Formulation and Characterization of Hesperidin-Loaded Transethosomal Gel for Dermal Delivery to Enhance Antibacterial Activity: Comprehension of In Vitro, Ex Vivo, and Dermatokinetic Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of HSD-Loaded Transethosomes
2.2. Optimization of HSD-Loaded Transethosome
2.2.1. Response (Y1): Impact of Independent Variable on Vesicle Size
2.2.2. Response (Y2): Impact of Independent Variable on PDI
2.2.3. Response (Y3): Impact of Independent Variable on %EE
2.3. Characterization of HSD-TE Formulation
2.3.1. Vesicle Size and PDI
2.3.2. Zeta Potential
2.3.3. TEM
2.4. In Vitro Drug Release
2.5. Preparation and Characterization of Gel
Texture Analysis
2.6. Ex Vivo Skin Permeation Study
2.7. CLSM
2.8. Dermatokinetic
2.9. Antioxidant Activity
2.10. Antibacterial Activity
2.10.1. Minimum Inhibitory Concentration
2.10.2. Minimum Bactericidal Concentration
2.11. Stability Studies
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Development of Hesperidin-Loaded Transethosomes
4.3. Optimization of Transethosomes
4.4. Characterization of HSD-Loaded Transethosomes
4.4.1. Particle Size and Polydispersity Index
4.4.2. Zeta Potential Measurement
4.4.3. Measurement of Entrapment Efficiency and Drug Loading Percentage
4.4.4. Transmission Electron Microscopy (TEM)
4.5. In Vitro Drug Release and Kinetic Models
Release Kinetic Models
4.6. Preparation of Carbopol-Based HSD-Loaded Transethosome Gel
4.7. Characterization of HSD-Loaded TE Gel
4.7.1. Physical Inspection
4.7.2. Texture Analysis
4.7.3. Determination of Spreadability and Extrudability
4.7.4. Measurement of pH
4.8. Determination of Drug Content
4.9. Ex Vivo Skin Permeation Study
4.10. Confocal Laser Scanning Microscopy (CLSM)
4.11. Dermatokinetic Study
4.12. Antioxidant Activity
4.13. Determination of Anti-Bacterial Activity Using Well Diffusion Method
4.13.1. Determination of Minimum Inhibitory Concentration (MIC)
4.13.2. Determination of Minimum Bactericidal Concentration
4.14. Stability Studies
4.15. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balkrishnan, R.; Manuel, J.; Feldman, S.R.; Rapp, S.R. Measurement of health-related quality of life (HRQOL) associated with skin disease. J. Am. Acad. Dermatol. 2004, 51, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Barber, R.M.; Bell, B.; Bertozzi-Villa, A.; Biryukov, S.; Bolliger, I.; Charlson, F.; Davis, A.; Degenhardt, L.; Dicker, D.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 743–800. [Google Scholar]
- Xue, Y.; Zhou, J.; Xu, B.N.; Li, Y.; Bao, W.; Cheng, X.L.; He, Y.; Xu, C.P.; Ren, J.; Zheng, Y.R.; et al. Global burden of bacterial skin diseases: A systematic analysis combined with sociodemographic index, 1990–2019. Front. Med. 2022, 9, 861115. [Google Scholar] [CrossRef] [PubMed]
- Stanisic, D.; Liu, L.H.; Dos Santos, R.V.; Costa, A.F.; Durán, N.; Tasic, L. New sustainable process for hesperidin isolation and anti-ageing effects of hesperidin nanocrystals. Molecules 2020, 25, 4534. [Google Scholar] [CrossRef]
- Ratz-Lyko, A.; Arct, J.; Majewski, S.; Pytkowska, K. Influence of polyphenols on the physiological processes in the skin. Phytother. Res. 2015, 29, 509–517. [Google Scholar] [CrossRef]
