Assessment of the Impacts of Climate and LULC Changes on the Water Yield in the Citarum River Basin, West Java Province, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Research Data and Tools
2.2.1. Land Use/Land Cover (LULC)
2.2.2. Rainfall
2.2.3. Annual Reference Evapotranspiration
2.2.4. Depth of Soil Solum and Plant Available Water Content
2.2.5. Watershed Boundaries
2.3. Data Analysis
2.3.1. Water Yield
- = extra-terrestrial solar radiation (MJ.m−2.day−1)
- = average maximum daily air temperature (°C)
- = average minimum daily air temperature (°C)
- = monthly rainfall (mm.day−1)
- = the volume (mm) of plant available water capacity.
- = an empirical constant (sometimes referred to as the seasonality factor/Zhang coefficient), reflecting the local precipitation pattern and additional hydrogeological characteristics. In this study, the Z value used was 4, which is the recommended value for watersheds in tropical areas [31].
- = the reference evapotranspiration at pixel
- = the plant (vegetation) evapotranspiration coefficient at pixel x associated with its LULC.
- = potential evapotranspiration for pixel
- = annual actual evapotranspiration for the pixel x
- = annual precipitation at pixel x.
2.3.2. Impact of Changes in Climate and LULC on the WY
3. Results
3.1. Water Yield in Citarum RBU
3.2. Impact of Changes in Climate and LULC on theWY
4. Discussion
4.1. Water Yield in Citarum RBU
4.2. Impact of Changes in Climate and LULC on theWY
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kementerian Kehutanan. Peraturan Direktorat Jenderal Rehabilitasi Lahan dan Perhutanan Sosial No. P.04/V-SET/2009 Tentang Pedoman Monitoring dan Evaluasi Daerah Aliran Sungai; Kementerian Kehutanan: Jakarta, Indonesia, 2009. [Google Scholar]
- UN-Water. Water Security and the Global Agenda: A UN-Water Analytical Brief; United Nations University, Institute for Water, Environment & Health (UNU-INWEH): Hamilton, ON, Canada, 2013; Available online: http://www.unwater.org/downloads/watersecurity_analyticalbrief.pdf (accessed on 23 February 2020).
- Ouyang, Z.; Zhu, C.; Yang, G.; Weihua, X.; Zheng, H.; Zhang, Y.; Xiao, Y. Gross ecosystem product: Concept, accounting framework and case study. Acta Ecol. Sin. 2013, 33, 6747–6761. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Citarum.org. Fakta Citarum. Available online: http://citarum.org/tentang-kami/fakta-citarum.html (accessed on 1 March 2020).
- Brauman, K.A. Hydrologic ecosystem services: Linking ecohydrologic processes to human well-being in water research and watershed management. Water 2015, 2, 345–358. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yuan, Y.; Nie, Y.; Ma, E.; Li, H.; Geng, X. The temporal and spatial evolution of water yield in DaliCounty. Sustainability 2015, 7, 6069–6085. [Google Scholar] [CrossRef] [Green Version]
- Pessacg, N.; Flaherty, S.; Brandizi, L.; Solman, S.; Pascual, M. Getting water right: A case study in water yield modelling based on precipitation data. Sci. Total Environ. 2015, 537, 225–234. [Google Scholar] [CrossRef]
- Sumner, M.E. (Ed.) Handbook of Soil Science; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Zhang, L.; Cheng, L.; Chiew, F.; Fu, B. Understanding the impacts of climate and landuse change on water yield. Curr. Opin. Environ. Sustain. 2018, 33, 167–174. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.; Zhang, B.; Liu, M. Water yield of Xitiaoxi River Basin based on InVEST modeling. J. Resour. Ecol. 2012, 3, 050–054. [Google Scholar]
- Van Paddenburg, A.; Bassi, A.; Buter, E.; Cosslett, C.; Dean, A. Heart of Borneo: Investing in Nature for a Green Economy: A Synthesis Report; WWF Heart of Borneo Global Initiative: Jakarta, Indonesia, 2012. [Google Scholar]
- Bhagabati, N.K.; Ricketts, T.; Sulistyawan, T.B.S.; Conte, M.; Ennaanay, D.; Hadian, O.; Wolny, S. Ecosystem services reinforce Sumatran tiger conservation in land use plans. Biol. Conserv. 2014, 169, 147–156. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Bierbower, W. VEST 3.1.3 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund. 2015. Available online: https://manualzz.com/doc/34382487/editors--richard-sharp--rebecca-chaplin-kramer (accessed on 3 March 2021).
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 1–14. [Google Scholar] [CrossRef]
- Du, C.; Sun, F.; Yu, J.; Liu, X.; Chen, Y. New interpretation of the role of water balance in an extended Budyko hypothesis in arid regions. Hydrol. Earth Syst. Sci. 2016, 20, 393–409. [Google Scholar] [CrossRef] [Green Version]
- Budyko, M.; Miller, D.H. Climate and Life; Academic Press: New York, NY, USA; San Diego, CA, USA, 1974; pp. 217–243. [Google Scholar]
- Citarum org. Kondisi Fisik dan Spasial. Physical and Spatial Conditions. Available online: http://citarum.org/tentang-kami/sekilas-citarum/kondisi-fisik-dan-spasial.html (accessed on 3 March 2020).
- Kusratmoko, E.; Semedi, J.M. Water Availability in Patuha Mountain Region Using InVEST Model “Hydropower Water Yield”. In E3S Web of Conferences; EDP Sciences: Ulis, France, 2019; Volume 125, p. 01015. [Google Scholar]
- Kementerian Lingkungan Hidup dan Kehutanan, Republik Indonesia Direktorat Jenderal Planologi. Data Spasial Kementerian Kehutanan. List of Spatial Data of Monistry of Foresty. Available online: http://appgis.menlhk.go.id/appgis/download.aspx (accessed on 5 March 2020).
- Cahyono, B.E.; Febriawan, E.B.; Nugroho, A.T. Analisis Tutupan Lahan Menggunakan Metode Klasifikasi Tidak Terbimbing Citra Landsat di Sawahlunto, Sumatera Barat (Land Cover Analysis using Unsupervised Classification Method of Landsat Imagery in Sawahlunto, West Sumatera). Teknotan J. Ind. Teknol. Pertan. 2019, 13, 8–14. [Google Scholar]
- Meteorological, Climatological, and Geophysical Agency (BMKG). Data Online Pusat Database BMKG. Available online: https://dataonline.bmkg.go.id/admin/ (accessed on 7 March 2020).
- Balai Besar Sungai Citarum-Ciliwung. Profil BBWS Citarum. Profile of BBWS Citarum. Available online: http://sda.pu.go.id/balai/bbwscitarum/profil-bbws-citarum/ (accessed on 9 March 2020).
- Worldclim.org. Historical Climate Data. Available online: https://worldclim.org/data/worldclim21.html (accessed on 11 March 2020).
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 5, 1965–1978. [Google Scholar] [CrossRef]
- Saxton, K.E. Soil Water Characteristics: Hydraulic Properties Calculator. Retrieved 6 June 2020. 2009. Available online: https://hrsl.ba.ars.usda.gov/soilwater/Index.htm (accessed on 13 March 2020).
- Droogers, P.; Allen, R.G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Arunyawat, S.; Shrestha, R. Assessing land use change and its impact onecosystem services in Northern Thailand. Sustainability 2016, 8, 768. [Google Scholar] [CrossRef] [Green Version]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436–437, 35–50. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration. In Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FOA: Roma, Italy, 1998; pp. 1–281. [Google Scholar]
- Fu, B.P. On the calculation of the evaporation from land surface. Chin. J. Atmos. Sci. 1981, 5, 23–31. [Google Scholar]
- Badan Informasi Geospasial. Pemetaan Dinamika Sumberdaya Alam Terpadu Wilayah Sungai Citarum; Mapping of the Dynamics of Integrated Natural Resources of the Citarum River Basin Badan Informasi Geospasial: Cibinong, Indonesia, 2015. [Google Scholar]
- Goel, M.K. Runoff Coefficient. In Encyclopedia of Snow, Ice and Glaciers; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Kementerian Pekerjaan Umum. Rencana pengelolaan sumber daya air Wilayah Sungai Citarum Tahun. Management Plan of Citarum River Basin. 2016. Available online: https://www.coursehero.com/file/60545948/Rencana-Pengelolaan-Sumber-Daya-Air-WS-Citarumpdf/ (accessed on 23 March 2020).
