Visualizing Glioma Infiltration by the Combination of Multimodality Imaging and Artificial Intelligence, a Systematic Review of the Literature
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Study Characteristics
3.2. Study Findings
3.3. Quality Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Author | Prediction Region | Derived Parameter Maps | Test of Model Performance | Sensitivity | Specificity | Accuracy | r |
---|---|---|---|---|---|---|---|
Akbari et al., 2016 [30] | Peritumoral edema | FA, RAD, AX, AT, rCBV | Independent validation cohort | 91.18% | 93.48% | 91.25% | - |
Hu et al., 2015 [38] | Peritumoral | rCBV | Independent validation cohort | 100% | 69.2% | 81.8% | - |
Rathore et al., 2018 [31] | Peritumoral edema | FA, RAD, AX, ADC, rCBV | Independent validation cohort | 97.06% | 76.73% | 89.54% | - |
Yan et al., 2020 [32] | Peritumoral edema | FA, ADC, rCBV, Cho/NAA | Independent validation cohort | 80% | 97.7% | 78% | - |
Anwar et al., 2017 [21] | Whole brain | FA, ADC, Cho/NAA | LOOCV | - | - | - | - |
Blumenthal et al., 2017 [22] | Lesion area | Vp, Ktrans, BAT | TFCV | 100% | 100% | - | - |
Gaw et al., 2019 [25] | Peritumoral | MD, FA, rCBV | LOOCV | - | - | - | 0.838 |
Hu et al., 2019 [26] | Peritumoral | MD, FA, rCBV | LOOCV | - | - | - | 0.88 |
Lundemann et al., 2019 [28] | Radiotherapeutic region | MD, FA, F, Vb, Ve, Ki, MTT | LOOCV | - | - | - | - |
Verburg et al., 2020 [29] | Whole brain | ADC, FA | LOOCV | - | - | - | - |
Chang et al., 2017 [23] | Peritumoral | ADC | Testing within primary training cohort | - | - | - | - |
Chang et al., 2017 [37] | Peritumoral | ADC | Correlation | - | - | - | 0.74 |
Durst et al., 2014 [24] | Peritumoral edema | MD, FA, Ktrans | Correlation | - | - | - | 0.75 |
Lipkova et al., 2019 [27] | Peritumoral | - | Visual comparison on independent validation cohort | - | - | - | - |
References
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Times, T.R.O. New Treatment Guidelines for Newly Diagnosed Glioblastoma Issued by American Association of Neurological Surgeons/Congress of Neurological Surgeons. Oncol. Times 2008, 30, 30. [Google Scholar] [CrossRef]
- Weller, M.; van den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 2020. [Google Scholar] [CrossRef]
- Konukoglu, E.; Clatz, O.; Bondiau, P.Y.; Delingette, H.; Ayache, N. Extrapolating glioma invasion margin in brain magnetic resonance images: Suggesting new irradiation margins. Med. Image Anal. 2010, 14, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Eidel, O.; Burth, S.; Neumann, J.-O.; Kieslich, P.J.; Sahm, F.; Jungk, C.; Kickingereder, P.; Bickelhaupt, S.; Mundiyanapurath, S.; Bäumer, P.; et al. Tumor Infiltration in Enhancing and Non-Enhancing Parts of Glioblastoma: A Correlation with Histopathology. PLoS ONE 2017, 12, e0169292. [Google Scholar] [CrossRef] [Green Version]
- Lasocki, A.; Gaillard, F. Non-Contrast-Enhancing Tumor: A New Frontier in Glioblastoma Research. AJNR Am. J. Neuroradiol. 2019, 40, 758–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, M.; Tanaka, R.; Takeda, N. Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 1992, 34, 463–469. [Google Scholar] [CrossRef]
- Agarwal, S.; Sane, R.; Oberoi, R.; Ohlfest, J.R.; Elmquist, W.F. Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Rev. Mol. Med. 2011, 13, e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, P.Y.; Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 2008, 359, 492–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrecca, K.; Guiot, M.C.; Panet-Raymond, V.; Souhami, L. Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. J. Neurooncol. 2013, 111, 19–23. [Google Scholar] [CrossRef]