- Parhiz, H.; Ali, R.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and anti-inflammatory properties of the citrus flavonoid’s hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models. Phytother. Res. 2015, 29, 323–331. [Google Scholar] [CrossRef]
- Jovanovic, S.V.; Steenken, S.; Tosic, M.; Marjanovic, B.; Simic, M.G. Flavonoids as antioxidants. J. Am. Chem. Soc. 1994, 116, 4846–4851. [Google Scholar] [CrossRef]
- Chen, M.; Gu, H.; Ye, Y.; Lin, B.; Sun, L.; Deng, W.; Zhang, J.; Liu, J. Protective effects of hesperidin against oxidative stress of tert-butyl hydroperoxide in human hepatocytes. Food Chem. Toxicol. 2010, 48, 2980–2987. [Google Scholar] [CrossRef]
- Roohbakhsh, A.; Parhiz, H.; Soltani, F.; Rezaee, R.; Iranshahi, M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for prevention of cancer and cardiovascular diseases. Life Sci. 2014, 124, 67–74. [Google Scholar] [CrossRef]
- Ahmad, S.T.; Arjumand, W.; Nafees, S.; Seth, A.; Ali, N.; Rashid, S.; Sultana, S. Hesperidin alleviates acetaminophen induced toxicity in Wistar rats by abrogation of oxidative stress, apoptosis and inflammation. Toxicol. Lett. 2012, 208, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Li, X.M.; Li, G.M.; Du, W.C.; Zhang, J.; Li, W.X.; Xu, J.; Hu, M.; Zhu, Z. In vivo pharmacokinetics of hesperidin are affected by treatment with glucosidase-like BglA protein isolated from yeasts. J. Agric. Food Chem. 2008, 56, 5550–5557. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Jawaid, T.; Alsanad, S.M.; Kamal, M.; Rawat, P.; Singh, V.; Alam, P.; Alam, P. Solubility Enhancement, Formulation Development, and Antibacterial Activity of Xanthan-Gum-Stabilized Colloidal Gold Nanogel of Hesperidin against Proteus vulgaris. Gels 2022, 8, 655. [Google Scholar] [CrossRef]
- Liao, Y.; Zhong, L.; Liu, L.; Xie, L.; Tang, H.; Zhang, L.; Li, X. Comparison of surfactants at solubilizing, forming and stabilizing nanoemulsion of hesperidin. J. Food Eng. 2020, 281, 110000. [Google Scholar] [CrossRef]
- Shirzad, M.; Jamehbozorgi, S.; Akbarzadeh, I.; Aghabozorg, H.R.; Amini, A. The Role of Polyethylene Glycol Size in Chemical Spectra, Cytotoxicity, and Release of PEGylated Nanoliposomal Cisplatin. Assay Drug Dev. Technol. 2019, 17, 231–239. [Google Scholar] [CrossRef]
- Paiva-Santos, A.C.; Silva, A.L.; Guerra, C.; Peixoto, D.; Pereira-Silva, M.; Zeinali, M.; Mascarenhas-Melo, F.; Castro, R.; Veiga, F. Ethosomes as Nanocarriers for the Development of Skin Delivery Formulations. Pharm. Res. 2021, 38, 947–970. [Google Scholar] [CrossRef]
- Abdallah, M.H.; Elghamry, H.A.; Khalifa, N.E.; Khojali, W.M.; Khafagy, E.S.; Shawky, S.; El-Horany, H.E.S.; El-Housiny, S. Development and Optimization of Erythromycin Loaded Transethosomes Cinnamon Oil Based Emulgel for Antimicrobial Efficiency. Gels 2023, 9, 137. [Google Scholar] [CrossRef]
- Godin, B.; Touitou, E. Erythromycin ethosomal systems: Physicochemical characterization and enhanced antibacterial activity. Curr. Drug Deliv. 2005, 2, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Touitou, E.; Natsheh, H. Topical administration of drugs incorporated in carriers containing phospholipid soft vesicles for the treatment of skin medical conditions. Pharmaceutics 2021, 13, 2129. [Google Scholar] [CrossRef]
