The core of the limb bone cortex of mammals and birds is made of rapidly deposited, fibro-lamellar bone tissue (also present in non-avian theropods), which is usually surrounded by an avascular outer circumferential layer (OCL) of slowly deposited parallel-fibered bone. We present the first comparative allometric study of the relative OCL thickness (expressed as a fraction of the diaphyseal radius) in modern birds. Body size explains 79% of the OCL variation in thickness, which is inversely correlated with size, that is, shows negative allometry (slope -0.799). This may explain the apparent absence of OCL in the ratites. Since the OCL is deposited at the end of growth, we propose that its relative thickness probably correlates with the amount of slow, residual growth, which our results suggest to be on the average larger in small birds.
How to translate text using browser tools
1 December 2004
Variation of the Outer Circumferential Layer in the Limb Bones of Birds
Fleur Ponton,
Andrzej Elżanowski,
Jacques Castanet,
Anusuya Chinsamy,
Emmanuel De Margerie,
Armand De Ricqlès,
Jorge Cubo
R. Amprino
,
G. Godina
1947. La struttura delle ossa nei vertebrati. Ricerche comparative negli amfibi e negli amnioti. Comment. Pontif. Acad. Sci. 11: 329–467. Google Scholar
J. Blom
,
C. Lilja
2004. A comparative study of growth, skeletal development and eggshell composition in some species of birds. J. Zool. 262: 361–369. Google Scholar
K. E. Campbell
,
L. Marcus
1992. The relationship of hindlimb bone dimensions to body weight in birds. Science Ser. Nat. Hist. Mus. Los Angeles County 36: 395–412. Google Scholar
J. Castanet
,
A. Grandin
,
A. Abourachid
,
A. de Ricqlès
1996. [Expression of growth dynamics in the structure of periosteal bone in the Mallard Anas platyrhynchos]. C. R. Acad. Sci. Paris Life Sci. 319: 301–308. Google Scholar
A. Chinsamy
1995. Histological pespectives on growth in the birds Struthio camelus and Sagittarius serpentarius. Courier Forschungsinst. Senckenberg 181: 317–323. Google Scholar
A. Chinsamy
,
L. M. Chiappe
,
P. Dodson
1995. Mesozoic avian bone microstructure: physiological implications. Paleobiology 21: 561–574. Google Scholar
A. Chinsamy
,
A. Elzanowski
2001. Evolution of growth pattern in birds. Nature 412: 402–403. Google Scholar
A. Chinsamy
,
L. D. Martin
,
P. Dodson
1998. Bone microstructure of the diving Hesperonis and the volant Ichthyornis from the Niobrara Chalk of western Kansas. Cretaceous Research 19: 225–235. Google Scholar
J. D. Currey
2002. Bones/Structure and Mechanics. Princeton Univ. Press, Princeton & Oxford. Google Scholar
S. Dale
,
T. Slagsvold
,
H. M. Lampe
,
J. T. Lifjeld
2002. Agerelated changes in morphological characters in the pied flycatcher Ficedula hypoleuca.
Avian Science 2: 153–166. Google Scholar
D. Enlow
,
S.O. Brown
1957. A comparative histological study of fossil and Recent bone tissues. Part II. Texas J. Sci. 9:185–214. Google Scholar
T. Garland Jr
.,
A. W. Dickerman
,
C. M. Janis
,
J. A. Jones
1993. Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42: 265–292. Google Scholar
G. A. Klevezal
,
A. V. Kaller Salas
,
S. P. Kirpichev
1972. Determination of age in birds by layers in the periosteal zone. Zool. Zhurnal 51: 1726–1730. Google Scholar
P. Koubek
,
V. Hrabe
1984. Estimating the age of male Phasianus colchicus by bone histology and spur length. Folia Zool. 33:301–313. Google Scholar
J. C. Lewis
1979. Periosteal layers do not indicate ages of Sandhill cranes. J. Wild. Manage. 43: 269–271. Google Scholar
E. de Margerie
,
J. Cubo
,
J. Castanet
2002. Bone typology and growth rate: testing and quantifying “Amprino's rule” in the mallard (Anas platyrhynchos). C. R. Biologies 325: 221–230. Google Scholar
G. Mayr
,
J. Clarke
2003. The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics 19: 527–533. Google Scholar
R. C. Nelson
,
T. A. Bookhout
1980. Counts of periosteal layers invalid for aging Canada geese. J. Wild. Manage. 44: 518–521. Google Scholar
D. E. Pomeroy
1980. Growth and plumage changes of the Grey Crowned Crane Balearica regulorum gibbericeps.
Bull. Brit. Ornith. Club 100: 219–223. Google Scholar
A. Purvis
,
A. Rambaut
1995. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Computer Appl. Biosci. 11: 247–251. Google Scholar
A. de Ricqlès
,
K. Padian
,
J. R. Horner
2001. The bone histology of basal birds in phylogenetic and ontogenetic perspective. In:
J. Gauthier
,
L. F. Gall
(eds).
New perspectives on the origin and early evolution of birds. Peabody Mus. Nat. Hist./Yale Univ., New Haven, pp. 411–426. Google Scholar
A. de Ricqlès
,
K. Padian
,
J. R. Horner
,
E. T. Lamm
,
N. Myhrvold
2003. Osteology of Confuciusornis sanctus (Theropoda: Aves). J. Vert. Pal. 23: 373–386. Google Scholar
J. M. Starck
,
R. E. Ricklefs
1998. Variation, constraint, and phylogeny. Comparative analysis of variation of growth. In:
J. M. Starck
,
R. E. Ricklefs
(eds).
Avian growth and development. Evolution within the altricial-precocial spectrum. Oxford Univ. Press, New York, pp. 247–265. Google Scholar
R. W. M. van Soest
,
W. L. van Utrecht
1978. The layered structures of bones of birds as a possible indication of age. Bijdragen tot de Dierkunde 41: 61–66. Google Scholar
M. van Tuinen
,
S. B. Hedges
2001. Calibration of avian molecular clocks. Mol. Biol. Evol. 18: 206–213. Google Scholar
W. W. Weathers
,
R. B. Siegel
1995. Body size establishes the scaling of avian postnatal metabolic rate: an interspecific analysis using phylogenetically independent contrasts. Ibis 137: 532–542. Google Scholar
F. Zhang
,
L. Hou
,
L. Ouyang
1998. Osteological microstructure of Confuciusornis: preliminary report. Vertebrata Palasiatica 36: 126–135. Google Scholar

Acta Ornithologica
Vol. 39 • No. 2
December 2004
Vol. 39 • No. 2
December 2004
bone histology
ossification
periosteal bone
phylogenetically independent contrasts
postnatal growth
skeleton