Home Maintaining protein composition in cilia
Article
Licensed
Unlicensed Requires Authentication

Maintaining protein composition in cilia

  • Louise A. Stephen EMAIL logo , Yasmin Elmaghloob and Shehab Ismail EMAIL logo
Published/Copyright: August 29, 2017

Abstract

The primary cilium is a sensory organelle that is vital in regulating several signalling pathways. Unlike most organelles cilia are open to the rest of the cell, not enclosed by membranes. The distinct protein composition is crucial to the function of cilia and many signalling proteins and receptors are specifically concentrated within distinct compartments. To maintain this composition, a mechanism is required to deliver proteins to the cilium whilst another must counter the entropic tendency of proteins to distribute throughout the cell. The combination of the two mechanisms should result in the concentration of ciliary proteins to the cilium. In this review we will look at different cellular mechanisms that play a role in maintaining the distinct composition of cilia, including regulation of ciliary access and trafficking of ciliary proteins to, from and within the cilium.

  1. Funding: CRUK (Grant/Award Number: A19257).

References

Abd-El-Barr, M.M., Sykoudis, K., Andrabi, S., Eichers, E.R., Pennesi, M.E., Tan, P.L., Wilson, J.H., Katsanis, N., Lupski, J.R., and Wu, S.M. (2007). Impaired photoreceptor protein transport and synaptic transmission in a mouse model of Bardet-Biedl syndrome. Vision Res. 47, 3394–3407.10.1016/j.visres.2007.09.016Search in Google Scholar PubMed PubMed Central

Absalon, S., Blisnick, T., Kohl, L., Toutirais, G., Dore, G., Julkowska, D., Tavenet, A., and Bastin, P. (2008). Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol. Biol. Cell 19, 929–944.10.1091/mbc.e07-08-0749Search in Google Scholar PubMed PubMed Central

Ansley, S.J., Badano, J.L., Blacque, O.E., Hill, J., Hoskins, B.E., Leitch, C.C., Kim, J.C., Ross, A.J., Eichers, E.R., Teslovich, T.M., et al. (2003). Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 425, 628–633.10.1038/nature02030Search in Google Scholar PubMed

Bergman, K., Goodenough, U.W., Goodenough, D.A., Jawitz, J., and Martin, H. (1975). Gametic differentiation in Chlamydomonas reinhardtii. II. Flagellar membranes and the agglutination reaction. J. Cell Biol. 67, 606–622.10.1083/jcb.67.3.606Search in Google Scholar PubMed PubMed Central

Bhogaraju, S., Cajanek, L., Fort, C., Blisnick, T., Weber, K., Taschner, M., Mizuno, N., Lamla, S., Bastin, P., Nigg, E.A., et al. (2013). Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341, 1009–1012.10.1126/science.1240985Search in Google Scholar PubMed PubMed Central

Blacque, O.E. and Leroux, M.R. (2006). Bardet-Biedl syndrome: an emerging pathomechanism of intracellular transport. Cell Mol. Life Sci. 63, 2145–2161.10.1007/s00018-006-6180-xSearch in Google Scholar PubMed

Boubakri, M., Chaya, T., Hirata, H., Kajimura, N., Kuwahara, R., Ueno, A., Malicki, J., Furukawa, T., and Omori, Y. (2016). Loss of ift122, a retrograde intraflagellar transport (IFT) complex component, leads to slow, progressive photoreceptor degeneration due to inefficient opsin transport. J. Biol. Chem. 291, 24465–24474.10.1074/jbc.M116.738658Search in Google Scholar PubMed PubMed Central

Breslow, D.K., Koslover, E.F., Seydel, F., Spakowitz, A.J., and Nachury, M.V. (2013). An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. J. Cell Biol. 203, 129–147.10.1083/jcb.201212024Search in Google Scholar PubMed PubMed Central

Chandra, A., Grecco, H.E., Pisupati, V., Perera, D., Cassidy, L., Skoulidis, F., Ismail, S.A., Hedberg, C., Hanzal-Bayer, M., Venkitaraman, A.R., et al. (2012). The GDI-like solubilizing factor PDEd sustains the spatial organization and signalling of Ras family proteins. Nat. Cell Biol. 14, 148–158.10.1038/ncb2394Search in Google Scholar PubMed

Christensen, S.T., Pedersen, L.B., Schneider, L., and Satir, P. (2007). Sensory cilia and integration of signal transduction in human health and disease. Traffic 8, 97–109.10.1111/j.1600-0854.2006.00516.xSearch in Google Scholar PubMed

Craft, J.M., Harris, J.A., Hyman, S., Kner, P., and Lechtreck, K.F. (2015). Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. J. Cell Biol. 208, 223–237.10.1083/jcb.201409036Search in Google Scholar PubMed PubMed Central

Davey, M.G., Paton, I.R., Yin, Y., Schmidt, M., Bangs, F.K., Morrice, D.R., Smith, T.G., Buxton, P., Stamataki, D., Tanaka, M., et al. (2006). The chicken talpid3 gene encodes a novel protein essential for Hedgehog signaling. Genes Dev. 20, 1365–1377.10.1101/gad.369106Search in Google Scholar PubMed PubMed Central

Deretic, D., Schmerl, S., Hargrave, P.A., Arendt, A., and McDowell, J.H. (1998). Regulation of sorting and post-Golgi trafficking of rhodopsin by its C-terminal sequence QVS(A)PA. Proc. Natl. Acad. Sci. USA 95, 10620–10625.10.1073/pnas.95.18.10620Search in Google Scholar PubMed PubMed Central

Deretic, D., Williams, A.H., Ransom, N., Morel, V., Hargrave, P.A., and Arendt, A. (2005). Rhodopsin C terminus, the site of mutations causing retinal disease, regulates trafficking by binding to ADP-ribosylation factor 4 (ARF4). Proc. Natl. Acad. Sci. USA 102, 3301–3306.10.1073/pnas.0500095102Search in Google Scholar PubMed PubMed Central

Eggenschwiler, J.T. and Anderson, K.V. (2007). Cilia and developmental signaling. Annu. Rev. Cell Dev. Biol. 23, 345–373.10.1146/annurev.cellbio.23.090506.123249Search in Google Scholar PubMed PubMed Central

Evans, R.J., Schwarz, N., Nagel-Wolfrum, K., Wolfrum, U., Hardcastle, A.J., and Cheetham, M.E. (2010). The retinitis pigmentosa protein RP2 links pericentriolar vesicle transport between the Golgi and the primary cilium. Hum. Mol. Genet. 19, 1358–1367.10.1093/hmg/ddq012Search in Google Scholar PubMed

Fansa, E.K., Kosling, S.K., Zent, E., Wittinghofer, A., and Ismail, S. (2016). PDE6d-mediated sorting of INPP5E into the cilium is determined by cargo-carrier affinity. Nat. Commun. 7, 11366.10.1038/ncomms11366Search in Google Scholar PubMed PubMed Central

Finetti, F., Paccani, S.R., Riparbelli, M.G., Giacomello, E., Perinetti, G., Pazour, G.J., Rosenbaum, J.L., and Baldari, C.T. (2009). Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat. Cell Biol. 11, 1332–1339.10.1038/ncb1977Search in Google Scholar PubMed PubMed Central

Fletcher, E.L., Jobling, A.I., Vessey, K.A., Luu, C., Guymer, R.H., and Baird, P.N. (2011). Animal models of retinal disease. Prog. Mol. Biol. Transl. Sci. 100, 211–286.10.1016/B978-0-12-384878-9.00006-6Search in Google Scholar PubMed

Follit, J.A., Tuft, R.A., Fogarty, K.E., and Pazour, G.J. (2006). The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol. Biol. Cell. 17, 3781–3792.10.1091/mbc.e06-02-0133Search in Google Scholar PubMed PubMed Central

Follit, J.A., San Agustin, J.T., Xu, F., Jonassen, J.A., Samtani, R., Lo, C.W., and Pazour, G.J. (2008). The Golgin GMAP210/TRIP11 anchors IFT20 to the Golgi complex. PLoS Genet. 4, e1000315.10.1371/journal.pgen.1000315Search in Google Scholar PubMed PubMed Central

Follit, J.A., Xu, F., Keady, B.T., and Pazour, G.J. (2009). Characterization of mouse IFT complex B. Cell Motil. Cytoskeleton 66, 457–468.10.1002/cm.20346Search in Google Scholar PubMed PubMed Central

Garcia-Gonzalo, F.R. and Reiter, J.F. (2017). Open sesame: how transition fibers and the transition zone control ciliary composition. Cold Spring Harb. Perspect. Biol. 9, a028134.10.1101/cshperspect.a028134Search in Google Scholar PubMed PubMed Central

Garcia-Gonzalo, F.R. and Reiter, J.F. (2012). Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J. Cell Biol. 197, 697–709.10.1083/jcb.201111146Search in Google Scholar PubMed PubMed Central

Girisha, K.M., Shukla, A., Trujillano, D., Bhavani, G.S., Hebbar, M., Kadavigere, R., and Rolfs, A. (2016). A homozygous nonsense variant in IFT52 is associated with a human skeletal ciliopathy. Clin. Genet. 90, 536–539.10.1111/cge.12762Search in Google Scholar PubMed

Goetz, S.C. and Anderson, K.V. (2010). The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331–344.10.1038/nrg2774Search in Google Scholar PubMed PubMed Central

Goldberg, A.F., Moritz, O.L., and Williams, D.S. (2016). Molecular basis for photoreceptor outer segment architecture. Prog. Retin. Eye Res. 55, 52–81.10.1016/j.preteyeres.2016.05.003Search in Google Scholar PubMed PubMed Central

Gotthardt, K., Lokaj, M., Koerner, C., Falk, N., Giessl, A., and Wittinghofer, A. (2015). A G-protein activation cascade from Arl13B to Arl3 and implications for ciliary targeting of lipidated proteins. eLife 4, e11859.10.7554/eLife.11859.015Search in Google Scholar

Grayson, C., Bartolini, F., Chapple, J.P., Willison, K.R., Bhamidipati, A., Lewis, S.A., Luthert, P.J., Hardcastle, A.J., Cowan, N.J., and Cheetham, M.E. (2002). Localization in the human retina of the X-linked retinitis pigmentosa protein RP2, its homologue cofactor C and the RP2 interacting protein Arl3. Hum. Mol. Genet. 11, 3065–3074.10.1093/hmg/11.24.3065Search in Google Scholar PubMed

Halbritter, J., Bizet, A.A., Schmidts, M., Porath, J.D., Braun, D.A., Gee, H.Y., McInerney-Leo, A.M., Krug, P., Filhol, E., Davis, E.E., et al. (2013). Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am. J. Hum. Genet. 93, 915–925.10.1016/j.ajhg.2013.09.012Search in Google Scholar PubMed PubMed Central

Hao, L., Efimenko, E., Swoboda, P., and Scholey, J.M. (2011). The retrograde IFT machinery of C. elegans cilia: two IFT dynein complexes? PLoS One 6, e20995.10.1371/journal.pone.0020995Search in Google Scholar PubMed PubMed Central

Hogan, M.C., Manganelli, L., Woollard, J.R., Masyuk, A.I., Masyuk, T.V., Tammachote, R., Huang, B.Q., Leontovich, A.A., Beito, T.G., Madden, B.J., et al. (2009). Characterization of PKD protein-positive exosome-like vesicles. J. Am. Soc. Nephrol. 20, 278–288.10.1681/ASN.2008060564Search in Google Scholar PubMed PubMed Central

Hu, Q., Milenkovic, L., Jin, H., Scott, M.P., Nachury, M.V., Spiliotis, E.T., and Nelson, W.J. (2010). A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329, 436–439.10.1126/science.1191054Search in Google Scholar PubMed PubMed Central

Huangfu, D. and Anderson, K.V. (2005). Cilia and Hedgehog responsiveness in the mouse. Proc. Natl. Acad. Sci. USA 102, 11325–11330.10.1073/pnas.0505328102Search in Google Scholar PubMed PubMed Central