- Shen, L.N.; Zhang, Y.T.; Wang, Q.; Xu, L.; Feng, N.P. Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes. Int. J. Pharm. 2014, 460, 280–288. [Google Scholar] [CrossRef]
- Jin, P.; Yao, R.; Qin, D.; Chen, Q.; Du, Q. Enhancement in antibacterial activities of eugenol-entrapped ethosome nanoparticles via strengthening its permeability and sustained release. J. Agric. Food Chem. 2019, 67, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- Song, C.K.; Balakrishnan, P.; Shim, C.-K.; Chung, S.-J.; Chong, S.; Kim, D.-D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces 2012, 92, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S.S.; Iqbal, B.; Sultana, Y.; Mujeeb, M.; Iqbal, Z. Development of transethosomes formulation for dermal fisetin delivery: Box–Behnken design, optimization, in vitro skin penetration, vesicles–skin interaction and dermatokinetic studies. Artif. Cells Nanomed. Biotechnol. 2018, 46, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Yandri, O.; Setyani, W. Optimization of carbopol 940 and propylene glycol concentration on the characteristic and inhibitory effect of ethanol extract gel of Papaya (Carica papaya L.) seeds against Staphylococcus aureus. J. Farm. Sains Komunitas 2021, 18, 15–25. [Google Scholar] [CrossRef]
- Ubaid, M.; Ilyas, S.; Mir, S.; Khan, A.K.; Rashid, R.; Khan, M.Z.; Kanwal, Z.G.; Nawaz, A.; Shah, A.; Murtaza, G. Formulation and in vitro evaluation of carbopol 934-based modified clotrimazole gel for topical application. An. Acad. Bras. Cienc. 2016, 88, 2303–2317. [Google Scholar] [CrossRef] [PubMed]
- Fredricks, D.N. Microbial Ecology of Human Skin in Health and Disease. J. Investig. Dermatol. Symp. Proc. 2001, 6, 167–169. [Google Scholar] [CrossRef]
- Del Giudice, P. Skin Infections Caused by Staphylococcus aureus. Acta Derm.-Venereol. 2020, 100, adv00110. [Google Scholar] [CrossRef]
- Kazmi, I.; Al-Abbasi, F.A.; Nadeem, M.S.; Altayb, H.N.; Alshehri, S.; Imam, S.S. Formulation, Optimization and Evaluation of Luteolin-Loaded Topical Nanoparticulate Delivery System for the Skin Cancer. Pharmaceutics 2021, 13, 1749. [Google Scholar] [CrossRef]
- Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes—Novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release 2000, 65, 403–418. [Google Scholar] [CrossRef]
- Dubey, V.; Mishra, D.; Dutta, T.; Nahar, M.; Saraf, D.K.; Jain, N.K. Dermal a delivery of an anti-psoriatic agent via ethanolic liposomes. J. Control. Release 2007, 123, 148–154. [Google Scholar] [CrossRef]
- Adin, S.N.; Gupta, I.; Rashid, M.A.; Alhamhoom, Y.; Aqil, M.; Mujeeb, M. Nanotransethosomes for enhanced transdermal delivery of mangiferin against rheumatoid arthritis: Formulation, characterization, in vivo pharmacokinetic and pharmacodynamic evaluation. Drug Deliv. 2023, 30, 2173338. [Google Scholar] [CrossRef] [PubMed]
- Aodah, A.H.; Hashmi, S.; Akhtar, N.; Ullah, Z.; Zafar, A.; Zaki, R.M.; Khan, S.; Ansari, M.J.; Jawaid, T.; Alam, A.; et al. Formulation Development, Optimization by Box–Behnken Design, and In Vitro and Ex Vivo Characterization of Hexatriacontane-Loaded Transethosomal Gel for Antimicrobial Treatment for Skin Infections. Gels 2023, 9, 322. [Google Scholar] [CrossRef] [PubMed]
- Gupta, I.; Adin, S.N.; Rashid, M.A.; Alhamhoom, Y.; Aqil, M.; Mujeeb, M. Spanlastics as a potential approach for enhancing the nose-to-brain delivery of piperine: In vitro prospect and in vivo therapeutic efficacy for the management of epilepsy. Pharmaceutics 2023, 15, 641. [Google Scholar] [CrossRef] [PubMed]
- Abdulbaqi, I.M.; Darwis, Y.; Khan, N.A.K.; Assi, R.A.; Khan, A.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomed. 2016, 11, 2279–2304. [Google Scholar] [CrossRef]
- Adib, Z.M.; Ghanbarzadeh, S.; Kouhsoltani, M.; Khosroshahi, A.Y.; Hamishehkar, H. The effect of particle size on the deposition of solid lipid nanoparticles in different skin layers: A histological study. Adv. Pharm. Bull. 2016, 6, 31. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 2020, 12, 855. [Google Scholar] [CrossRef]
- Gadad, A.P.; Patil, A.S.; Singh, Y.; Dandagi, P.M.; Bolmal, U.B.; Basu, A. Development and Evaluation of Flurbiprofen Loaded Transethosomes to improve Transdermal Delivery. Indian J. Pharm. Educ. Res. 2020, 54, 954–962. [Google Scholar] [CrossRef]
- Wairkar, S.; Patel, D.; Singh, A. Nanostructured lipid carrier based dermal gel of cyclosporine for atopic dermatitis-in vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2022, 72, 103365. [Google Scholar] [CrossRef]
- Hemmingsen, L.M.; Giordani, B.; Pettersen, A.K.; Vitali, B.; Basnet, P.; Škalko-Basnet, N. Liposomes-in-chitosan hydrogel boosts potential of chlorhexidine in biofilm eradication in vitro. Carbohydr. Polym. 2021, 262, 117939. [Google Scholar] [CrossRef]
- Hassan, A.S.; Hofni, A.; Abourehab, M.A.; Abdel-Rahman, I.A. Ginger Extract–Loaded Transethosomes for Effective Transdermal Permeation and Anti-Inflammation in Rat Model. Int. J. Nanomed. 2023, 18, 1259–1280. [Google Scholar] [CrossRef]
- Sundari, B.T.; Rao, P.S.; Sireesha, K. Formulation and ex-vivo skin permeation study of mangifera indica ethosomal gel. Int. J. Pharm. Sci. Rev. Res. 2019, 55, 28–33. [Google Scholar]
- Mir, M.; Ahmed, N.; Permana, A.D.; Rodgers, A.M.; Donnelly, R.F.; Rehman, A.U. Enhancement in site-specific delivery of carvacrol against methicillin resistant Staphylococcus aureus induced skin infections using enzyme responsive nanoparticles: A proof of concept study. Pharmaceutics 2019, 11, 606. [Google Scholar] [CrossRef]
- Balakrishnan, K.; Casimeer, S.C.; Ghidan, A.Y.; Al Antary, T.M.; Singaravelu, A. Exploration of antioxidant, antibacterial activities of green synthesized hesperidin loaded PLGA nanoparticles. Biointerface Res. Appl. Chem. 2021, 11, 14520–14528. [Google Scholar]
- Fadilah, N.I.M.; Phang, S.J.; Kamaruzaman, N.; Salleh, A.; Zawani, M.; Sanyal, A.; Maarof, M.; Fauzi, M.B. Antioxidant biomaterials in cutaneous wound healing and tissue regeneration: A critical review. Antioxidants 2023, 12, 787. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.K.; Parikh, R.H. Formulation development and evaluation of temozolomide loaded hydrogenated soya phosphatidylcholine liposomes for the treatment of brain cancer. Asian J. Pharm. Clin. Res. 2016, 9, 340. [Google Scholar]
- Alam, A.; Foudah, A.I.; Alqarni, M.H.; Yusufoglu, H.S. Microwave-assisted and chemically tailored chlorogenic acid-functionalized silver nanoparticles of Citrus sinensis in gel matrix aiding QbD design for the treatment of acne. J. Cosmet. Dermatol. 2023, 22, 1613–1627. [Google Scholar] [CrossRef]
- Waghule, T.; Rapalli, V.K.; Singhvi, G.; Gorantla, S.; Khosa, A.; Dubey, S.K.; Saha, R.N. Design of temozolomide-loaded proliposomes and lipid crystal nanoparticles with industrial feasible approaches: Comparative assessment of drug loading, entrapment efficiency, and stability at plasma pH. J. Liposome Res. 2021, 31, 158–168. [Google Scholar] [CrossRef]
- Duangjit, S.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus transfersomes. J Drug Deliv. 2011, 2011, 418316. [Google Scholar] [CrossRef]
- Jahan, S.; Aqil, M.; Ahad, A.; Imam, S.S.; Waheed, A.; Qadir, A.; Ali, A. Nanostructured lipid carrier for transdermal gliclazide delivery: Development and optimization by Box-Behnken design. Inorg. Nano-Met. 2022, 1–14. [Google Scholar] [CrossRef]
- Swain, G.P.; Patel, S.; Gandhi, J.; Shah, P. Development of Moxifloxacin Hydrochloride loaded in-situ gel for the treatment of periodontitis: In-vitro drug release study and antibacterial activity. Oral Biol. Craniofacial Res. 2019, 9, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Imam, S.S.; Gilani, S.J.; Zafar, A.; Jumah, M.N.B.; Alshehri, S. Formulation of Miconazole-Loaded Chitosan–Carbopol Vesicular Gel: Optimization to In Vitro Characterization, Irritation, and Antifungal Assessment. Pharmaceutics 2023, 15, 581. [Google Scholar] [CrossRef] [PubMed]
- Rahmawati, D.A. The Formulation and Physical Stability Test of Gel Fruit Strawberry Extract (Fragaria × ananassa Duch.). J. Nutraceuticals Herb. Med. 2019, 2, 38–46. [Google Scholar]
- Hurler, J.; Škalko-Basnet, N. Potentials of chitosan-based delivery systems in wound therapy: Bioadhesion study. J. Funct. Biomater. 2012, 3, 37–48. [Google Scholar] [CrossRef]
- Sareen, R.; Kumar, S.; Gupta, G.D. Meloxicam carbopol-based gels: Characterization and evaluation. Curr. Drug Deliv. 2011, 8, 407–415. [Google Scholar] [CrossRef]
- Chawla, V.; Saraf, S.A. Rheological studies on solid lipid nanoparticle based carbopol gels of aceclofenac. Colloids Surf. B 2012, 92, 293–298. [Google Scholar] [CrossRef]
- Nasr, A.M.; Badawi, N.M.; Tartor, Y.H.; Sobhy, N.M.; Swidan, S.A. Development, Optimization, and In Vitro/In Vivo Evaluation of Azelaic Acid Transethosomal Gel for Antidermatophyte Activity. Antibiotics 2023, 12, 707. [Google Scholar] [CrossRef]
- Imran, M.; Iqubal, M.K.; Imtiyaz, K.; Saleem, S.; Mittal, S.; Rizvi, M.M.A.; Ali, J.; Baboota, S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int. J. Pharm. 2020, 587, 119705. [Google Scholar] [CrossRef]
- Iqbal, B.; Ali, J.; Baboota, S. Silymarin loaded nanostructured lipid carrier: From design and dermatokinetic study to mechanistic analysis of epidermal drug deposition enhancement. J. Mol. Liq. 2018, 255, 513–529. [Google Scholar] [CrossRef]
- De Jager, T.L.; Cockrell, A.E.; Du Plessis, S.S. Ultraviolet light induced generation of reactive oxygen species. Adv. Exp. Med. Biol. 2017, 996, 15–23. [Google Scholar]
- Papaccio, F.; D′ Arino, A.; Caputo, S.; Bellei, B. Focus on the contribution of oxidative stress in skin aging. Antioxidants 2022, 11, 1121. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.K.; Hyun, S.W.; Jung, Y.S. Yuzu and hesperidin ameliorate blood-brain barrier disruption during hypoxia via antioxidant activity. Antioxidants 2020, 9, 843. [Google Scholar] [CrossRef] [PubMed]
- Caddeo, C.; Gabriele, M.; Fernàndez-Busquets, X.; Valenti, D.; Fadda, A.M.; Pucci, L.; Manconi, M. Antioxidant activity of quercetin in Eudragit-coated liposomes for intestinal delivery. Int. J. Pharm. 2019, 565, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Urnukhsaikhan, E.; Bold, B.E.; Gunbileg, A.; Sukhbaatar, N.; Mishig-Ochir, T. Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Sci. Rep. 2021, 11, 21047. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.S.; Lee, S.H.; Lee, K.A. A comparative study of hesperetin, hesperidin and hesperidin glucoside: Antioxidant, anti-inflammatory, and antibacterial activities in vitro. Antioxidants 2022, 11, 1618. [Google Scholar] [CrossRef]
Independent Factors | Responses | |||||
---|---|---|---|---|---|---|
Run | A (Phospholipid) (mg) | B (Ethanol) (%) | C (Sodium Cholate) (mg) | Y1 (Vesicle Size) (nm) | Y2 (PDI) | Y3 (%EE) |
1 | 60 | 35 | 15 | 204.34 | 0.291 | 56.19 |
2 | 80 | 35 | 10 | 178.98 | 0.254 | 89.51 |
3 | 80 | 55 | 15 | 181.28 | 0.288 | 81.58 |
4 | 80 | 35 | 10 | 177.56 | 0.261 | 88.14 |
5 | 80 | 35 | 10 | 178.14 | 0.271 | 87.46 |
6 | 80 | 55 | 5 | 181.77 | 0.249 | 80.13 |
7 | 100 | 35 | 15 | 210.56 | 0.319 | 76.77 |
8 | 60 | 35 | 5 | 202.14 | 0.315 | 60.23 |
9 | 100 | 15 | 10 | 204.44 | 0.31 | 79.58 |
10 | 100 | 35 | 5 | 211.98 | 0.301 | 78.66 |
11 | 80 | 35 | 10 | 178.99 | 0.277 | 85.23 |
12 | 60 | 55 | 10 | 198.18 | 0.298 | 66.89 |
13 | 80 | 15 | 5 | 185.1 | 0.299 | 78.98 |
14 | 60 | 15 | 10 | 196.55 | 0.294 | 54.89 |
15 | 80 | 35 | 10 | 178.98 | 0.27 | 86.85 |
16 | 80 | 15 | 15 | 184.24 | 0.244 | 79.34 |
17 | 100 | 55 | 10 | 203.88 | 0.304 | 80.98 |
Responses | Analysis | R2 | R2 (Adjusted) | R2 (Predicted) | Std | CV (%) | Model | p-Value |
---|---|---|---|---|---|---|---|---|
Vesicle size (nm) | Polynomial | 0.9962 | 0.9913 | 0.9489 | 1.18 | 0.6179 | Quadratic | <0.0001 |
PDI | Polynomial | 0.9600 | 0.9085 | 0.9005 | 0.0071 | 2.70 | Quadratic | 0.0004 |
% EE | Polynomial | 0.9844 | 0.9644 | 0.8255 | 2.07 | 2.68 | Quadratic | <0.0001 |
Kinetics Release | Korsmeyer–Peppas | Higuchi | Zero Order | First Order | Korsmeyer–Peppas | Higuchi | Zero Order | First Order |
---|---|---|---|---|---|---|---|---|
R2 | n | R2 | K | R2 | n | R2 | K | |
0.9861 | 0.7455 | 0.9668 | 0.0258 | 0.8778 | 0.0006 | 0.9632 | 0.0005 |
Parameters of Dermatokinetic | HSD-TE Gel | HSD-CF-Gel | ||
---|---|---|---|---|
Epidermis | Dermis | Epidermis | Dermis | |
Tskin max (h) | 2 | 2 | 2 | 2 |
Cskin max (μg/cm2) | 295.58 ± 3.09 | 264.59 ± 1.99 | 150.56 ± 2.56 | 152.44 ± 0.99 |