- Claes, A.; Idema, A.J.; Wesseling, P. Diffuse glioma growth: A guerilla war. Acta Neuropathol. 2007, 114, 443–458. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, N.; D’Haene, N.; Decaestecker, C.; Levivier, M.; Metens, T.; Maris, C.; Wikler, D.; Baleriaux, D.; Salmon, I.; Goldman, S. Apparent diffusion coefficient and cerebral blood volume in brain gliomas: Relation to tumor cell density and tumor microvessel density based on stereotactic biopsies. AJNR Am. J. Neuroradiol. 2008, 29, 476–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barajas, R.F., Jr.; Phillips, J.J.; Parvataneni, R.; Molinaro, A.; Essock-Burns, E.; Bourne, G.; Parsa, A.T.; Aghi, M.K.; McDermott, M.W.; Berger, M.S.; et al. Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. Neuro-Oncology 2012, 14, 942–954. [Google Scholar] [CrossRef] [Green Version]
- Ellingson, B.M.; Malkin, M.G.; Rand, S.D.; Connelly, J.M.; Quinsey, C.; LaViolette, P.S.; Bedekar, D.P.; Schmainda, K.M. Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. J. Magn. Reson. Imaging 2010, 31, 538–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stadlbauer, A.; Ganslandt, O.; Buslei, R.; Hammen, T.; Gruber, S.; Moser, E.; Buchfelder, M.; Salomonowitz, E.; Nimsky, C. Gliomas: Histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR imaging. Radiology 2006, 240, 803–810. [Google Scholar] [CrossRef]
- Price, S.J.; Green, H.A.; Dean, A.F.; Joseph, J.; Hutchinson, P.J.; Gillard, J.H. Correlation of MR relative cerebral blood volume measurements with cellular density and proliferation in high-grade gliomas: An image-guided biopsy study. AJNR Am. J. Neuroradiol. 2011, 32, 501–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, S.J.; Jena, R.; Burnet, N.G.; Hutchinson, P.J.; Dean, A.F.; Peña, A.; Pickard, J.D.; Carpenter, T.A.; Gillard, J.H. Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: An image-guided biopsy study. AJNR Am. J. Neuroradiol. 2006, 27, 1969–1974. [Google Scholar]
- Davanian, F.; Faeghi, F.; Shahzadi, S.; Farshifar, Z. Diffusion Tensor Imaging for Glioma Grading: Analysis of Fiber Density Index. Basic Clin. Neurosci. 2017, 8, 13–18. [Google Scholar] [CrossRef]
- Van Dijken, B.R.J.; van Laar, P.J.; Smits, M.; Dankbaar, J.W.; Enting, R.H.; van der Hoorn, A. Perfusion MRI in treatment evaluation of glioblastomas: Clinical relevance of current and future techniques. J. Magn. Reson. Imaging JMRI 2019, 49, 11–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verburg, N.; Hoefnagels, F.W.A.; Barkhof, F.; Boellaard, R.; Goldman, S.; Guo, J.; Heimans, J.J.; Hoekstra, O.S.; Jain, R.; Kinoshita, M.; et al. Diagnostic Accuracy of Neuroimaging to Delineate Diffuse Gliomas within the Brain: A Meta-Analysis. AJNR Am. J. Neuroradiol. 2017, 38, 1884–1891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anwar, M.; Molinaro, A.M.; Morin, O.; Chang, S.M.; Haas-Kogan, D.A.; Nelson, S.J.; Lupo, J.M. Identifying Voxels at Risk for Progression in Glioblastoma Based on Dosimetry, Physiologic and Metabolic MRI. Radiat. Res. 2017, 188, 303–313. [Google Scholar] [CrossRef]
- Blumenthal, D.T.; Artzi, M.; Liberman, G.; Bokstein, F.; Aizenstein, O.; Ben Bashat, D. Classification of High-Grade Glioma into Tumor and Nontumor Components Using Support Vector Machine. Am. J. Neuroradiol. 2017, 38, 908–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, P.D.; Chow, D.S.; Yang, P.H.; Filippi, C.G.; Lignelli, A. Predicting Glioblastoma Recurrence by Early Changes in the Apparent Diffusion Coefficient Value and Signal Intensity on FLAIR Images. Am. J. Roentgenol. 2017, 208, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durst, C.R.; Raghavan, P.; Shaffrey, M.E.; Schiff, D.; Lopes, M.B.; Sheehan, J.P.; Tustison, N.J.; Patrie, J.T.; Xin, W.J.; Elias, W.J.; et al. Multimodal MR imaging model to predict tumor infiltration in patients with gliomas. Neuroradiology 2014, 56, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Gaw, N.; Hawkins-Daarud, A.; Hu, L.S.; Yoon, H.; Wang, L.J.; Xu, Y.Z.; Jackson, P.R.; Singleton, K.W.; Baxter, L.C.; Eschbacher, J.; et al. Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric MRI. Sci. Rep. 2019, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.S.; Yoon, H.; Eschbacher, J.M.; Baxter, L.C.; Dueck, A.C.; Nespodzany, A.; Smith, K.A.; Nakaji, P.; Xu, Y.; Wang, L.; et al. Accurate Patient-Specific Machine Learning Models of Glioblastoma Invasion Using Transfer Learning. Am. J. Neuroradiol. 2019, 40, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Lipkova, J.; Angelikopoulos, P.; Wu, S.; Alberts, E.; Wiestler, B.; Diehl, C.; Preibisch, C.; Pyka, T.; Combs, S.E.; Hadjidoukas, P.; et al. Personalized Radiotherapy Design for Glioblastoma: Integrating Mathematical Tumor Models, Multimodal Scans, and Bayesian Inference. IEEE Trans. Med. Imaging 2019, 38, 1875–1884. [Google Scholar] [CrossRef] [PubMed]
- Lundemann, M.; Munck Af Rosenschöld, P.; Muhic, A.; Larsen, V.A.; Poulsen, H.S.; Engelholm, S.A.; Andersen, F.L.; Kjær, A.; Larsson, H.B.W.; Law, I.; et al. Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 603–613. [Google Scholar] [CrossRef]
- Verburg, N.; Koopman, T.; Yaqub, M.M.; Hoekstra, O.S.; Lammertsma, A.A.; Barkhof, F.; Pouwels, P.J.W.; Reijneveld, J.C.; Heimans, J.J.; Rozemuller, A.J.M.; et al. Improved detection of diffuse glioma infiltration with imaging combinations: A diagnostic accuracy study. Neuro-Oncology 2020, 22, 412–422. [Google Scholar] [CrossRef]
- Akbari, H.; Macyszyn, L.; Da, X.; Bilello, M.; Wolf, R.L.; Martinez-Lage, M.; Biros, G.; Alonso-Basanta, M.; O’Rourke, D.M.; Davatzikos, C. Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of Recurrence of Glioblastoma. Neurosurgery 2016, 78, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Rathore, S.; Akbari, H.; Doshi, J.; Shukla, G.; Rozycki, M.; Bilello, M.; Lustig, R.; Davatzikos, C. Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: Implications for personalized radiotherapy planning. J. Med. Imaging 2018, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.L.; Li, C.; van der Hoorn, A.; Boonzaier, N.R.; Matys, T.; Price, S.J. A Neural Network Approach to Identify the Peritumoral Invasive Areas in Glioblastoma Patients by Using MR Radiomics. Sci. Rep. 2020, 10, 9748. [Google Scholar] [CrossRef]
- Hu, L.S.; Hawkins-Daarud, A.; Wang, L.; Li, J.; Swanson, K.R. Imaging of intratumoral heterogeneity in high-grade glioma. Cancer Lett. 2020, 477, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [Green Version]
- Covidence—Better Systematic Review Management. Available online: https://www.covidence.org/home (accessed on 28 August 2020).