Huangfu, D., Liu, A., Rakeman, A.S., Murcia, N.S., Niswander, L., and Anderson, K.V. (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87.10.1038/nature02061Search in Google Scholar PubMed

Humbert, M.C., Weihbrecht, K., Searby, C.C., Li, Y., Pope, R.M., Sheffield, V.C., and Seo, S. (2012). ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc. Natl. Acad. Sci. USA 109, 19691–19696.10.1073/pnas.1210916109Search in Google Scholar PubMed PubMed Central

Hunnicutt, G.R., Kosfiszer, M.G., and Snell, W.J. (1990). Cell body and flagellar agglutinins in Chlamydomonas reinhardtii: the cell body plasma membrane is a reservoir for agglutinins whose migration to the flagella is regulated by a functional barrier. J. Cell Biol. 111, 1605–1616.10.1083/jcb.111.4.1605Search in Google Scholar PubMed PubMed Central

Ismail, S. (2016). A GDI/GDF-like system for sorting and shuttling ciliary proteins. Small GTPases, 1–4.10.1080/21541248.2016.1213782Search in Google Scholar PubMed PubMed Central

Ismail, S.A., Chen, Y.X., Rusinova, A., Chandra, A., Bierbaum, M., Gremer, L., Triola, G., Waldmann, H., Bastiaens, P.I., and Wittinghofer, A. (2011). Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo. Nat. Chem. Biol. 7, 942–949.10.1038/nchembio.686Search in Google Scholar PubMed

Ismail, S.A., Chen, Y.X., Miertzschke, M., Vetter, I.R., Koerner, C., and Wittinghofer, A. (2012). Structural basis for Arl3-specific release of myristoylated ciliary cargo from UNC119. EMBO J. 31, 4085–4094.10.1038/emboj.2012.257Search in Google Scholar PubMed PubMed Central

Jaiswal, M., Fansa, E.K., Kosling, S.K., Mejuch, T., Waldmann, H., and Wittinghofer, A. (2016). Novel Biochemical and structural insights into the interaction of myristoylated cargo with Unc119 protein and their release by Arl2/3. J. Biol. Chem. 291, 20766–20778.10.1074/jbc.M116.741827Search in Google Scholar PubMed PubMed Central

Jin, H., White, S.R., Shida, T., Schulz, S., Aguiar, M., Gygi, S.P., Bazan, J.F., and Nachury, M.V. (2010). The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141, 1208–1219.10.1016/j.cell.2010.05.015Search in Google Scholar PubMed PubMed Central

Kee, H.L., Dishinger, J.F., Blasius, T.L., Liu, C.J., Margolis, B., and Verhey, K.J. (2012). A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat. Cell Biol. 14, 431–437.10.1038/ncb2450Search in Google Scholar PubMed PubMed Central

Kevany, B.M. and Palczewski, K. (2010). Phagocytosis of retinal rod and cone photoreceptors. Physiology (Bethesda) 25, 8–15.10.1152/physiol.00038.2009Search in Google Scholar PubMed PubMed Central

Kim, J.C., Badano, J.L., Sibold, S., Esmail, M.A., Hill, J., Hoskins, B.E., Leitch, C.C., Venner, K., Ansley, S.J., Ross, A.J., et al. (2004). The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat. Genet. 36, 462–470.10.1038/ng1352Search in Google Scholar PubMed

Kozminski, K.G., Beech, P.L., and Rosenbaum, J.L. (1995). The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J. Cell Biol. 131, 1517–1527.10.1083/jcb.131.6.1517Search in Google Scholar PubMed PubMed Central

Lechtreck, K.F., Johnson, E.C., Sakai, T., Cochran, D., Ballif, B.A., Rush, J., Pazour, G.J., Ikebe, M., and Witman, G.B. (2009). The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J. Cell Biol. 187, 1117–1132.10.1083/jcb.200909183Search in Google Scholar PubMed PubMed Central

