative Data: Behavioral Traits Are More Labile. Evolution 2003, 57, 717–745. [Google Scholar] [CrossRef] [PubMed]
- Kappeler, P.M. Nests, Tree Holes, and the Evolution of Primate Life Histories. Am. J. Primatol. 1998, 46, 7–33. [Google Scholar] [CrossRef]
- Pozzi, L.; Hodgson, J.A.; Burrell, A.S.; Sterner, K.N.; Raaum, R.L.; Disotell, T.R. Primate Phylogenetic Relationships and Divergence Dates Inferred from Complete Mitochondrial Genomes. Mol. Phylogenet. Evol. 2014, 75, 165–183. [Google Scholar] [CrossRef] [PubMed]
- Buckner, J.C.; Lynch Alfaro, J.W.; Rylands, A.B.; Alfaro, M.E. Biogeography of the Marmosets and Tamarins (Callitrichidae). Mol. Phylogenet. Evol. 2015, 82, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Steiper, M.E.; Young, N.M. Primate Molecular Divergence Dates. Mol. Phylogenet. Evol. 2006, 41, 384–394. [Google Scholar] [CrossRef]
- Wilson Mantilla, G.P.; Chester, S.G.B.; Clemens, W.A.; Moore, J.R.; Sprain, C.J.; Hovatter, B.T.; Mitchell, W.S.; Mans, W.W.; Mundil, R.; Renne, P.R. Earliest Palaeocene Purgatoriids and the Initial Radiation of Stem Primates. R. Soc. Open Sci. 2021, 8, 210050. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Gebo, D.L.; Dagosto, M.; Meng, J.; Tafforeau, P.; Flynn, J.J.; Beard, K.C. The Oldest Known Primate Skeleton and Early Haplorhine Evolution. Nature 2013, 498, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Rawal, D. Relationship between Number of Teats and Litter Size in Eutherian Mammals. Int. J. Sci. Res. Biol. Sci. 2019, 6, 249–252. [Google Scholar] [CrossRef]
- Wu, J.; Yonezawa, T.; Kishino, H. Evolution of Reproductive Life History in Mammals and the Associated Change of Functional Constraints. Genes 2021, 12, 740. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, S.; Xu, J.; Chen, B.; Zhou, K.; Yang, G. Phylogenomic Analysis Resolves the Interordinal Relationships and Rapid Diversification of the Laurasiatherian Mammals. Syst. Biol. 2012, 61, 150. [Google Scholar] [CrossRef] [PubMed]
- Burkart, J.M.; van Schaik, C.P. Cognitive Consequences of Cooperative Breeding in Primates? Anim. Cogn. 2010, 13, 1–19. [Google Scholar] [CrossRef] [PubMed]
- McCoy, D.E.; Frye, B.M.; Kotler, J.; Burkart, J.M.; Burns, M.; Embury, A.; Eyre, S.; Galbusera, P.; Hooper, J.; Idoe, A.; et al. A Comparative Study of Litter Size and Sex Composition in a Large Dataset of Callitrichine Monkeys. Am. J. Primatol. 2019, 81, e23038. [Google Scholar] [CrossRef] [PubMed]
- Isler, K.; van Schaik, C.P. Allomaternal Care, Life History and Brain Size Evolution in Mammals. J. Hum. Evol. 2012, 63, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Isler, K.; van Schaik, C.P. How Our Ancestors Broke through the Gray Ceiling: Comparative Evidence for Cooperative Breeding in Early Homo. Curr. Anthropol. 2012, 53, S453–S465. [Google Scholar] [CrossRef]