- Lian, X.H.; Qi, Y.; Wang, H.W.; Zhang, J.L.; Yang, R. Assessing changes of water yield in Qinghai Lake Watershed of China. Water 2020, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Srichaichana, J.; Trisurat, Y.; Ongsomwang, S. Land use and land cover scenarios for optimum water yield and sediment retention ecosystem services in Klong U-Tapao Watershed, Songkhla, Thailand. Sustainability 2019, 11, 2895. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Zhang, X.N.; Xia, D.Z.; You, J.S.; Rong, Y.S.; Bakir, M. Impacts of land-use and climate changes on hydrologic processes in the qingyi river watershed, China. J. Hydrol. Eng. 2013, 18, 1495–1512. [Google Scholar] [CrossRef]
- Li, S.; Yang, H.; Lacayo, M.; Liu, J.; Lei, G. Impacts of land-use and land-cover changes on water yield: A case study in Jing-Jin-Ji, China. Sustainability 2018, 10, 960. [Google Scholar] [CrossRef] [Green Version]
- Gray, N.F. Drinking Water Quality: Problems and Solutions; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Minga-León, S.; Gómez-Albores, M.A.; Bâ, K.M.; Balcázar, L.; Ricardo, L. Estimation of water yield in the hydrographic basins of southern Ecuador. Hydrol. Earth Syst. Sci. Discuss. 2018, 1–18. Available online: https://hess.copernicus.org/preprints/hess-2018-529/ (accessed on 3 March 2021).
- DeFries, R.; Eshleman, K.N. Land-use change and hydrologic processes: A major focus for the future. Hydrol. Process. 2004, 18, 2183–2186. [Google Scholar] [CrossRef]
- Harka, A.E.; Roba, N.T.; Kassa, A.K. Modelling rainfall runoff for identification of suitable water harvesting sites in Dawe River watershed, Wabe Shebelle River basin, Ethiopia. J. Water Land Dev. 2020, 47, 186–195. [Google Scholar]
- Yin, G.; Wang, X.; Zhang, X.; Fu, Y.; Hao, F.; Hu, Q. InVEST model-based estimation of water yield in North China and its sensitivities to climate variables. Water 2020, 12, 1692. [Google Scholar] [CrossRef]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Bullock, J.M. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 569, 1418–1426. [Google Scholar] [CrossRef] [Green Version]
- Tarigan, S.D.; Tukayo, R.K. Impact of land use change and land management on irrigation water supply in Northern Java coast. J. Trop. Soils 2013, 18, 169–176. [Google Scholar]
- Adi, S.; Jänen, I.; Jennerjahn, T.C. History of development and attendant environmental changes in the Brantas River Basin, Java, Indonesia, since 1970. Asian J. Water Environ. Pollut. 2013, 10, 5–15. [Google Scholar]
- Astuti, I.S.; Sahoo, K.; Milewski, A.; Mishra, D.R. Impact of land use land cover (LULC) change on surface runoff in an increasingly urbanized tropical watershed. Water Resour. Manag. 2019, 33, 4087–4103. [Google Scholar] [CrossRef]
- Gyamfi, C.; Ndambuki, J.M.; Salim, R.W. Hydrological responses to land use/cover changes in the Olifants Basin, South Africa. Water 2016, 8, 588. [Google Scholar] [CrossRef]
- Bi, H.; Liu, B.; Wu, J.; Yun, L.; Chen, Z.; Cui, Z. Effects of precipitation and landuse on runoff during the past 50 years in a typical watershed in Loess Plateau, China. Int. J. Sediment Res. 2009, 24, 352–364. [Google Scholar] [CrossRef]
- Pramono, I.B.; Budiastuti, M.T.S.; Gunawan, T. Water yield analysis on area covered by pine forest at Kedungbulus Watershed Central Java, Indonesia. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 943–949. [Google Scholar] [CrossRef] [Green Version]
- Sahin, V.; Hall, M.J. The effects of afforestation and deforestation on water yields. J. Hydrol. 1996, 178, 293–309. [Google Scholar] [CrossRef]
- Saddique, N.; Mahmood, T.; Bernhofer, C. Quantifying the impacts of land use/land cover change on the water balance in the afforested River Basin, Pakistan. Environ. Earth Sci. 2020, 79, 448. [Google Scholar] [CrossRef]
- Baiya, B.; Hashim, M. Modelling catchment land ue changes against water yield with satellite multi-temporal data. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 10th IGRSM International Conference and Exhibition on Geospatial & Remote Sensing, Kuala Lumpur, Malaysia, 20–21 October 2020; IOP Publishing: Bistol, UK, 2020; Volume 540, p. 012060. [Google Scholar]
- Yhdego, S.M.; Chen, B.; Pellikka, P.; Guo, L.; Zhang, H. Land Use/Land Cover Changes and Associated Impacts on Water Yield and Water Scarcity in Drought Vulnerable Horn of Africa. 2019. Available online: https://ui.adsabs.harvard.edu/abs/2019AGUFM.H12C..02Y/abstract (accessed on 3 March 2021).