Li, T., Snyder, W.K., Olsson, J.E., and Dryja, T.P. (1996). Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments. Proc. Natl. Acad. Sci. USA 93, 14176–14181.10.1073/pnas.93.24.14176Search in Google Scholar PubMed PubMed Central

Lin, Y.C., Niewiadomski, P., Lin, B., Nakamura, H., Phua, S.C., Jiao, J., Levchenko, A., Inoue, T., Rohatgi, R., and Inoue, T. (2013). Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nat. Chem. Biol. 9, 437–443.10.1038/nchembio.1252Search in Google Scholar PubMed PubMed Central

Liu, A., Wang, B., and Niswander, L.A. (2005). Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132, 3103–3111.10.1242/dev.01894Search in Google Scholar PubMed

Loktev, A.V., Zhang, Q., Beck, J.S., Searby, C.C., Scheetz, T.E., Bazan, J.F., Slusarski, D.C., Sheffield, V.C., Jackson, P.K., and Nachury, M.V. (2008). A BBSome subunit links ciliogenesis, microtubule stability, and acetylation. Dev. Cell 15, 854–865.10.1016/j.devcel.2008.11.001Search in Google Scholar PubMed

Malicki, J. and Avidor-Reiss, T. (2014). From the cytoplasm into the cilium: bon voyage. Organogenesis 10, 138–157.10.4161/org.29055Search in Google Scholar PubMed PubMed Central

Marion, V., Stutzmann, F., Gerard, M., De Melo, C., Schaefer, E., Claussmann, A., Helle, S., Delague, V., Souied, E., Barrey, C., et al. (2012). Exome sequencing identifies mutations in LZTFL1, a BBSome and smoothened trafficking regulator, in a family with Bardet-Biedl syndrome with situs inversus and insertional polydactyly. J. Med. Genet. 49, 317–321.10.1136/jmedgenet-2012-100737Search in Google Scholar PubMed

May-Simera, H., Nagel-Wolfrum, K., and Wolfrum, U. (2017). Cilia – The sensory antennae in the eye. Prog. Retin. Eye Res. 60, 144–180.10.1016/j.preteyeres.2017.05.001Search in Google Scholar PubMed

Mizuno, N., Taschner, M., Engel, B.D., and Lorentzen, E. (2012). Structural studies of ciliary components. J. Mol. Biol. 422, 163–180.10.1016/j.jmb.2012.05.040Search in Google Scholar PubMed PubMed Central

Mourao, A., Nager, A.R., Nachury, M.V., and Lorentzen, E. (2014). Structural basis for membrane targeting of the BBSome by ARL6. Nat. Struct. Mol. Biol. 21, 1035–1041.10.1038/nsmb.2920Search in Google Scholar PubMed PubMed Central

Mykytyn, K., Nishimura, D.Y., Searby, C.C., Shastri, M., Yen, H.J., Beck, J.S., Braun, T., Streb, L.M., Cornier, A.S., Cox, G.F., et al. (2002). Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome. Nat. Genet. 31, 435–438.10.1038/ng935Search in Google Scholar PubMed

Mykytyn, K., Mullins, R.F., Andrews, M., Chiang, A.P., Swiderski, R.E., Yang, B., Braun, T., Casavant, T., Stone, E.M., and Sheffield, V.C. (2004). Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc. Natl. Acad. Sci. USA 101, 8664–8669.10.1073/pnas.0402354101Search in Google Scholar PubMed PubMed Central

Nachury, M.V., Loktev, A.V., Zhang, Q., Westlake, C.J., Peranen, J., Merdes, A., Slusarski, D.C., Scheller, R.H., Bazan, J.F., Sheffield, V.C., et al. (2007). A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213.10.1016/j.cell.2007.03.053Search in Google Scholar PubMed

Nachury, M.V., Seeley, E.S., and Jin, H. (2010). Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu. Rev. Cell Dev. Biol. 26, 59–87.10.1146/annurev.cellbio.042308.113337Search in Google Scholar PubMed PubMed Central

Nager, A.R., Goldstein, J.S., Herranz-Perez, V., Portran, D., Ye, F., Garcia-Verdugo, J.M., and Nachury, M.V. (2017). An actin network dispatches ciliary GPCRs into extracellular vesicles to modulate signaling. Cell 168, 252–263 e214.10.1016/j.cell.2016.11.036Search in Google Scholar