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.D.; Malone, H.R.; Bowden, S.G.; Chow, D.S.; Gill, B.J.A.; Ung, T.H.; Samanamud, J.; Englander, Z.K.; Sonabend, A.M.; Sheth, S.A.; et al. A Multiparametric Model for Mapping Cellularity in Glioblastoma Using Radiographically Localized Biopsies. Am. J. Neuroradiol. 2017, 38, 890–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.S.; Ning, S.L.; Eschbacher, J.M.; Gaw, N.; Dueck, A.C.; Smith, K.A.; Nakaji, P.; Plasencia, J.; Ranjbar, S.; Price, S.J.; et al. Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma. PLoS ONE 2015, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Weller, M.; van den Bent, M.; Hopkins, K.; Tonn, J.C.; Stupp, R.; Falini, A.; Cohen-Jonathan-Moyal, E.; Frappaz, D.; Henriksson, R.; Balana, C.; et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014, 15, e395–e403. [Google Scholar] [CrossRef] [Green Version]
- Verburg, N.; de Witt Hamer, P.C. State-of-the-art imaging for glioma surgery. Neurosurg. Rev. 2020. [Google Scholar] [CrossRef] [PubMed]
- Parmar, C.; Barry, J.D.; Hosny, A.; Quackenbush, J.; Aerts, H.J.W.L. Data Analysis Strategies in Medical Imaging. Clin. Cancer Res. 2018, 24, 3492–3499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Schaaf, A.; Xu, C.J.; van Luijk, P.; Van’t Veld, A.A.; Langendijk, J.A.; Schilstra, C. Multivariate modeling of complications with data driven variable selection: Guarding against overfitting and effects of data set size. Radiother Oncol. 2012, 105, 115–121. [Google Scholar] [CrossRef]
- AlBadawy, E.A.; Saha, A.; Mazurowski, M.A. Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing. Med. Phys. 2018, 45, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.T.Y.; Tan, L.T.; Duke, S.; Ng, W.-T. Challenges for Quality Assurance of Target Volume Delineation in Clinical Trials. Front. Oncol. 2017, 7, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pati, S.; Singh, A.; Rathore, S.; Gastounioti, A.; Bergman, M.; Ngo, P.; Ha, S.M.; Bounias, D.; Minock, J.; Murphy, G.; et al. The Cancer Imaging Phenomics Toolkit (CaPTk): Technical Overview. Brainlesion 2020, 11993, 380–394. [Google Scholar] [CrossRef] [PubMed]
- Davatzikos, C.; Rathore, S.; Bakas, S.; Pati, S.; Bergman, M.; Kalarot, R.; Sridharan, P.; Gastounioti, A.; Jahani, N.; Cohen, E.; et al. Cancer imaging phenomics toolkit: Quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. J. Med. Imaging Bellingham 2018, 5, 011018. [Google Scholar] [CrossRef] [PubMed]
- Fathi Kazerooni, A.; Akbari, H.; Shukla, G.; Badve, C.; Rudie, J.D.; Sako, C.; Rathore, S.; Bakas, S.; Pati, S.; Singh, A.; et al. Cancer Imaging Phenomics via CaPTk: Multi-Institutional Prediction of Progression-Free Survival and Pattern of Recurrence in Glioblastoma. JCO Clin. Cancer Inform. 2020, 4, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Cancer Imaging Phenomics Toolkit. Available online: https://www.med.upenn.edu/cbica/captk/ (accessed on 9 December 2020).