- Godoy, I.; Perry, S.E. Mating Systems of New World Monkeys. In Encyclopedia of Animal Behavior, 2nd ed.; Choe, J.C., Ed.; Academic Press: Oxford, UK, 2019; pp. 563–567. ISBN 978-0-12-813252-4. [Google Scholar]
- Rutherford, J.N.; Ross, C.N.; Ziegler, T.; Burke, L.A.; Steffen, A.D.; Sills, A.; Layne Colon, D.; deMartelly, V.A.; Narapareddy, L.R.; Tardif, S.D. Womb to Womb: Maternal Litter Size and Birth Weight but Not Adult Characteristics Predict Early Neonatal Death of Offspring in the Common Marmoset Monkey. PLoS ONE 2021, 16, e0252093. [Google Scholar] [CrossRef] [PubMed]
- Monson, T.A.; Coleman, J.L.; Hlusko, L.J. Craniodental Allometry, Prenatal Growth Rates, and the Evolutionary Loss of the Third Molars in New World Monkeys. Anat. Rec. 2019, 302, 1419–1433. [Google Scholar] [CrossRef] [PubMed]
- Stirrup, O.T.; Khalil, A.; D’Antonio, F.; Thilaganathan, B.; Collaborative (STORK), on behalf of the S.T.O.R. Fetal Growth Reference Ranges in Twin Pregnancy: Analysis of the Southwest Thames Obstetric Research Collaborative (STORK) Multiple Pregnancy Cohort. Ultrasound Obstet. Gynecol. 2015, 45, 301–307. [Google Scholar] [CrossRef]
- Heldstab, S.A.; Isler, K.; Burkart, J.M.; van Schaik, C.P. Allomaternal Care, Brains and Fertility in Mammals: Who Cares Matters. Behav. Ecol. Sociobiol. 2019, 73, 71. [Google Scholar] [CrossRef]
- Monson, T.A.; Weitz, A.P.; Brasil, M.B.; Hlusko, L.J. Teeth, Prenatal Growth Rates, and the Evolution of Human-Like Pregnancy in Later Homo. Proc. Nat. Acad. Sci. USA 2022, 119, e2200689119. [Google Scholar] [CrossRef]
- Savage, A.; Snowdon, C.T.; Soto, L.; Medina, F.; Emeris, G.; Guillen, R. Factors Influencing the Survival of Wild Cotton-Top Tamarin (Saguinus oedipus) Infants. Am. J. Primatol. 2021, 83, e23262. [Google Scholar] [CrossRef] [PubMed]
- Brasil, M.F.; Monson, T.A.; Schmitt, C.A.; Hlusko, L.J. A Genotype: Phenotype Approach to Testing Taxonomic Hypotheses in Hominids. Sci. Nat. 2020, 107, 40. [Google Scholar] [CrossRef] [PubMed]
- Olivier, C.-A.; Martin, J.S.; Pilisi, C.; Agnani, P.; Kauffmann, C.; Hayes, L.; Jaeggi, A.V.; Schradin, C. Primate Social Organization Evolved from a Flexible Pair-Living Ancestor. Proc. Natl. Acad. Sci. USA 2024, 121, e2215401120. [Google Scholar] [CrossRef] [PubMed]
- Geissmann, T. Twinning Frequency in Catarrhine Primates. Hum. Evol. 1990, 5, 387–396. [Google Scholar] [CrossRef]
- Gabler, S.; Voland, E. Fitness of Twinning. Hum. Biol. 1994, 66, 699–713. [Google Scholar] [PubMed]
- Lummaa, V.; Jokela, J.; Haukioja, E. Gender Difference in Benefits of Twinning in Pre-Industrial Humans: Boys Did Not Pay. J. Anim. Ecol. 2001, 70, 739–746. [Google Scholar] [CrossRef]
Family | Species (n=) | Genera Represented |
---|---|---|
Aotidae | 4 | Aotus |
Atelidae | 9 | Alouatta, Ateles, Brachyteles |
Callitrichidae | 18 | Callimico, Callithrix, Cebuella, Leontopithecus, Mico, Saguinus |
Cebidae | 6 | Cebus, Saimiri |
Cercopithecidae | 59 | Allenopithecus, Cercocebus, Cercopithecus, Chlorocebus, Colobus, Erythrocebus, Lophocebus, Macaca, Mandrillus, Miopithecus, Nasalis, Papio, Presbytis, Procolobus, Pygathrix, Rhinopithecus, Semnopithecus, Theropithecus, Trachypithecus |
Cheirogaleidae | 6 | Cheirogaleus, Microcebus, Mirza, Phaner |
Daubentoniidae | 1 | Daubentonia |
Galagidae | 7 | Euoticus, Galago, Galagoides, Otolemur, Sciurocheirus |
Hominidae | 5 | Gorilla, Homo, Pan, Pongo |
Hylobatidae | 9 | Hoolock, Hylobates, Nomascus, Symphalangus |
Indriidae | 4 | Avahi, Indri, Propithecus |
Lemuridae | 11 | Eulemur, Hapalemur, Lemur, Prolemur, Varecia |
Lepilemuridae | 2 | Lepilemur |
Lorisidae | 5 | Arctocebus, Loris, Nycticebus, Perodicticus |
Pitheciidae | 7 | Cacajao, Callicebus, Chiropotes, Pithecia |
Tarsiidae | 2 | Tarsius |
Grand Total | 155 | 67 |
Family | n | LS | G | ML | BW | AW | Brain | NBrain | EQ | PGN | BBR |
---|---|---|---|---|---|---|---|---|---|---|---|
Aotidae | 4 | 1 | 139 | 29 | 93.3 | 2957.8 | 18.4 | NA | 1.6 | NA | 0.02 |
Atelidae | 9 | 1 | 206 | 37 | 374.0 | 6473.5 | 84.1 | 50.9 | 2.1 | 0.6 | 0.01 |
Callitrichidae | 18 | 1.9 | 145 | 20 | 39.2 | 477.1 | 11.3 | 3.7 | 1.5 | 0.3 | 0.02 |
Cebidae | 6 | 1 | 160 | 40 | 190.0 | 1390.5 | 45.9 | 26.0 | 3.1 | 0.5 | 0.03 |
Cercopithecidae | 59 | 1 | 170 | 33 | 450.9 | 6869.8 | 84.5 | 53.9 | 2.1 | 0.5 | 0.01 |
Cheirogaleidae | 6 | 2 | 85 | 21 | 12.8 | 250.3 | 4.3 | NA | 1.0 | NA | 0.02 |
Daubentoniidae | 1 | 1 | 165 | 32 | 109.0 | 2800.0 | 45.2 | NA | 1.9 | NA | 0.02 |
Galagidae | 7 | 1.3 | 128 | 19 | 27.5 | 485.0 | 7.7 | 3.4 | 1.1 | 0.4 | 0.02 |
Hominidae | 5 | 1 | 249 | 71 | 2052.5 | 68096.0 | 546.3 | 213.2 | 2.9 | 0.5 | 0.01 |
Hylobatidae | 9 | 1 | 221 | 46 | 412.1 | 6752.8 | 98.3 | 65.0 | 2.3 | 0.7 | 0.02 |
Indriidae | 4 | 1 | 153 | 26 | 108.6 | 4286.3 | 28.8 | NA | 0.9 | NA | 0.01 |
Lemuridae | 11 | 1.3 | 124 | 32 | 76.6 | 1882.9 | 24.3 | 10.0 | 1.4 | 0.4 | 0.01 |
Lepilemuridae | 2 | 1 | 136 | NA | 27.0 | 790.8 | 8.9 | NA | 0.9 | NA | 0.01 |
Lorisidae | 5 | 1.3 | 169 | 22 | 29.3 | 539.2 | 9.1 | 3.4 | 1.2 | 0.4 | 0.02 |
Pitheciidae | 7 | 1 | 167 | 31 | NA | 1825.0 | 37.8 | NA | 2.1 | NA | 0.02 |
Tarsiidae | 2 | 1 | 143 | NA | 25.4 | 101.6 | 3.0 | 2.1 | 1.2 | 0.8 | 0.03 |
Character | Pagel’s Lambda | p-Value | Blomberg’s K | p-Value | Species (n=) |
---|---|---|---|---|---|
LogLS | 0.9999 | <0.001 | 0.6311 | 0.001 | 155 |
LogG | 0.9852 | <0.001 | 0.5981 | 0.001 | 120 |
LogAW | 0.9779 | <0.001 | 0.7897 | 0.001 | 151 |
LogBrain | 0.9895 | <0.001 | 1.4735 | 0.001 | 137 |
LogML | 0.9490 | <0.001 | 0.1980 | 0.001 | 124 |
LogPGR | 0.9895 | <0.001 | 1.3911 | 0.001 | 97 |
LogBBR | 0.8946 | <0.001 | 0.1580 | 0.001 | 137 |
BBR | 0.8793 | <0.001 | 0.1441 | 0.001 | 137 |
EQ | 0.7798 | <0.001 | 0.1637 | 0.001 | 137 |
LogNBrain | 0.9999 | <0.001 | 2.1933 | 0.001 | 34 |
Call | Lambda | Intercept | Slope | Adjusted R2 | p-Value | Species (n=) |
---|---|---|---|---|---|---|
LogLS~LogG | 1.000 | 0.847 | −0.368 | 0.111 | <0.001 | 120 |
LogAW~LogBrain | 0.845 | 1.531 | 1.189 | 0.753 | <0.001 | 137 |
LogBrain~LogAW | 0.914 | −0.591 | 0.607 | 0.711 | <0.001 | 137 |
LogAW~LogML | 0.955 | 2.250 | 0.703 | 0.055 | <0.005 | 124 |
LogAW~LogG | 0.953 | −0.965 | 1.806 | 0.089 | <0.001 | 120 |
LogAW~LogPGR | 0.660 | 3.405 | 1.272 | 0.632 | <0.001 | 97 |
LogAW~LogBBR | 0.988 | 0.976 | −1.137 | 0.521 | <0.001 | 137 |
LogAW~EQ | 0.991 | 3.128 | −0.097 | 0.061 | <0.005 | 137 |
LogG~LogBrain | 0.966 | 2.038 | 0.122 | 0.193 | <0.001 | 109 |
LogBrain~LogML | 0.974 | 0.513 | 0.642 | 0.121 | <0.001 | 112 |
LogBrain~LogPGR | 0.841 | 1.518 | 0.882 | 0.622 | <0.001 | 90 |
EQ~LogBrain | 0.662 | 0.206 | 1.086 | 0.191 | <0.001 | 137 |
LogML~LogPGR | 0.715 | 1.510 | 0.260 | 0.286 | <0.001 | 92 |
LogML~EQ | 0.902 | 1.360 | 0.059 | 0.142 | <0.001 | 112 |
LogPGR~LogBBR | 0.985 | −0.694 | −0.214 | 0.034 | <0.05 | 90 |
EQ~LogPGR | 0.038 | 1.857 | 0.898 | 0.249 | <0.001 | 90 |
LogBBR~EQ | 0.991 | −2.061 | 0.196 | 0.663 | <0.001 | 137 |
Sample Used for ASR | Predicted Value | Similar Extant Species |
---|---|---|
163 Euarchontans * | 1.2 (“singleton-bearing”) | Nasalis larvatus, Callicebus moloch, Eulemur coronatus |
946 Boreoeutherians | 1.7 (“twinning”) | Microcebus murinus, Saguinus oedipus, Nycticebus pygmaeus |
Lineage | Geological Age | Predicted Litter Size Value |
---|---|---|
LCA of Strepsirrhini | ~66.3 Ma [49] | 1.4 |
LCA of Haplorhini | ~70.0 Ma [49] | 1.6 |
LCA of Simiiformes | ~46.72 Ma [49] | 1.2 |
LCA of Catarrhini | ~32.1 Ma [49] | 1.1 |
LCA of Platyrrhini | ~20.9 Ma [49] | 1.1 |
LCA of Hominoidea | ~22.32 Ma [49] | 1.0 |
LCA of Ceboidea | ~16.55 Ma [49] | 1.2 |
LCA of Callitrichidae | ~14 Ma [50] | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McBride, J.H.; Monson, T.A. The Evolution of Primate Litter Size. Humans 2024, 4, 223-238. https://doi.org/10.3390/humans4030014
McBride JH, Monson TA. The Evolution of Primate Litter Size. Humans. 2024; 4(3):223-238. https://doi.org/10.3390/humans4030014
Chicago/Turabian StyleMcBride, Jack H., and Tesla A. Monson. 2024. "The Evolution of Primate Litter Size" Humans 4, no. 3: 223-238. https://doi.org/10.3390/humans4030014
APA StyleMcBride, J. H., & Monson, T. A. (2024). The Evolution of Primate Litter Size. Humans, 4(3), 223-238. https://doi.org/10.3390/humans4030014