Najafi, M., Maza, N.A., and Calvert, P.D. (2012). Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia. Proc. Natl. Acad. Sci. USA 109, 203–208.10.1073/pnas.1115109109Search in Google Scholar

Pazour, G.J. and Witman, G.B. (2003). The vertebrate primary cilium is a sensory organelle. Curr. Opin. Cell Biol. 15, 105–110.10.1016/S0955-0674(02)00012-1Search in Google Scholar

Phua, S.C., Chiba, S., Suzuki, M., Su, E., Roberson, E.C., Pusapati, G.V., Setou, M., Rohatgi, R., Reiter, J.F., Ikegami, K., et al. (2017). Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell 168, 264–279 e215.10.1016/j.cell.2016.12.032Search in Google Scholar PubMed PubMed Central

Rakoczy, E.P., Kiel, C., McKeone, R., Stricher, F., and Serrano, L. (2011). Analysis of disease-linked rhodopsin mutations based on structure, function, and protein stability calculations. J. Mol. Biol. 405, 584–606.10.1016/j.jmb.2010.11.003Search in Google Scholar PubMed

Rao, K.N., Zhang, W., Li, L., Anand, M., and Khanna, H. (2016). Prenylated retinal ciliopathy protein RPGR interacts with PDE6d and regulates ciliary localization of Joubert syndrome-associated protein INPP5E. Hum. Mol. Genet. 25, 4533–4545.Search in Google Scholar

Rosenbaum, J.L. and Child, F.M. (1967). Flagellar regeneration in protozoan flagellates. J. Cell Biol. 34, 345–364.10.1083/jcb.34.1.345Search in Google Scholar PubMed PubMed Central

Sang, L., Miller, J.J., Corbit, K.C., Giles, R.H., Brauer, M.J., Otto, E.A., Baye, L.M., Wen, X., Scales, S.J., Kwong, M., et al. (2011). Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145, 513–528.10.1016/j.cell.2011.04.019Search in Google Scholar PubMed PubMed Central

Schafer, J.C., Haycraft, C.J., Thomas, J.H., Yoder, B.K., and Swoboda, P. (2003). XBX-1 encodes a dynein light intermediate chain required for retrograde intraflagellar transport and cilia assembly in Caenorhabditis elegans. Mol. Biol. Cell 14, 2057–2070.10.1091/mbc.e02-10-0677Search in Google Scholar PubMed PubMed Central

Schroder, J.M., Schneider, L., Christensen, S.T., and Pedersen, L.B. (2007). EB1 is required for primary cilia assembly in fibroblasts. Curr. Biol. 17, 1134–1139.10.1016/j.cub.2007.05.055Search in Google Scholar PubMed

Sorokin, S. (1962). Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15, 363–377.10.1083/jcb.15.2.363Search in Google Scholar PubMed PubMed Central

Stephen, L.A. and Ismail, S. (2016). Shuttling and sorting lipid-modified cargo into the cilia. Biochem. Soc. Trans. 44, 1273–1280.10.1042/BST20160122Search in Google Scholar PubMed

Stephen, L.A., Tawamie, H., Davis, G.M., Tebbe, L., Nurnberg, P., Nurnberg, G., Thiele, H., Thoenes, M., Boltshauser, E., Uebe, S., et al. (2015). TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23). eLife 4, e08077.10.7554/eLife.08077.010Search in Google Scholar

Sung, C.H., Makino, C., Baylor, D., and Nathans, J. (1994). A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. J. Neurosci. 14, 5818–5833.10.1523/JNEUROSCI.14-10-05818.1994Search in Google Scholar

Veltel, S., Gasper, R., Eisenacher, E., and Wittinghofer, A. (2008). The retinitis pigmentosa 2 gene product is a GTPase-activating protein for Arf-like 3. Nat. Struct. Mol. Biol. 15, 373–380.10.1038/nsmb.1396Search in Google Scholar PubMed

