Development and Optimization of Erythromycin Loaded Transethosomes Cinnamon Oil Based Emulgel for Antimicrobial Efficiency
Abstract
:1. Introduction
2. Results and Discussion
2.1. Exploratory Studies of Erythromycin-Loaded Transethosomes (EM-TE) Preparation
2.2. Box–Behnken Design (BBD) for Transethosomes Optimization
2.2.1. Effect of Independent Factors on the EE% (Y1)
2.2.2. Effect of Independent Variables on the Cumulative Amount of Drug Permeated after 6 h (Q6h) (Y2)
2.2.3. Selection of the Optimized Formulation of Erythromycin Loaded Transethosomes (EM-TE)
2.3. Characterization of the Optimized Erythromycin Loaded Transethosomes (EM-TE)
2.4. In Vitro Characterization of Erythromycin-Loaded Transethosomal Emulgel
2.4.1. Homogeneity Organoleptic Test
2.4.2. Determination of Extrudability and Spreadability Determination
2.4.3. Drug Content Assessment
2.4.4. Viscosity
2.5. Studies of the In Vitro Release of Erythromycin from Cinnamon Oil Based Transethosomal Emulgel
2.6. Skin Permeation Study
2.7. Studies of Stability
2.8. Antimicrobial Activity
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. The Experimental Design Study
4.3. Development of Erythromycin Transethosomal Formulations (EM-TE)
4.4. Characterization of the Generated Erythromycin Transethosomal Formulations (EM-TE)
4.4.1. Entrapment Efficiency (EE%)
4.4.2. Ex Vivo Skin Permeation Study of EM from the Developed Transethosomal Formulations
4.5. Characterization of the Optimized Erythromycin Transethosomal Formulations (EM-TE)
4.6. Preparation of Transethosomal Cinnamon Oil-Based Emulgel Loaded with Erythromycin
4.7. In Vitro Characterization of Erythromycin-Loaded Transethosomal Emulgel
4.7.1. Organoleptic Evaluation and pH Determination
4.7.2. Determination of the Extrudability and Spreadability
4.7.3. Drug Content Assessment
4.7.4. Viscosity Measurement
4.8. In Vitro Release of EM from Transethosomal Emulgel
4.9. Skin Permeation Study from Transethosomal Emulgel
4.10. Stability Study of the Generated Transethosomal Emulgel
4.11. Antimicrobial Activity
4.12. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Platon, V.-M.; Dragoi, B.; Marin, L. Erythromycin Formulations—A Journey to Advanced Drug Delivery. Pharmaceutics 2022, 14, 2180. [Google Scholar] [CrossRef] [PubMed]
- Pignatello, R.; Mangiafico, A.; Ruozi, B.; Puglisi, G.; Furneri, P.M. Amphiphilic erythromycin-lipoamino acid ion pairs: Characterization and in vitro microbiological evaluation. AAPS PharmSciTech 2011, 12, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Puglia, C.; Blasi, P.; Rizza, L.; Schoubben, A.; Bonina, F.; Rossi, C.; Ricci, M. Lipid nanoparticles for prolonged topical delivery: An in vitro and in vivo investigation. Int. J. Pharm. 2008, 357, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Kubiński, K.; Górka, K.; Janeczko, M.; Martyna, A.; Kwaśnik, M.; Masłyk, M.; Zięba, E.; Kowalczuk, J.; Kuśtrowski, P.; Borkowski, M. Silver Is Not Equal to Silver: Synthesis and Evaluation of Silver Nanoparticles with Low Biological Activity, and Their Incorporation into C12Alanine-Based Hydrogel. Molecules 2023, 28, 1194. [Google Scholar] [CrossRef]
- Kowalczuk, J.; Łapiński, A.; Stolarczyk, E.; Demchuk, O.M.; Kubiński, K.; Janeczko, M.; Martyna, A.; Masłyk, M.; Turczyniak-Surdacka, S. New supramolecular drug carriers: The study of organogel conjugated gold nanoparticles. Molecules 2021, 26, 7462. [Google Scholar] [CrossRef] [PubMed]
- Mezei, M.; Gulasekharam, V. Liposomes-a selective drug delivery system for the topical route of administration I. Lotion dosage form. Life Sci. 1980, 26, 1473–1477. [Google Scholar] [CrossRef]
- Manosroi, A.; Jantrawut, P.; Manosroi, J. Anti-inflammatory activity of gel containing novel elastic niosomes entrapped with diclofenac diethylammonium. Int. J. Pharm. 2008, 360, 156–163. [Google Scholar] [CrossRef]
- Ahad, A.; Al-Saleh, A.A.; Al-Mohizea, A.M.; Al-Jenoobi, F.I.; Raish, M.; Yassin, A.E.B.; Alam, M.A. Formulation and characterization of Phospholipon 90 G and tween 80 based transfersomes for transdermal delivery of eprosartan mesylate. Pharm. Dev. Technol. 2018, 23, 787–793. [Google Scholar] [CrossRef]
- Cevc, G. Transfersomes, liposomes and other lipid suspensions on the skin: Permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 1996, 13, 257–388. [Google Scholar] [CrossRef]
- Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes—Novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release 2000, 65, 403–418. [Google Scholar] [CrossRef]
- Ahad, A.; Raish, M.; Al-Mohizea, A.M.; Al-Jenoobi, F.I.; Alam, M.A. Enhanced anti-inflammatory activity of carbopol loaded meloxicam nanoethosomes gel. Int. J. Biol. Macromol. 2014, 67, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Song, C.K.; Balakrishnan, P.; Shim, C.-K.; Chung, S.-J.; Chong, S.; Kim, D.-D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces 2012, 92, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S.S.; Iqbal, B.; Sultana, Y.; Mujeeb, M.; Iqbal, Z. Development of transethosomes formulation for dermal fisetin delivery: Box–Behnken design, optimization, in vitro skin penetration, vesicles–skin interaction and dermatokinetic studies. Artif. Cells Nanomed. Biotechnol. 2018, 46, 755–765. [Google Scholar] [CrossRef]
- Boukhatem, M.N.; Ferhat, M.A.; Kameli, A.; Saidi, F.; Kebir, H.T. Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs. Libyan J. Med. 2014, 9, 25431. [Google Scholar] [CrossRef] [PubMed]
- Muta, T.; Parikh, A.; Kathawala, K.; Haidari, H.; Song, Y.; Thomas, J.; Garg, S. Quality-by-design approach for the development of nano-sized tea tree oil formulation-impregnated biocompatible gel with antimicrobial properties. Pharmaceutics 2020, 12, 1091. [Google Scholar] [CrossRef] [PubMed]
- Clavijo-Romero, A.; Quintanilla-Carvajal, M.X.; Ruiz, Y. Stability and antimicrobial activity of eucalyptus essential oil emulsions. Food Sci. Technol. Int. 2019, 25, 24–37. [Google Scholar] [CrossRef]
- Unlu, M.; Ergene, E.; Unlu, G.V.; Zeytinoglu, H.S.; Vural, N. Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food Chem. Toxicol. 2010, 48, 3274–3280. [Google Scholar] [CrossRef]
- El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Nayme, K.; Timinouni, M.; Lyoussi, B.; Abdellaoui, A. Antibacterial activity of cinnamon essential oils and their synergistic potential with antibiotics. J. Adv. Pharm. Technol. Res. 2019, 10, 63–67. [Google Scholar] [CrossRef]
- Del Giudice, P. Skin Infections Caused by Staphylococcus aureus. Acta Derm.-Venereol. 2020, 100, adv00110. [Google Scholar] [CrossRef]
- Abdallah, M.H.; Abu Lila, A.S.; Shawky, S.M.; Almansour, K.; Alshammari, F.; Khafagy, E.-S.; Makram, T.S. Experimental Design and Optimization of Nano-Transfersomal Gel to Enhance the Hypoglycemic Activity of Silymarin. Polymers 2022, 14, 508. [Google Scholar] [CrossRef]