AUC0–8 (μg/cm2 h) | 1087.58 ± 2.99 | 1167.12 ± 2.11 | 561.12 ± 1.24 | 579.14 ± 0.56 |
Ke (h−1) | 0.0371 ± 0.11 | 0.01143 ± 0.78 | 0.01142 ± 0.54 | 0.1361 ± 0.41 |
Microorganism | Hesperidin | Gentamycin (20 µg/mL) | |
---|---|---|---|
Free HSD (30 µg/mL) | HSD-Loaded TE (30 µg/mL) | ||
S. aureus | 14.27 ± 0.84 | 18.11 ± 0.54 | 20.47 ± 0.96 |
E. coli | 12.19 ± 0.69 | 17.24 ± 0.78 | 18.94 ± 0.46 |
Parameters of Evaluation | Initial | 30 Days | 90 Days | 180 Days | |||
---|---|---|---|---|---|---|---|
4 ± 2 °C | 25 ± 2 °C/ 60 ± 5%RH | 4 ± 2 °C | 25 ± 2 °C/ 60 ± 5%RH | 4 ± 2 °C | 25 ± 2 °C/ 60 ± 5%RH | ||
Appearance | *** | *** | ** | *** | *** | ** | ** |
Separation of phase | × | × | × | × | × | × | × |
Vesicle size (nm) | 164.96 | 165.14 | 167.29 | 171.37 | 173.44 | 176.69 | 178.78 |
PDI | 0.254 | 0.254 | 0.261 | 0.289 | 0.299 | 0.305 | 0.307 |
Zeta potential (mV) | −31.26 | −31.30 | −32.04 | −32.48 | −32.99 | −33.14 | −33.55 |
Parameters of Evaluation | Initial | 01 Month | 03 Months | 06 Months | |||
---|---|---|---|---|---|---|---|
4 ± 2 °C | 25 ± 2 °C/60 ± 5% RH | 4 ± 2 °C | 25 ± 2 °C/ 60 ± 5% RH | 4 ± 2 °C | 25 ± 2 °C/60 ± 5% RH | ||
Color | Yellowish | Yellowish | Yellowish | Yellowish | Yellowish | Yellowish | Yellowish |
Clarity | *** | *** | *** | *** | *** | *** | ** |
pH | 6.19 | 6.21 | 6.99 | 7.01 | 6.88 | 6.94 | 6.77 |
Homogeneity | *** | *** | ** | *** | ** | *** | * |
Extrudability | *** | *** | ** | *** | ** | *** | ** |
Spreadability | *** | *** | ** | *** | *** | *** | ** |
Variables | Used Levels | ||
---|---|---|---|
Minimum (−1) | Medium (0) | Maximum (+1) | |
Independent variables | |||
A = Phospholipid 90G (mg) | 60 | 80 | 100 |
B = Ethanol (%) | 15 | 35 | 55 |
C = Sodium cholate (mg) | 05 | 10 | 15 |
Dependent variables | |||
Y1 = Vesicles size (nm) | |||
Y2 = PDI | |||
Y3 = EE % |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, P.; Imran, M.; Jahan, S.; Akhtar, A.; Hasan, Z. Formulation and Characterization of Hesperidin-Loaded Transethosomal Gel for Dermal Delivery to Enhance Antibacterial Activity: Comprehension of In Vitro, Ex Vivo, and Dermatokinetic Analysis. Gels 2023, 9, 791. https://doi.org/10.3390/gels9100791
Alam P, Imran M, Jahan S, Akhtar A, Hasan Z. Formulation and Characterization of Hesperidin-Loaded Transethosomal Gel for Dermal Delivery to Enhance Antibacterial Activity: Comprehension of In Vitro, Ex Vivo, and Dermatokinetic Analysis. Gels. 2023; 9(10):791. https://doi.org/10.3390/gels9100791
Chicago/Turabian StyleAlam, Perwez, Mohd Imran, Samreen Jahan, Ali Akhtar, and Zafrul Hasan. 2023. "Formulation and Characterization of Hesperidin-Loaded Transethosomal Gel for Dermal Delivery to Enhance Antibacterial Activity: Comprehension of In Vitro, Ex Vivo, and Dermatokinetic Analysis" Gels 9, no. 10: 791. https://doi.org/10.3390/gels9100791
APA StyleAlam, P., Imran, M., Jahan, S., Akhtar, A., & Hasan, Z. (2023). Formulation and Characterization of Hesperidin-Loaded Transethosomal Gel for Dermal Delivery to Enhance Antibacterial Activity: Comprehension of In Vitro, Ex Vivo, and Dermatokinetic Analysis. Gels, 9(10), 791. https://doi.org/10.3390/gels9100791