- Akbari, H.; Bakas, S.; Pisapia, J.M.; Nasrallah, M.P.; Rozycki, M.; Martinez-Lage, M.; Morrissette, J.J.D.; Dahmane, N.; O’Rourke, D.M.; Davatzikos, C. In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature. Neuro-Oncology 2018, 20, 1068–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.T.; Jiang, G.; Chen, Q.; Zheng, J.N. Ki67 is a promising molecular target in the diagnosis of cancer (Review). Mol. Med. Rep. 2015, 11, 1566–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saadeh, F.S.; Mahfouz, R.; Assi, H.I. EGFR as a clinical marker in glioblastomas and other gliomas. Int. J. Biol. Markers 2018, 33, 22–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, N.Q.K.; Do, D.T.; Chiu, F.Y.; Yapp, E.K.Y.; Yeh, H.Y.; Chen, C.Y. XGBoost Improves Classification of MGMT Promoter Methylation Status in IDH1 Wildtype Glioblastoma. J. Pers. Med. 2020, 10, 128. [Google Scholar] [CrossRef]
- Hsu, J.B.; Lee, G.A.; Chang, T.H.; Huang, S.W.; Le, N.Q.K.; Chen, Y.C.; Kuo, D.P.; Li, Y.T.; Chen, C.Y. Radiomic Immunophenotyping of GSEA-Assessed Immunophenotypes of Glioblastoma and Its Implications for Prognosis: A Feasibility Study. Cancers 2020, 12, 3039. [Google Scholar] [CrossRef] [PubMed]
- Wesseling, P.; Capper, D. WHO 2016 Classification of gliomas. Neuropathol. Appl. Neurobiol. 2018, 44, 139–150. [Google Scholar] [CrossRef] [PubMed]
Author | Participants Training/Validation | Modalities | AI Method | Patholovgy | Reference Standard | Pathologic Marker | AUC Training/Validation | Conclusion |
---|---|---|---|---|---|---|---|---|
Akbari et al., 2016 [30] | 31/34 (Retrospective) | T1, T1ce, T2, FLAIR, DTI, DSC | SVM | HGG (GBM) | Follow-up imaging | Manual delineation | 0.80/0.84 | Multiparametric MRI can elucidate patterns of tumor infiltration within peritumoral region that predict tumor recurrence |
Hu et al., 2015 [38] | 11/7 (Prospective) | T1ce, T2, DSC | DLDA, (DQDA, SVM) | HGG (GBM) | Biopsy | Tumor nuclei | NA | Multiparametric MRI and texture analysis can help characterize and visualize GBM’s spatial histologic heterogeneity |
Rathore et al., 2018 [31] | 31/59 (Retrospective) | T1, T1ce, T2, FLAIR, DTI, DSC | SVM | HGG (GBM) | Follow-up imaging | Manual delineation | 0.83/0.91 | Multiparametric MRI can assist in in vivo estimation of the spatial extent and pattern of tumor recurrence in peritumoral edema |
Yan et al., 2020 [32] | 37/20 (Retrospective) | T1, T2, FLAIR, DTI, DSC, Spectroscopy | CNN | HGG (GBM) | Follow-up imaging | Manual delineation | NA | Application of distinct imaging characteristics can potentially identify site of tumor progression. |
Anwar et al., 2017 [21] | 24 (Retrospective) | T1ce, FLAIR, DWI, DTI, Spectroscopy | Multinomial logistic regression | HGG (GBM) | Follow-up imaging | Manual delineation | 0.75 | Integrating advanced MRI with dosimetry can identify voxels at risk for progression |
Blumenthal et al., 2017 [22] | 32 (Retrospective) | T1, T1ce, FLAIR, DCE | SVM | HGG (GBM, astrocytoma, oligodendroglia) | Follow-up imaging | RANO | NA | Proposed Segmented RANO criteria classifies tumor and nontumor parts within enhancing and non-enhancing lesion. |
Gaw et al., 2019 [25] | 18 (Prospective) | T1ce, T2, DTI, DSC | SSL + mechanistic proliferation-invasion model | HGG (GBM) | Biopsy | Cell density | NA | Predictive model can provide patient-specific spatial maps of tumor cell density |
Hu et al., 2019 [26] | 18 (Prospective) | T1, T1ce, T2, DTI, DSC | Multivariable linear regression | HGG (GBM) | Biopsy | Tumor cell density | NA | Transfer learning optimizes tumor cell density models with particularly high predictive value in non-enhancing infiltrative tumor region |
Lundemann et al., 2019 [28] | 9 (Prospective) | T1, T1ce, T2, FLAIR, DTI, DCE, FET-/FDG-PET | Binomial logistic regression | HGG (GBM) | Follow-up imaging | Manual delineation | 0.77 | Model provides patient-specific maps of voxel-wise probability of recurrence. |
Verburg et al., 2020 [29] | 20 (Prospective) | T1, T1ce, T2, DTI, FET-PET | Generalized linear mixed model + Akaike | LGG, HGG | Biopsy | Neuropathologic assessment of presence of tumor | 0.89 enhancing | Voxel-wise prediction model is more accurate to detect glioma infiltration than standard MRI in enhancing gliomas |
Chang et al., 2017 [23] | 26 (Retrospective) | T1, T1ce, FLAIR, DWI | Multivariable logistic regression | HGG (GBM) | Follow-up imaging | Automated segmentation with manually edited delineation | 0.74 | Likelihood of recurrence can be estimated as a function of voxel-wise signal intensity. |
Chang et al., 2017 [37] | 28 (Retrospective) | T1, T1ce, FLAIR, DWI | Multivariable linear regression | HGG | Biopsy | Cell density | NA | Correlation found between voxel-level signal intensity and cell density can provide mapping of intratumoral heterogeneity |
Durst et al., 2014 [24] | 10 (Prospective) | T1ce, DTI, DSC | Multivariate regression | LGG, HGG | Biopsy | Nuclear density | NA | Multiparametric voxel-based model may be able to more accurately predict infiltrative edge of tumor. |
Lipkova et al., 2019 [27] | 8 (Retrospective) | T1ce, FLAIR, FET-PET | Bayesian machine learning | HGG (GBM) | Follow-up imaging | Manual delineation | NA | Prediction of tumor cell density through multiparametric MRI and computational tumor growth model |
Study | Patient Selection | Index Test | Reference Standard | Flow and Timing | |||
---|---|---|---|---|---|---|---|
RoB | CrA | RoB | CrA | RoB | CrA | RoB | |
Akbari et al., 2016 [30] | Unclear | Low | Low | Low | High | Low | Low |
Hu et al., 2015 [38] | Unclear | Low | Low | Low | Low | Low | Low |
Rathore et al., 2018 [31] | Unclear | Low | Low | Low | High | Low | Low |
Yan et al., 2020 [32] | Unclear | Low | Low | Low | Low | Low | Low |
Study | Patient Selection | Index Test | Reference Standard | Flow and Timing | |||
---|---|---|---|---|---|---|---|
RoB | Cra | Rob | Cra | Rob | Cra | Rob | |
Anwar et al., 2017 [21] | Unclear | Unclear | Unclear | Low | Low | Low | Low |
Blumenthal et al., 2017 [22] | Unclear | Low | Unclear | Low | Low | Unclear | Low |
Gaw et al., 2019 [25] | Unclear | Low | Unclear | Low | Low | Low | Low |
Hu et al., 2019 [26] | Unclear | Low | Unclear | Low | Low | Low | Low |
Lundemann et al., 2019 [28] | Unclear | Low | Unclear | Low | Low | Low | Low |
Verburg et al., 2019 [29] | Low | Low | Unclear | Low | Low | Low | Low |
Study | Patient Selection | Index Test | Reference Standard | Flow and Timing | |||
---|---|---|---|---|---|---|---|
RoB | CrA | RoB | CrA | RoB | CrA | RoB | |
Chang et al., 2017 [23] | Unclear | Low | High | Low | Low | Low | Low |
Chang et al., 2017 [37] | Unclear | Low | High | Low | High | Low | Low |
Durst et al., 2014 [24] | Low | Low | High | Low | Low | Low | Low |
Lipkova et al., 2019 [27] | Unclear | Low | High | Low | Unclear | Low | Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
d’Este, S.H.; Nielsen, M.B.; Hansen, A.E. Visualizing Glioma Infiltration by the Combination of Multimodality Imaging and Artificial Intelligence, a Systematic Review of the Literature. Diagnostics 2021, 11, 592. https://doi.org/10.3390/diagnostics11040592
d’Este SH, Nielsen MB, Hansen AE. Visualizing Glioma Infiltration by the Combination of Multimodality Imaging and Artificial Intelligence, a Systematic Review of the Literature. Diagnostics. 2021; 11(4):592. https://doi.org/10.3390/diagnostics11040592
Chicago/Turabian Styled’Este, Sabrina Honoré, Michael Bachmann Nielsen, and Adam Espe Hansen. 2021. "Visualizing Glioma Infiltration by the Combination of Multimodality Imaging and Artificial Intelligence, a Systematic Review of the Literature" Diagnostics 11, no. 4: 592. https://doi.org/10.3390/diagnostics11040592
APA Styled’Este, S. H., Nielsen, M. B., & Hansen, A. E. (2021). Visualizing Glioma Infiltration by the Combination of Multimodality Imaging and Artificial Intelligence, a Systematic Review of the Literature. Diagnostics, 11(4), 592. https://doi.org/10.3390/diagnostics11040592