- Nayak, D.; Tawale, R.M.; Aranjani, J.M.; Tippavajhala, V.K. Formulation, Optimization and Evaluation of Novel Ultra-deformable Vesicular Drug Delivery System for an Anti-fungal Drug. AAPS PharmSciTech 2020, 21, 140. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.K.; Kumar, T.; Jain, V. Formulation Optimization of Erythromycin Solid Lipid Nanocarrier Using Response Surface Methodology. BioMed Res. Int. 2014, 2014, 689391. [Google Scholar] [CrossRef]
- Abdallah, M.H.; Lila, A.S.A.; Unissa, R.; Elsewedy, H.S.; Elghamry, H.A.; Soliman, M.S. Brucine-Loaded Ethosomal Gel: Design, Optimization, and Anti-inflammatory Activity. AAPS PharmSciTech 2021, 22, 269. [Google Scholar] [CrossRef]
- Mahmood, S.; Taher, M.; Mandal, U.K. Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application. Int. J. Nanomed. 2014, 9, 4331. [Google Scholar]
- El-Menshawe, S.F.; Ali, A.A.; Halawa, A.A.; Srag El-Din, A.S. A novel transdermal nanoethosomal gel of betahistine dihydrochloride for weight gain control: In-vitro and in-vivo characterization. Drug Des. Dev. Ther. 2017, 11, 3377–3388. [Google Scholar] [CrossRef]
- Kirjavainen, M.; Mönkkönen, J.; Saukkosaari, M.; Valjakka-Koskela, R.; Kiesvaara, J.; Urtti, A. Phospholipids affect stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers. J. Control. Release 1999, 58, 207–214. [Google Scholar] [CrossRef]
- Garala, K.; Joshi, P.; Shah, M.; Ramkishan, A.; Patel, J. Formulation and evaluation of periodontal in situ gel. Int. J. Pharm. Investig. 2013, 3, 29. [Google Scholar] [CrossRef]
- Rajput, R.; Narkhede, J.S.; Mujumdar, A.S.; Naik, J.B. Synthesis and evaluation of luliconazole loaded biodegradable nanogels prepared by pH-responsive Poly (acrylic acid) grafted Sodium Carboxymethyl Cellulose using amine based cross linker for topical targeting: In vitro and Ex vivo assessment. Polym.-Plast. Technol. Mater. 2020, 59, 1654–1666. [Google Scholar] [CrossRef]
- Abdallah, M.H.; Elghamry, H.A.; Khalifa, N.E.; Khojali, W.M.A.; Khafagy, E.-S.; Lila, A.S.A.; El-Horany, H.E.-S.; El-Housiny, S. Ginger Extract-Loaded Sesame Oil-Based Niosomal Emulgel: Quality by Design to Ameliorate Anti-Inflammatory Activity. Gels 2022, 8, 737. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Ling, X.; Jiang, W.; Du, S.; Lu, Y.; Tu, J. Formulation and evaluation of Cyclosporin A emulgel for ocular delivery. Drug Deliv. 2015, 22, 911–917. [Google Scholar] [CrossRef]
- Surini, S.; Leonyza, A.; Suh, C.W. Formulation and In Vitro Penetration Study of Recombinant Human Epidermal Growth Factor-Loaded Transfersomal Emulgel. Adv. Pharm. Bull. 2020, 10, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, J.H.; Shu, Y.T.; Dong, J.; Gu, W.; Xu, F.; Chen, J. Comparative study of penetration-enhancing effect in vitro of cinnamon oil and cinnamaldehyde on ibuprofen. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China J. Chin. Mater. Med. 2018, 43, 3493–3497. [Google Scholar] [CrossRef]
- Shehata, T.M.; Nair, A.B.; Al-Dhubiab, B.E.; Shah, J.; Jacob, S.; Alhaider, I.A.; Attimarad, M.; Elsewedy, H.S.; Ibrahim, M.M. Vesicular Emulgel Based System for Transdermal Delivery of Insulin: Factorial Design and in Vivo Evaluation. Appl. Sci. 2020, 10, 5341. [Google Scholar] [CrossRef]
- Liang, J.H.; Han, X. Structure-activity relationships and mechanism of action of macrolides derived from erythromycin as antibacterial agents. Curr. Top. Med. Chem. 2013, 13, 3131–3164. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, N.G.; Croda, J.; Simionatto, S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 2018, 120, 198–203. [Google Scholar] [CrossRef]