- Measho, S.; Chen, B.; Pellikka, P.; Trisurat, Y.; Guo, L.; Sun, S.; Zhang, H. Land use/land cover changes and associated impacts on water yield availability and variations in the Mereb Gash River Basin in the Horn of Africa. J. Geophys. Res. Biogeosci. 2020, 125, 16. [Google Scholar] [CrossRef]
- Cerdà, A.; Novara, A.; Dlapa, P.; López-Vicente, M.; Úbeda, X.; Popović, Z.; Mekonnen, M.; Terol, E.; Janizadeh, S.; Mbarki, S.; et al. Rainfall and water yield in Macizo del Caroig, Eastern Iberian Peninsula. Event runoff at plot scale during a rare flash flood at the Barranco de Benacancil. Cuad. Investig. Geogr. 2021, 47. [Google Scholar] [CrossRef]
Code | LULC | 2006 | 2012 | 2018 | |||
---|---|---|---|---|---|---|---|
Ha | % | Ha | % | Ha | % | ||
1 | Virgin Forest | 36.70 | 3.24 | 29.07 | 2.57 | 27.98 | 2.47 |
2 | Plantation Forest | 118.98 | 10.51 | 121.39 | 10.73 | 116.14 | 10.26 |
3 | Shrub | 18.84 | 1.66 | 19.61 | 1.73 | 7.39 | 0.65 |
4 | Estate Crops Plantation | 57.17 | 5.05 | 56.73 | 5.01 | 51.02 | 4.51 |
5 | Settlement Area | 95.57 | 8.44 | 112.61 | 9.95 | 108.80 | 9.61 |
6 | Bare land | 10.34 | 0.91 | 9.98 | 0.88 | 7.80 | 0.69 |
7 | Lake | 16.42 | 1.45 | 16.39 | 1.45 | 16.40 | 1.45 |
8 | Pure Dry Agriculture | 125.88 | 11.12 | 317.55 | 28.06 | 151.56 | 13.39 |
9 | Mixed Dry Agriculture | 118.46 | 10.47 | 144.80 | 12.79 | 132.99 | 11.75 |
10 | Paddy Filed | 499.14 | 44.10 | 269.37 | 23.80 | 477.02 | 42.15 |
11 | Fishpond | 34.07 | 3.01 | 34.07 | 3.01 | 34.47 | 3.05 |
12 | Airport | 0.19 | 0.02 | 0.19 | 0.02 | 0.19 | 0.02 |
Total | 1131.75 | 100.00 | 1131.75 | 100.0 | 1131.75 | 100.00 |
Parameter Change | Scenario Name | Description |
---|---|---|
Climate | Climate change simulation: It was assumed that there will be a climate change, while the LULC data used is data of 2006, 2012, and 2018. | |
Climate 1 | It was assumed that there was no change in climate inputs. The climate data inputs are rainfall data of in 2006, 2012, and 2018 and reference evapotranspiration data of 2006. | |
Climate 2 | It was assumed that rainfall increased by 10% and evapotranspiration were constant. | |
Climate 3 | It was assumed that there was an increase in rainfall and evapotranspiration by 10%. | |
Climate 4 | It was assumed that rainfall decreased by 10%, and evapotranspiration was constant. | |
Climate 5 | It was assumed that there was a decrease in constant rainfall and evapotranspiration by 10%. | |
LULC | Simulation of changes in LULC: There was a change in LULC. Meanwhile, the climate data remains unchanged. | |
LULC 1 | LULC was assumed to be unchanged, so the input data of LULC in 2006, 2012, and 2018 was LULC data in 2006. | |
LULC 2 | LULC was assumed to have changed. All industrial plantations were converted into open land (an increase in the area of open land by 124% (in 2006), by 129% (2012), and by 122% (in 2018). The average increase in the open area was 125%. | |
LULC 3 | LULC was assumed to have changed. All industrial plantations have been converted into open land (increase in open land area by 1217% (in 2006), by 3182% (2012), and by 1944% (in 2018)). The average increase in the open area was 2114%. | |
LULC 4 | LULC was assumed to have changed. All paddy fields have been converted into open land (increase in open land area by 4827% (in 2006), by 2699% (2012) and by 4548% (in 2018)). The average increase in the open area was 4548%. | |
LULC 5 | LULC was assumed to have changed. Shrubs have been converted into open land (an increase in open land area by 1217% (2006), 196% (2012), and 95% (2018)). The average increase in the open area was 158%. |
Watershed Area/WS (River Basin Territory) | Area | Mean WY | Total WY | WY Coefficient | ||
---|---|---|---|---|---|---|
103 Ha | Percentage | Mm | 109 m3/Year | Percentage | ||
Catchment Area | ||||||
Citarum | 659.50 | 58.25 | 1220.70 | 8.05 | 66.18 | 0.63 |
Cipunara | 128.06 | 11.31 | 1126.94 | 1.44 | 11.86 | 0.62 |
Ciasem | 73.19 | 6.46 | 969.28 | 0.71 | 5.83 | 0.60 |
Cimalaya | 52.06 | 4.60 | 974.30 | 0.51 | 4.17 | 0.58 |
Cikarokrok | 36.33 | 3.21 | 656.34 | 0.24 | 1.96 | 0.52 |
Others | 183.06 | 16.17 | 663.99 | 1.22 | 9.99 | 0.48 |
Total RBU | 1132.20 | 100.00 | 935.26 | 12.17 | 100.00 | |
WS (River Basin Territory) | ||||||
Upstream | 24.40 | 21.56 | 951.71 | 2.32 | 19.07 | 0.60 |
Middle | 69.51 | 61.39 | 1084.48 | 7.53 | 61.89 | 0.60 |
Downstream | 19.31 | 17.05 | 1201.63 | 2.32 | 19.05 | 0.62 |
Total RBU | 1132.20 | 100.00 | 1079.27 | 12.17 | 100.00 |
Catchment Area | Total WY 109 m3/Year | Change in Total WY 109 m3/year (% Class of Change) | ||||
---|---|---|---|---|---|---|
2006 | 2012 | 2018 | 2006–2012 | 2012–2018 | 2006–2018 | |
Citarum | 9.54 | 10.10 | 8.05 | 5.80 (LI) | (20.28) (MD) | (15.65) (LD) |
Cipunara | 1.69 | 1.79 | 1.44 | 5.92 (LI) | (19.59) (LD) | (14.83) (LD) |
Ciasem | 1.03 | 0.94 | 0.71 | (8.83) (LD) | (24.81) (MD) | (31.45) (MD) |
Cimalaya | 0.94 | 0.73 | 0.51 | (22.82) (MD) | (30.17) (MD) | (46.11) (HD) |
Cikarokrok | 0.26 | 0.36 | 0.24 | 37.68 (MI) | (34.27) (MD) | (9.50) (LD) |
Others | 2.38 | 1.81 | 1.22 | (23.82) (MD) | (32.92) (MD) | (48.90) (HD) |
SWS Citarum | 15.86 | 15.74 | 12.16 | (0.75) (LD) | (22.71) (MD) | (23.29) (DM) |
Classes of LULC | Area | MWY | Total WY | Coefficient of WY | ||
---|---|---|---|---|---|---|
Ha | Percentage | Mm | 109 m3/Year | Percentage | ||
Paddy Filed | 479.41 | 42.36 | 985.01 | 4.72 | 38.83 | 0.59 |
Pure Dry Agriculture | 151.85 | 13.42 | 1348.35 | 2.05 | 16.84 | 0.69 |
Mixed Dry Agriculture | 133.98 | 11.84 | 1219.10 | 1.63 | 13.43 | 0.67 |
Plantation Forest | 114.69 | 10.13 | 1226.80 | 1.41 | 11.57 | 0.61 |
Settlement Area | 109.63 | 9.69 | 1018.73 | 1.12 | 9.18 | 0.64 |
Estate Crop | 51.12 | 4.52 | 1196.45 | 0.61 | 5.03 | 0.61 |
Virgin Forest | 26.67 | 2.36 | 1444.36 | 0.39 | 3.17 | 0.66 |
Shrubs | 7.30 | 0.65 | 1516.25 | 0.11 | 0.91 | 0.78 |
Lake | 16.51 | 1.46 | 549.50 | 0.09 | 0.75 | 0.24 |
Bare Land | 7.85 | 0.69 | 424.08 | 0.03 | 0.27 | 0.22 |
Airport | 0.19 | 0.02 | 898.61 | 0.00 | 0.01 | 0.61 |
Fish Pond | 32.55 | 2.88 | 3.21 | 0.00 | 0.01 | 0.10 |
Total | 1131.75 | 100.00 | 1075.20 | 12.16 | 100.00 | 0.54 |
Type of Land Cover | R2 | p-Value | Significance |
---|---|---|---|
Forest | 0.97 | 0.00 | 0.00 |
Bare land | 0.97 | 0.00 | 0.00 |
Tea plantation | 0.94 | 0.00 | 0.00 |
Agriculture | 0.93 | 0.00 | 0.00 |
Paddy field | 0.79 | 0.00 | 0.00 |
Shrubs | 0.68 | 0.00 | 0.00 |
Settlement | 0.40 | 0.00 | 0.00 |
Year | Normal | Climate 1 | Climate 2 | Climate 3 | Climate 4 | Climate 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
109 m3 | 109 m3 | Percen-tage | 109 m3 | Percentage | 109 m3 | Percen-tage | 109 m3 | Percentage | 109 m3 | Percentage | |
2006 | 15.85 | 15.85 | 0 | 18.08 | 14.06 | 17.59 | 10.97 | 13.65 | (13.92) | 14.12 | (2.21) |
2012 | 15.70 | 16.30 | 3.82 | 18.67 | 18.90 | 17.40 | 11.05 | 13.64 | (13.16) | 14.05 | (2.07) |
2018 | 12.17 | 14.93 | 22.68 | 15.52 | 27.57 | 15.07 | 23.86 | 10.96 | (9.89) | 11.47 | (1.20) |
Year | Normal | LULC1 | LULC2 | LULC3 | LULC4 | LULC5 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
109 m3 | 109 m3 | % | 109 m3 | % | 109 m3 | % | 109 m 3 | % | 109 m 3 | % | |
2006 | 15.85 | 15.85 | 0 | 16.67 | 5.18 | 16.27 | 3.25 | 14.97 | (5.60) | 16.92 | 6.71 |
2012 | 15.70 | 15.36 | (2.23) | 15.34 | (2.33) | 13.81 | (12.04) | 14.62 | (6.90) | 15.58 | (0.80) |
2018 | 12.17 | 12.10 | (0.56) | 11.47 | (5.73) | 10.91 | (10.29) | 8.66 | (28.81) | 12.09 | (0.60) |
Type of LULC | R2 | p-Value | Significance |
---|---|---|---|
Forest | 0.9871 | 0.0000 | 0.000 |
Bare land | 0.9963 | 0.0000 | 0.000 |
Tea plantation | 0.9879 | 0.0000 | 0.000 |
Agriculture | 0.9922 | 0.0000 | 0.000 |
Paddy field | 0.9 856 | 0.0000 | 0.000 |
Shrubs | 0.9819 | 0.0000 | 0.000 |
Settlement | 0.4614 | 0.0000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nahib, I.; Ambarwulan, W.; Rahadiati, A.; Munajati, S.L.; Prihanto, Y.; Suryanta, J.; Turmudi, T.; Nuswantoro, A.C. Assessment of the Impacts of Climate and LULC Changes on the Water Yield in the Citarum River Basin, West Java Province, Indonesia. Sustainability 2021, 13, 3919. https://doi.org/10.3390/su13073919
Nahib I, Ambarwulan W, Rahadiati A, Munajati SL, Prihanto Y, Suryanta J, Turmudi T, Nuswantoro AC. Assessment of the Impacts of Climate and LULC Changes on the Water Yield in the Citarum River Basin, West Java Province, Indonesia. Sustainability. 2021; 13(7):3919. https://doi.org/10.3390/su13073919
Chicago/Turabian StyleNahib, Irmadi, Wiwin Ambarwulan, Ati Rahadiati, Sri Lestari Munajati, Yosef Prihanto, Jaka Suryanta, Turmudi Turmudi, and Anggit Cahyo Nuswantoro. 2021. "Assessment of the Impacts of Climate and LULC Changes on the Water Yield in the Citarum River Basin, West Java Province, Indonesia" Sustainability 13, no. 7: 3919. https://doi.org/10.3390/su13073919
APA StyleNahib, I., Ambarwulan, W., Rahadiati, A., Munajati, S. L., Prihanto, Y., Suryanta, J., Turmudi, T., & Nuswantoro, A. C. (2021). Assessment of the Impacts of Climate and LULC Changes on the Water Yield in the Citarum River Basin, West Java Province, Indonesia. Sustainability, 13(7), 3919. https://doi.org/10.3390/su13073919