Wang, J. and Barr, M.M. (2016). Ciliary extracellular vesicles: Txt Msg organelles. Cell Mol. Neurobiol. 36, 449–457.10.1007/s10571-016-0345-4Search in Google Scholar PubMed PubMed Central

Wang, Y., Zhou, Z., Walsh, C.T., and McMahon, A.P. (2009). Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proc. Natl. Acad. Sci. USA 106, 2623–2628.10.1073/pnas.0812110106Search in Google Scholar PubMed PubMed Central

Wang, J., Silva, M., Haas, L.A., Morsci, N.S., Nguyen, K.C., Hall, D.H., and Barr, M.M. (2014). C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Curr. Biol. 24, 519–525.10.1016/j.cub.2014.01.002Search in Google Scholar PubMed PubMed Central

Wei, Q., Zhang, Y., Li, Y., Zhang, Q., Ling, K., and Hu, J. (2012). The BBSome controls IFT assembly and turnaround in cilia. Nat. Cell Biol. 14, 950–957.10.1038/ncb2560Search in Google Scholar PubMed PubMed Central

Williams, C.L., Li, C., Kida, K., Inglis, P.N., Mohan, S., Semenec, L., Bialas, N.J., Stupay, R.M., Chen, N., Blacque, O.E., et al. (2011). MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol. 192, 1023–1041.10.1083/jcb.201012116Search in Google Scholar PubMed PubMed Central

Wood, C.R., Huang, K., Diener, D.R., and Rosenbaum, J.L. (2013). The cilium secretes bioactive ectosomes. Curr. Biol. 23, 906–911.10.1016/j.cub.2013.04.019Search in Google Scholar PubMed PubMed Central

Wood, C.R. and Rosenbaum, J.L. (2015). Ciliary ectosomes: transmissions from the cell’s antenna. Trends Cell Biol. 25, 276–285.10.1016/j.tcb.2014.12.008Search in Google Scholar

Wright, K.J., Baye, L.M., Olivier-Mason, A., Mukhopadhyay, S., Sang, L., Kwong, M., Wang, W., Pretorius, P.R., Sheffield, V.C., Sengupta, P., et al. (2011). An ARL3-UNC119-RP2 GTPase cycle targets myristoylated NPHP3 to the primary cilium. Genes Dev. 25, 2347–2360.10.1101/gad.173443.111Search in Google Scholar

Yee, L.E. and Reiter, J.F. (2015). Ciliary vesicle formation: a prelude to ciliogenesis. Dev. Cell 32, 665–666.10.1016/j.devcel.2015.03.012Search in Google Scholar

Young, R.W. (1971). Shedding of discs from rod outer segments in the rhesus monkey. J. Ultrastruct. Res. 34, 190–203.10.1016/S0022-5320(71)90014-1Search in Google Scholar

Zhang, H., Constantine, R., Vorobiev, S., Chen, Y., Seetharaman, J., Huang, Y.J., Xiao, R., Montelione, G.T., Gerstner, C.D., Davis, M.W., et al. (2011). UNC119 is required for G protein trafficking in sensory neurons. Nat. Neurosci. 14, 874–880.10.1038/nn.2835Search in Google Scholar PubMed PubMed Central

Zhang, Q., Yu, D., Seo, S., Stone, E.M., and Sheffield, V.C. (2012a). Intrinsic protein-protein interaction-mediated and chaperonin-assisted sequential assembly of stable Bardet-Biedl syndrome protein complex, the BBSome. J. Biol. Chem. 287, 20625–20635.10.1074/jbc.M112.341487Search in Google Scholar PubMed PubMed Central

Zhang, H., Constantine, R., Frederick, J.M., and Baehr, W. (2012b). The prenyl-binding protein PrBP/delta: a chaperone participating in intracellular trafficking. Vision Res. 75, 19–25.10.1016/j.visres.2012.08.013Search in Google Scholar PubMed PubMed Central

Received: 2017-5-23
Accepted: 2017-8-18
Published Online: 2017-8-29
Published in Print: 2017-12-20

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.8.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2017-0168/html
Scroll to top button