- Mahadlek, J.; Charoenteeraboon, J.; Phaechamud, T. Combination effects of the antimicrobial agents and cinnamon oil. In Proceedings of the Advanced Materials Research; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2012; pp. 246–249. [Google Scholar]
- Touitou, E.; Godin, B.; Dayan, N.; Weiss, C.; Piliponsky, A.; Levi-Schaffer, F. Intracellular delivery mediated by an ethosomal carrier. Biomaterials 2001, 22, 3053–3059. [Google Scholar] [CrossRef]
- Zafar, A.; Imam, S.S.; Yasir, M.; Alruwaili, N.K.; Alsaidan, O.A.; Warsi, M.H.; Mir Najib Ullah, S.N.; Alshehri, S.; Ghoneim, M.M. Preparation of NLCs-Based Topical Erythromycin Gel: In Vitro Characterization and Antibacterial Assessment. Gels 2022, 8, 116. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.M.; Shehata, T.M. The enhancement of transdermal permeability of water soluble drug by niosome-emulgel combination. J. Drug Deliv. Sci. Technol. 2012, 22, 353–359. [Google Scholar] [CrossRef]
- Soliman, W.E.; Shehata, T.M.; Mohamed, M.E.; Younis, N.S.; Elsewedy, H.S. Enhancement of curcumin anti-inflammatory effect via formulation into myrrh oil-based nanoemulgel. Polymers 2021, 13, 577. [Google Scholar] [CrossRef]
- Das, M.K.; Ahmed, A.B. Formulation and ex vivo evaluation of rofecoxib gel for topical application. Acta Pol. Pharm. 2007, 64, 461–467. [Google Scholar] [PubMed]
- Morsy, M.A.; Abdel-Latif, R.G.; Nair, A.B.; Venugopala, K.N.; Ahmed, A.F.; Elsewedy, H.S.; Shehata, T.M. Preparation and evaluation of atorvastatin-loaded nanoemulgel on wound-healing efficacy. Pharmaceutics 2019, 11, 609. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, M.H.; Elsewedy, H.S.; AbuLila, A.S.; Almansour, K.; Unissa, R.; Elghamry, H.A.; Soliman, M.S. Quality by Design for Optimizing a Novel Liposomal Jojoba Oil-Based Emulgel to Ameliorate the Anti-Inflammatory Effect of Brucine. Gels 2021, 7, 219. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.H.; Abdelnabi, D.M.; Elghamry, H.A. Response Surface Methodology for Optimization of Buspirone Hydrochloride-Loaded In Situ Gel for Pediatric Anxiety. Gels 2022, 8, 395. [Google Scholar] [CrossRef] [PubMed]
- Asad, M.I.; Khan, D.; Rehman, A.U.; Elaissari, A.; Ahmed, N. Development and in vitro/in vivo evaluation of pH-sensitive polymeric nanoparticles loaded hydrogel for the management of psoriasis. Nanomaterials 2021, 11, 3433. [Google Scholar] [CrossRef] [PubMed]
- Dantas, M.G.B.; Reis, S.A.G.B.; Damasceno, C.M.D.; Rolim, L.A.; Rolim-Neto, P.J.; Carvalho, F.O.; Quintans-Junior, L.J.; Almeida, J.R.G.d.S. Development and evaluation of stability of a gel formulation containing the monoterpene borneol. Sci. World J. 2016, 2016, 7394685. [Google Scholar] [CrossRef]
- Abdallah, M.H.; Lila, A.S.A.; Anwer, M.K.; Khafagy, E.-S.; Mohammad, M.; S Soliman, M.E. Formulation, Development and Evaluation of Ibuprofen Loaded Nano-transferosomal Gel for the Treatment of Psoriasis. J. Pharm. Res. 2019, 31(6), 1–8. [Google Scholar] [CrossRef]
- Ali, A.; Ali, A.; Rahman, M.A.; Warsi, M.H.; Yusuf, M.; Alam, P. Development of nanogel loaded with lidocaine for wound-healing: Illustration of improved drug deposition and skin safety analysis. Gels 2022, 8, 466. [Google Scholar] [CrossRef]
- Abdelnabi, D.M.; Abdallah, M.H.; Elghamry, H.A. Buspirone hydrochloride loaded in situ nanovesicular gel as an anxiolytic nasal drug delivery system: In vitro and animal studies. AAPS PharmSciTech 2019, 20, 1–14. [Google Scholar] [CrossRef]
- Tiwari, A.; Bag, P.; Sarkar, M.; Chawla, V.; Chawla, P.A. Formulation, validation and evaluation studies on metaxalone and diclofenac potassium topical gel. Environ. Anal. Health Toxicol. 2021, 36, e2021001. [Google Scholar] [CrossRef]
- Abdallah, M.H.; Sabry, S.A.; Hasan, A.A. Enhancing transdermal delivery of glimepiride via entrapment in proniosomal gel. J. Young Pharm. 2016, 8, 335. [Google Scholar] [CrossRef] [Green Version]
Formulation | Independent Variables | Dependent Variables | |||
---|---|---|---|---|---|
A (%) | B (%) | C (%) | Y1 (%) | Y2 (µg/cm2) | |
F1 | 4 | 10 | 35 | 73.11 ± 0.74 | 573.21 ± 36.38 |
F2 | 4 | 30 | 35 | 64.41 ± 0.89 | 544.06 ± 28.53 |
F3 | 3 | 10 | 50 | 59.31 ± 0.92 | 612.22 ± 26.65 |
F4 | 4 | 20 | 50 | 52.53 ± 2.33 | 819.58 ± 22.05 |
F5 | 2 | 20 | 20 | 61.61 ± 0.42 | 481.24 ± 22.36 |
F6 | 2 | 30 | 35 | 47.79 ± 1.19 | 452.90 ± 20.48 |
F7 | 2 | 10 | 35 | 67.46 ± 0.48 | 466.04 ± 22.72 |
F8 | 3 | 30 | 50 | 48.73 ± 1.45 | 583.07 ± 20.25 |
F9 | 2 | 20 | 50 | 44.43 ± 1.33 | 658.21 ± 18.04 |
F10 | 3 | 20 | 35 | 63.01 ± 0.83 | 633.16 ± 26.68 |
F11 | 4 | 20 | 20 | 76.69 ± 0.47 | 528.87 ± 18.86 |
F12 | 3 | 20 | 35 | 61.57 ± 0.92 | 646.71 ± 27.02 |
F13 | 3 | 10 | 20 | 82.39 ± 1.53 | 384.33 ± 10.95 |
F14 | 3 | 20 | 35 | 62.15 ± 0.45 | 643.84 ± 17.78 |
F15 | 3 | 30 | 20 | 62.33 ± 0.16 | 351.89 ± 11.96 |
Source | Y1 | Y2 | ||
---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | |
Model | 192.96 | <0.0001 * | 652.54 | <0.0001 * |
A—Phospholipid (%) | 285.50 | <0.0001 * | 602.81 | <0.0001 * |
B—Surfactant (%) | 481.19 | <0.0001 * | 39.21 | 0.0015 * |
C—Ethanol (%) | 841.32 | <0.0001 * | 3120.41 | <0.0001 * |
Lack of Fit | 2.20 | 0.3272 | 0.4580 | 0.7401 |
R2 analysis | ||||
R² | 0.9971 | 0.9991 | ||
Adjusted R² | 0.9920 | 0.9976 | ||
Predicted R² | 0.9632 | 0.9933 | ||
Adequate Precision | 48.3566 | 96.87 | ||
%CV | 0.95 | 1.05 | ||
SD | 1.54 | 5.87 |
Independent Variable | Symbol | Level of Variation | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
Phospholipid concentration (%) | A | 2 | 3 | 4 |
Surfactant concentration (%) | B | 10 | 20 | 30 |
Ethanol concentration (%) | C | 20 | 35 | 50 |
Independent Variable | Unit | Constraints | ||
Entrapment efficiency (Y1) | % | Maximize | ||
Cumulative amount of drug permeated after 6 h, Q6h (Y2) | µg/cm2 | Maximize |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdallah, M.H.; Elghamry, H.A.; Khalifa, N.E.; Khojali, W.M.A.; Khafagy, E.-S.; Shawky, S.; El-Horany, H.E.-S.; El-Housiny, S. Development and Optimization of Erythromycin Loaded Transethosomes Cinnamon Oil Based Emulgel for Antimicrobial Efficiency. Gels 2023, 9, 137. https://doi.org/10.3390/gels9020137
Abdallah MH, Elghamry HA, Khalifa NE, Khojali WMA, Khafagy E-S, Shawky S, El-Horany HE-S, El-Housiny S. Development and Optimization of Erythromycin Loaded Transethosomes Cinnamon Oil Based Emulgel for Antimicrobial Efficiency. Gels. 2023; 9(2):137. https://doi.org/10.3390/gels9020137
Chicago/Turabian StyleAbdallah, Marwa H., Hanaa A. Elghamry, Nasrin E. Khalifa, Weam M. A. Khojali, El-Sayed Khafagy, Seham Shawky, Hemat El-Sayed El-Horany, and Shaimaa El-Housiny. 2023. "Development and Optimization of Erythromycin Loaded Transethosomes Cinnamon Oil Based Emulgel for Antimicrobial Efficiency" Gels 9, no. 2: 137. https://doi.org/10.3390/gels9020137
APA StyleAbdallah, M. H., Elghamry, H. A., Khalifa, N. E., Khojali, W. M. A., Khafagy, E.-S., Shawky, S., El-Horany, H. E.-S., & El-Housiny, S. (2023). Development and Optimization of Erythromycin Loaded Transethosomes Cinnamon Oil Based Emulgel for Antimicrobial Efficiency. Gels, 9(2), 137. https://doi.org/10.3390/gels9020137