Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of Geodesy
  3. Article

Algorithms for geodesics

  • Original Article
  • Open access
  • Published: 26 June 2012
  • Volume 87, pages 43–55, (2013)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of Geodesy Aims and scope Submit manuscript
Algorithms for geodesics
Download PDF
  • Charles F. F. Karney1 
  • 40k Accesses

  • 331 Citations

  • 48 Altmetric

  • 4 Mentions

  • Explore all metrics

Abstract

Algorithms for the computation of geodesics on an ellipsoid of revolution are given. These provide accurate, robust, and fast solutions to the direct and inverse geodesic problems and they allow differential and integral properties of geodesics to be computed.

Article PDF

Download to read the full article text

Similar content being viewed by others

Geodesics on an arbitrary ellipsoid of revolution

Article Open access 30 December 2023

Intersection and point-to-line solutions for geodesics on the ellipsoid

Article 28 November 2017

Theory, strict formula derivation and algorithm development for the computation of a geodesic polygon area

Article Open access 24 March 2022

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Algorithms
  • Computational Geometry
  • Differential Geometry
  • Geodesy
  • Geometry
  • Linear Algebra
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Beltrami E (1865) Risoluzione del problema: Riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette. Annali Mat Pura Appl 7:185–204. http://books.google.com/books?id=dfgEAAAAYAAJ&pg=PA185

  • Bessel FW (1825) Über die Berechnung der geographischen Längen und Breiten aus geodätischen Vermessungen. Astron Nachr 4(86):241–254. http://adsabs.harvard.edu/abs/1825AN......4..241B [translated into English by Karney CFF and Deakin RE as The calculation of longitude and latitude from geodesic measurements. Astron Nachr 331(8):852–861 (2010)]

    Google Scholar 

  • Bowring BR (1997) The central projection of the spheroid and surface lines. Surv Rev 34(265): 163–173

    Article  Google Scholar 

  • Bugayevskiy LM, Snyder JP (1995) Map projections: a reference manual. Taylor & Francis, London

    Google Scholar 

  • Christoffel EB (1868) Allgemeine Theorie der geodätischen Dreiecke. Math Abhand König Akad der Wiss zu Berlin 8:119–176. http://books.google.com/books?id=EEtFAAAAcAAJ&pg=PA119

  • Clairaut AC (1735) Détermination géometrique de la perpendiculaire à la méridienne tracée par M Cassini. Mém de l’Acad Roy des Sciences de Paris 1733:406–416. http://books.google.com/books?id=GOAEAAAAQAAJ&pg=PA406

  • Clenshaw CW (1955) A note on the summation of Chebyshev series. Math Tables Other Aids Comput 9(51): 118–120

    Google Scholar 

  • Danielsen JS (1989) The area under the geodesic. Surv Rev 30(232): 61–66

    Article  Google Scholar 

  • Gauss CF (1828) Disquisitiones Generales circa Superficies Curvas. Dieterich, Göttingen. http://books.google.com/books?id=bX0AAAAAMAAJ [translated into English by Morehead JC and Hiltebeitel AM as General investigations of curved surfaces of 1827 and 1825. Princeton Univ Lib (1902) http://books.google.com/books?id=a1wTJR3kHwUC]

  • Helmert FR (1880) Die Mathematischen und Physikalischen Theorieen der Höheren Geodäsie, vol 1. Teubner, Leipzig. http://books.google.com/books?id=qt2CAAAAIAAJ [translated into English by Aeronautical chart and information center (St Louis, 1964) as Mathematical and physical theories of higher geodesy, part 1. http://geographiclib.sf.net/geodesic-papers/helmert80-en.html]

  • Jacobi CGJ (1891) Über die Curve, welche alle von einem Punkte ausgehenden geodätischen Linien eines Rotationsellipsoides berührt. In: Weierstrass KTW (ed) Gesammelte Werke, vol 7. Reimer, Berlin, pp 72–87. http://books.google.com/books?id=_09tAAAAMAAJ&pg=PA72 [op post, completed by Wangerin FHA]

  • Karney CFF (2011) Geodesics on an ellipsoid of revolution. Tech rep, SRI International. http://arxiv.org/abs/1102.1215v1

  • Karney CFF (2012) GeographicLib, version 1.22. http://geographiclib.sf.net

  • Legendre AM (1806) Analyse des triangles tracés sur la surface d’un sphéroïde. Mém de l’Inst Nat de France, 1st sem, pp 130–161. http://books.google.com/books?id=-d0EAAAAQAAJ&pg=PA130-IA4

  • Letoval’tsev IG (1963) Generalization of the gnomonic projection for a spheroid and the principal geodetic problems involved in the alignment of surface routes. Geod Aerophotogr 5:271–274 [translation of Geodeziya i Aerofotos’emka 5:61–68 (1963)]

  • Maxima (2009) A computer algebra system, version 5.20.1. http://maxima.sf.net

  • Olver FWJ, Lozier DW, Boisvert RF, Clark CW (eds) (2010) NIST handbook of mathematical functions. Cambridge University Press, London. http://dlmf.nist.gov

  • Oriani B (1806) Elementi di trigonometria sferoidica, Pt 1. Mem dell’Ist Naz Ital 1(1):118–198. http://books.google.com/books?id=SydFAAAAcAAJ&pg=PA118

  • Oriani B (1808) Elementi di trigonometria sferoidica, Pt 2. Mem dell’Ist Naz Ital 2(1):1–58. http://www.archive.org/stream/memoriedellistit21isti#page/1

  • Oriani B (1810) Elementi di trigonometria sferoidica, Pt 3. Mem dell’Ist Naz Ital 2(2):1–58. http://www.archive.org/stream/memoriedellistit22isti#page/1

  • Rapp RH (1993) Geometric geodesy, part II. Tech rep, Ohio State University. http://hdl.handle.net/1811/24409

  • Snyder JP (1987) Map projection—a working manual. Professional Paper 1395, US Geological Survey. http://pubs.er.usgs.gov/publication/pp1395

  • Vermeille H (2002) Direct transformation from geocentric coordinates to geodetic coordinates. J Geod 76(9): 451–454

    Article  Google Scholar 

  • Vincenty T (1975a) Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv Rev 23(176):88–93 [addendum: Surv Rev 23(180):294 (1976)]

    Google Scholar 

  • Vincenty T (1975b) Geodetic inverse solution between antipodal points. http://geographiclib.sf.net/geodesic-papers/vincenty75b.pdf (unpublished report dated Aug 28)

  • Wessel P, Smith WHF (2010) Generic mapping tools, 4.5.5. http://gmt.soest.hawaii.edu/

  • Williams R (1997) Gnomonic projection of the surface of an ellipsoid. J Navig 50(2): 314–320

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Rod Deakin, John Nolton, Peter Osborne, and the referees of this paper for their helpful comments.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Authors and Affiliations

  1. SRI International, 201 Washington Rd, Princeton, NJ, 08543-5300, USA

    Charles F. F. Karney

Authors
  1. Charles F. F. Karney
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Charles F. F. Karney.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Karney, C.F.F. Algorithms for geodesics. J Geod 87, 43–55 (2013). https://doi.org/10.1007/s00190-012-0578-z

Download citation

  • Received: 21 September 2011

  • Accepted: 30 May 2012

  • Published: 26 June 2012

  • Issue Date: January 2013

  • DOI: https://doi.org/10.1007/s00190-012-0578-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Geometrical geodesy
  • Geodesics
  • Polygonal areas
  • Gnomonic projection
  • Numerical methods

Profiles

  1. Charles F. F. Karney View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature