
Virtualization

Table of contents

Single Root IO Virtualization (SR-IOV) 3

SR-IOV Live Migration 28

Enabling Paravirtualization 41

VXLAN Hardware Stateless Offloads 43

Q-in-Q Encapsulation per VF in Linux (VST) 45

802.1Q Double-Tagging 49

Scalable Functions 51

Virtualization 1

Table of contents

Single Root IO Virtualization (SR-IOV)

SR-IOV Live Migration

Enabling Paravirtualization

VXLAN Hardware Stateless Offloads

Q-in-Q Encapsulation per VF in Linux (VST)

802.1Q Double-Tagging

Scalable Functions

Virtualization 2

The chapter contains the following sections:

Single Root IO Virtualization (SR-IOV)

Enabling Paravirtualization

VXLAN Hardware Stateless Offloads

Q-in-Q Encapsulation per VF in Linux (VST)

802.1Q Double-Tagging

Scalable Functions

Virtualization 3

Single Root IO Virtualization
(SR-IOV)
Single Root IO Virtualization (SR-IOV) is a technology that allows a physical PCIe device to
present itself multiple times through the PCIe bus. This technology enables multiple
virtual instances of the device with separate resources. NVIDIA adapters are capable of
exposing up to 127 virtual instances (Virtual Functions (VFs) for each port in the NVIDIA
ConnectX® family cards. These virtual functions can then be provisioned separately. Each
VF can be seen as an additional device connected to the Physical Function. It shares the
same resources with the Physical Function, and its number of ports equals those of the
Physical Function.

SR-IOV is commonly used in conjunction with an SR-IOV enabled hypervisor to provide
virtual machines direct hardware access to network resources hence increasing its
performance.

In this chapter we will demonstrate setup and configuration of SR-IOV in a Red Hat Linux
environment using ConnectX® VPI adapter cards.

System Requirements

To set up an SR-IOV environment, the following is required:

MLNX_OFED Driver

A server/blade with an SR-IOV-capable motherboard BIOS

Hypervisor that supports SR-IOV such as: Red Hat Enterprise Linux Server Version 6

NVIDIA ConnectX® VPI Adapter Card family with SR-IOV capability

Setting Up SR-IOV

Depending on your system, perform the steps below to set up your BIOS. The figures
used in this section are for illustration purposes only. For further information, please refer
to the appropriate BIOS User Manual:

Virtualization 4

1. Enable "SR-IOV" in the system BIOS.

2. Enable "Intel Virtualization Technology".

3. Install a hypervisor that supports SR-IOV.

4. Depending on your system, update the /boot/grub/grub.conf file to include a similar
command line load parameter for the Linux kernel.

For example, to Intel systems, add:

default=0

Virtualization 5

Note: Please make sure the parameter " intel_iommu=on " exists when updating
the /boot/grub/grub.conf file, otherwise SR-IOV cannot be loaded.

Some OSs use /boot/grub2/grub.cfg file. If your server uses such file, please edit this
file instead (add “ intel_iommu=on ” for the relevant menu entry at the end of the
line that starts with "linux16").

Configuring SR-IOV (Ethernet)

To set SR-IOV in Ethernet mode, refer to HowTo Configure SR-IOV for ConnectX-
4/ConnectX- 5/ConnectX-6 with KVM (Ethernet) Community Post.

Configuring SR-IOV (InfiniBand)

1. Install the MLNX_OFED driver for Linux that supports SR-IOV.

2. Check if SR-IOV is enabled in the firmware.

timeout=5

splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux Server (4.x.x)
 root (hd0,0)
 kernel /vmlinuz-4.x.x ro
root=/dev/VolGroup00/LogVol00 rhgb quiet
 intel_iommu=on initrd /initrd-4.x.x.img

mlxconfig -d /dev/mst/mt4115_pciconf0 q

 Device #1:

 Device type: Connect4
 PCI device: /dev/mst/mt4115_pciconf0
 Configurations: Current
 SRIOV_EN 1

https://enterprise-support.nvidia.com/s/article/HowTo-Configure-SR-IOV-for-ConnectX-4-ConnectX-5-ConnectX-6-with-KVM-Ethernet
https://enterprise-support.nvidia.com/s/article/HowTo-Configure-SR-IOV-for-ConnectX-4-ConnectX-5-ConnectX-6-with-KVM-Ethernet

Virtualization 6

3. Reboot the server.

4. Write to the sysfs file the number of Virtual Functions you need to create for the PF.
You can use one of the following equivalent files:

You can use one of the following equivalent files:

- A standard Linux kernel generated file that is available in the new kernels.

Note: This file will be generated only if IOMMU is set in the grub.conf file (by adding
intel_iommu=on, as seen in the fourth step under “Setting Up SR-IOV”).

- A file generated by the mlx5_core driver with the same functionality as the kernel
generated one.

Note: This file is used by old kernels that do not support the standard file. In such
kernels, using sriov_numvfs results in the following error: “bash: echo: write error:

 NUM_OF_VFS 8

Note

If needed, use mlxconfig to set the relevant fields:

mlxconfig -d /dev/mst/mt4115_pciconf0 set
SRIOV_EN=1 NUM_OF_VFS=16

echo [num_vfs] >
/sys/class/infiniband/mlx5_0/device/sriov_numvfs

echo [num_vfs] >
/sys/class/infiniband/mlx5_0/device/mlx5_num_vfs

https://docs.nvidia.compages/createpage.action?spaceKey=MLNXOFEDv24070610&title=.Single+Root+IO+Virtualization+%28SR-IOV%29+v5.1-2.3.7.1

Virtualization 7

Function not implemented”.

The following rules apply when writing to these files:

- If there are no VFs assigned, the number of VFs can be changed to any valid value
(0 - max #VFs as set during FW burning)

- If there are VFs assigned to a VM, it is not possible to change the number of VFs

- If the administrator unloads the driver on the PF while there are no VFs assigned,
the driver will unload and SRI-OV will be disabled

- If there are VFs assigned while the driver of the PF is unloaded, SR-IOV will not be
disabled. This means that VFs will be visible on the VM. However, they will not be
operational. This is applicable to OSs with kernels that use pci_stub and not vfio.

- The VF driver will discover this situation and will close its resources

- When the driver on the PF is reloaded, the VF becomes operational. The
administrator of the VF will need to restart the driver in order to resume working
with the VF.

5. Load the driver. To verify that the VFs were created. Run:

6. Configure the VFs.

lspci | grep Mellanox
08:00.0 Infiniband controller: Mellanox Technologies MT27700
Family [ConnectX-4]
08:00.1 Infiniband controller: Mellanox Technologies MT27700
Family [ConnectX-4]
08:00.2 Infiniband controller: Mellanox Technologies MT27700
Family [ConnectX-4 Virtual Function]
08:00.3 Infiniband controller: Mellanox Technologies MT27700
Family [ConnectX-4 Virtual Function]
08:00.4 Infiniband controller: Mellanox Technologies MT27700
Family [ConnectX-4 Virtual Function]
08:00.5 Infiniband controller: Mellanox Technologies MT27700
Family [ConnectX-4 Virtual Function]

Virtualization 8

After VFs are created, 3 sysfs entries per VF are available under
/sys/class/infiniband/mlx5_<PF INDEX>/device/sriov (shown below for VFs 0 to 2):

For each Virtual Function, the following files are available:

- Node - Node’s GUID:

The user can set the node GUID by writing to the
/sys/class/infiniband/<PF>/device/sriov/<index>/node file. The example below, shows
how to set the node GUID for VF 0 of mlx5_0.

- Port - Port’s GUID:

The user can set the port GUID by writing to the
/sys/class/infiniband/<PF>/device/sriov/<index>/port file. The example below, shows
how to set the port GUID for VF 0 of mlx5_0.

+-- 0

| +-- node
| +-- policy
| +-- port
+-- 1

| +-- node
| +-- policy
| +-- port
+-- 2

 +-- node
 +-- policy
 +-- port

echo 00:11:22:33:44:55:1:0 >
/sys/class/infiniband/mlx5_0/device/sriov/0/node

Virtualization 9

- Policy - The vport's policy. The user can set the port GUID by writing to the
/sys/class/infiniband/<PF>/device/sriov/<index>/port file. The policy can be one of:

- Down - the VPort PortState remains 'Down'

- Up - if the current VPort PortState is 'Down', it is modified to 'Initialize'. In all other
states, it is unmodified. The result is that the SM may bring the VPort up.

- Follow - follows the PortState of the physical port. If the PortState of the physical
port is 'Active', then the VPort implements the 'Up' policy. Otherwise, the VPort
PortState is 'Down'.

Notes:

- The policy of all the vports is initialized to “Down” after the PF driver is restarted
except for VPort0 for which the policy is modified to 'Follow' by the PF driver.

- To see the VFs configuration, you must unbind and bind them or reboot the VMs if
the VFs were assigned.

7. Make sure that OpenSM supports Virtualization (Virtualization must be enabled).

The /etc/opensm/opensm.conf file should contain the following line:

Note: OpenSM and any other utility that uses SMP MADs (ibnetdiscover, sminfo,
iblink- info, smpdump, ibqueryerr, ibdiagnet and smpquery) should run on the PF and
not on the VFs. In case of multi PFs (multi-host), OpenSM should run on Host0.

VFs Initialization Note

Since the same mlx5_core driver supports both Physical and Virtual Functions, once the
Virtual Functions are created, the driver of the PF will attempt to initialize them so they
will be available to the OS owning the PF. If you want to assign a Virtual Function to a VM,

echo 00:11:22:33:44:55:2:0 >
/sys/class/infiniband/mlx5_0/device/sriov/0/port

virt_enabled 2

Virtualization 10

you need to make sure the VF is not used by the PF driver. If a VF is used, you should first
unbind it before assigning to a VM.

To unbind a device use the following command:

1. Get the full PCI address of the device.

Example:

2. Unbind the device.

3. Bind the unbound VF.

PCI BDF Mapping of PFs and VFs

PCI addresses are sequential for both of the PF and their VFs. Assuming the card's PCI
slot is 05:00 and it has 2 ports, the PFs PCI address will be 05:00.0 and 05:00.1.

Given 3 VFs per PF, the VFs PCI addresses will be:

lspci -D

0000:09:00.2

echo 0000:09:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind

echo 0000:09:00.2 > /sys/bus/pci/drivers/mlx5_core/bind

05:00.2-4 for VFs 0-2 of PF 0 (mlx5_0)

Virtualization 11

Additional SR-IOV Configurations

Assigning a Virtual Function to a Virtual Machine

This section describes a mechanism for adding a SR-IOV VF to a Virtual Machine.

Assigning the SR-IOV Virtual Function to the Red Hat KVM
VM Server

1. Run the virt-manager.

2. Double click on the virtual machine and open its Properties.

3. Go to Details → Add hardware → PCI host device.

05:00.5-7 for VFs 0-2 of PF 1 (mlx5_1)

Virtualization 12

4. Choose a NVIDIA virtual function according to its PCI device (e.g., 00:03.1)

5. If the Virtual Machine is up reboot it, otherwise start it.

6. Log into the virtual machine and verify that it recognizes the NVIDIA card. Run:

Example:

lspci | grep Mellanox

lspci | grep Mellanox
01:00.0 Infiniband controller: Mellanox Technologies MT28800
Family [ConnectX-5 Ex]

Virtualization 13

7. Add the device to the /etc/sysconfig/network-scripts/ifcfg-ethX
configuration file. The MAC address for every virtual function is configured randomly,
therefore it is not necessary to add it.

Ethernet Virtual Function Configuration when Running SR-
IOV

SR-IOV Virtual function configuration can be done through Hypervisor iprout2/netlink tool,
if present. Otherwise, it can be done via sysfs.

ip link set { dev DEVICE | group DEVGROUP } [{ up | down }]
...
[vf NUM [mac LLADDR] [vlan VLANID [qos VLAN-QOS]]
...
[spoofchk { on | off}]]
...

sysfs configuration (ConnectX-4):

/sys/class/net/enp8s0f0/device/sriov/[VF]

+-- [VF]
| +-- config
| +-- link_state
| +-- mac
| +-- mac_list
| +-- max_tx_rate
| +-- min_tx_rate
| +-- spoofcheck
| +-- stats
| +-- trunk
| +-- trust
| +-- vlan

Virtualization 14

VLAN Guest Tagging (VGT) and VLAN Switch Tagging (VST)

When running ETH ports on VGT, the ports may be configured to simply pass through
packets as is from VFs (VLAN Guest Tagging), or the administrator may configure the
Hypervisor to silently force packets to be associated with a VLAN/Qos (VLAN Switch
Tagging).

In the latter case, untagged or priority-tagged outgoing packets from the guest will have
the VLAN tag inserted, and incoming packets will have the VLAN tag removed.

The default behavior is VGT.

To configure VF VST mode, run:

where:

NUM = 0..max-vf-num

vlan_id = 0..4095

qos = 0..7

For example:

ip link set dev eth2 vf 2 vlan 10 qos 3 - sets VST mode for VF #2 belonging to PF
eth2, with vlan_id = 10 and qos = 3

ip link set dev eth2 vf 2 vlan 0 - sets mode for VF 2 back to VGT

Additional Ethernet VF Configuration Options

Guest MAC configuration - by default, guest MAC addresses are configured to be all
zeroes. If the administrator wishes the guest to always start up with the same MAC,
he/she should configure guest MACs before the guest driver comes up. The guest
MAC may be configured by using:

ip link set dev <PF device> vf <NUM> vlan <vlan_id> [qos <qos>]

Virtualization 15

For legacy and ConnectX-4 guests, which do not generate random MACs, the
administrator should always configure their MAC addresses via IP link, as above.

Spoof checking - Spoof checking is currently available only on upstream kernels
newer than 3.1.

Guest Link State

Virtual Function Statistics

Virtual function statistics can be queried via sysfs:

ip link set dev <PF device> vf <NUM> mac <LLADDR>

ip link set dev <PF device> vf <NUM> spoofchk [on | off]

ip link set dev <PF device> vf <UM> state [enable| disable|
auto]

cat /sys/class/infiniband/mlx5_2/device/sriov/2/stats tx_packets :
5011

tx_bytes : 4450870

tx_dropped : 0

rx_packets : 5003

rx_bytes : 4450222

rx_broadcast : 0

rx_multicast : 0

tx_broadcast : 0

tx_multicast : 8

Virtualization 16

Mapping VFs to Ports

To view the VFs mapping to ports:

Use the ip link tool v2.6.34~3 and above.

Output:

When a MAC is ff:ff:ff:ff:ff:ff, the VF is not assigned to the port of the net device it is listed
under. In the example above, vf38 is not assigned to the same port as p1p1, in contrast to
vf0.

However, even VFs that are not assigned to the net device, could be used to set and
change its settings. For example, the following is a valid command to change the spoof
check:

rx_dropped : 0

ip link

61: p1p1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN
mode DEFAULT group default qlen 1000

 link/ether 00:02:c9:f1:72:e0 brd ff:ff:ff:ff:ff:ff
 vf 0 MAC 00:00:00:00:00:00, vlan 4095, spoof checking off, link-
state auto
 vf 37 MAC 00:00:00:00:00:00, vlan 4095, spoof checking off, link-
state auto
 vf 38 MAC ff:ff:ff:ff:ff:ff, vlan 65535, spoof checking off,
link-state disable
 vf 39 MAC ff:ff:ff:ff:ff:ff, vlan 65535, spoof checking off,
link-state disable

Virtualization 17

This command will affect only the vf38. The changes can be seen in ip link on the net
device that this device is assigned to.

RoCE Support

RoCE is supported on Virtual Functions and VLANs may be used with it. For RoCE, the
hypervisor GID table size is of 16 entries while the VFs share the remaining 112 entries.
When the number of VFs is larger than 56 entries, some of them will have GID table with
only a single entry which is inadequate if VF's Ethernet device is assigned with an IP
address.

Virtual Guest Tagging (VGT+)

VGT+ is an advanced mode of Virtual Guest Tagging (VGT), in which a VF is allowed to tag
its own packets as in VGT, but is still subject to an administrative VLAN trunk policy. The
policy determines which VLAN IDs are allowed to be transmitted or received. The policy
does not determine the user priority, which is left unchanged.

Packets can be sent in one of the following modes: when the VF is allowed to send/receive
untagged and priority tagged traffic and when it is not. No default VLAN is defined for
VGT+ port. The send packets are passed to the eSwitch only if they match the set, and
the received packets are forwarded to the VF only if they match the set.

Configuration

ip link set dev p1p1 vf 38 spoofchk on

Note

When working in SR-IOV, the default operating mode is VGT.

Virtualization 18

To enable VGT+ mode:

Set the corresponding port/VF (in the example below port eth5, VF0) range of allowed
VLANs.

Examples:

Adding VLAN ID range (4-15) to trunk:

Adding a single VLAN ID to trunk:

Note: When VLAN ID = 0, it indicates that untagged and priority-tagged traffics are
allowed

To disable VGT+ mode, make sure to remove all VLANs.

To remove selected VLANs.

Remove VLAN ID range (4-15) from trunk:

echo "<add> <start_vid> <end_vid>" > /sys/class/net/eth5/device/sriov/0/trunk

echo add 4 15 > /sys/class/net/eth5/device/sriov/0/trunk

echo add 17 17 > /sys/class/net/eth5/device/sriov/0/trunk

echo rem 0 4095 > /sys/class/net/eth5/device/sriov/0/trunk

echo rem 4 15 > /sys/class/net/eth5/device/sriov/0/trunk

Virtualization 19

Remove a single VLAN ID from trunk:

SR-IOV Advanced Security Features

SR-IOV MAC Anti-Spoofing

Normally, MAC addresses are unique identifiers assigned to network interfaces, and they
are fixed addresses that cannot be changed. MAC address spoofing is a technique for
altering the MAC address to serve different purposes. Some of the cases in which a MAC
address is altered can be legal, while others can be illegal and abuse security mechanisms
or disguises a possible attacker.

The SR-IOV MAC address anti-spoofing feature, also known as MAC Spoof Check provides
protection against malicious VM MAC address forging. If the network administrator
assigns a MAC address to a VF (through the hypervisor) and enables spoof check on it,
this will limit the end user to send traffic only from the assigned MAC address of that VF.

MAC Anti-Spoofing Configuration

In the configuration example below, the VM is located on VF-0 and has the following MAC
address: 11:22:33:44:55:66.

There are two ways to enable or disable MAC anti-spoofing:

1. Use the standard IP link commands - available from Kernel 3.10 and above.

1. To enable MAC anti-spoofing, run:

echo rem 17 17 > /sys/class/net/eth5/device/sriov/0/trunk

Note

MAC anti-spoofing is disabled by default.

Virtualization 20

2. To disable MAC anti-spoofing, run:

2. Specify echo "ON" or "OFF" to the file located under /sys/class/net/<ifname /
device/sriov/<VF index>/spoofcheck.

1. To enable MAC anti-spoofing, run:

2. To disable MAC anti-spoofing, run:

Limit and Bandwidth Share Per VF

ip link set ens785f1 vf 0 spoofchk on

ip link set ens785f1 vf 0 spoofchk off

echo "ON" > /sys/class/net/ens785f1/vf/0/spoofchk

echo "OFF" > /sys/class/net/ens785f1/vf/0/spoofchk

Note

This configuration is non-persistent and does not survive driver
restart.

Virtualization 21

This feature enables rate limiting traffic per VF in SR-IOV mode. For details on how to
configure rate limit per VF for ConnectX-4 and above adapter cards, please refer to HowTo
Configure Rate Limit per VF for ConnectX-4/ConnectX-5/ConnectX-6 Community post.

Limit Bandwidth per Group of VFs

VFs Rate Limit for vSwitch (OVS) feature allows users to join available VFs into groups and
set a rate limitation on each group. Rate limitation on a VF group ensures that the total Tx
bandwidth that the VFs in this group get (altogether combined) will not exceed the given
value.

With this feature, a VF can still be configured with an individual rate limit as in the past
(under /sys/class/net//device/sriov//max_tx_rate). However, the actual bandwidth limit on
the VF will eventually be determined considering the VF group limitation and how many
VFs are in the same group.

For example: 2 VFs (0 and 1) are attached to group 3.

Case 1: The rate limitation on the group is set to 20G. Rate limit of each VF is 15G

Result: Each VF will have a rate limit of 10G

Case 2: Group’s max rate limitation is still set to 20G. VF 0 is configured to 30G limit, while
VF 1 is configured to 5G rate limit

Result: VF 0 will have 15G de-facto. VF 1 will have 5G

The rule of thumb is that the group’s bandwidth is distributed evenly between the number
of VFs in the group. If there are leftovers, they will be assigned to VFs whose individual
rate limit has not been met yet.

VFs Rate Limit Feature Configuration

1. When VF rate group is supported by FW, the driver will create a new hierarchy in the
SRI-OV sysfs named “groups” (/sys/class/net/<ifname>/device/sriov/groups/). It will
contain all the info and the configurations allowed for VF groups.

2. All VFs are placed in group 0 by default since it is the only existing group following
the initial driver start. It would be the only group available under
/sys/class/net/<ifname>/device/sriov/groups/

3. The VF can be moved to a different group by writing to the group file -> echo
$GROUP_ID > /sys/class/net/<ifname>/device/sriov/<vf_id>/group

https://enterprise-support.nvidia.com/s/article/HowTo-Configure-Rate-Limit-per-VF-for-ConnectX-4-ConnectX-5-ConnectX-6
https://enterprise-support.nvidia.com/s/article/HowTo-Configure-Rate-Limit-per-VF-for-ConnectX-4-ConnectX-5-ConnectX-6

Virtualization 22

4. The group IDs allowed are 0-255

5. Only when there is at least 1 VF in a group, there will be a group configuration
available under /sys/class/net/<ifname>/device/sriov/groups/ (Except for group 0,
which is always available even when it’s empty).

6. Once the group is created (by moving at least 1 VF to that group), users can
configure the group’s rate limit. For example:

1. echo 10000 > /sys/class/net/<ifname>/device/sriov/5/max_tx_rate – setting
individual rate limitation of VF 5 to 10G (Optional)

2. echo 7 > /sys/class/net/<ifname>/device/sriov/5/group – moving VF 5 to group 7

3. echo 5000 > /sys/class/net/<ifname>/device/sriov/groups/7/max_tx_rate –
setting group 7 with rate limitation of 5G

4. When running traffic via VF 5 now, it will be limited to 5G because of the group
rate limit even though the VF itself is limited to 10G

5. echo 3 > /sys/class/net/<ifname>/device/sriov/5/group – moving VF 5 to group 3

6. Group 7 will now disappear from /sys/class/net/<ifname>/device/sriov/groups
since there are 0 VFs in it. Group 3 will now appear. Since there’s no rate limit on
group 3, VF 5 can transmit at 10G (thanks to its individual configuration)

Notes:

You can see to which group the VF belongs to in the ‘stats’ sysfs (cat
/sys/class/net/<ifname>/device/sriov/<vf_num>/stats)

You can see the current rate limit and number of attached VFs to a group in the
group’s ‘config’ sysfs (cat
/sys/class/net/<ifname>/device/sriov/groups/<group_id>/config)

Bandwidth Guarantee per Group of VFs

Bandwidth guarantee (minimum BW) can be set on a group of VFs to ensure this group is
able to transmit at least the amount of bandwidth specified on the wire.

Note the following:

Virtualization 23

The minimum BW settings on VF groups determine how the groups share the total
BW between themselves. It does not impact an individual VF’s rate settings.

The total minimum BW that is set on the VF groups should not exceed the total line
rate. Otherwise, results are unexpected.

It is still possible to set minimum BW on the individual VFs inside the group. This will
determine how the VFs share the group’s minimum BW between themselves. The
total minimum BW of the VF member should not exceed the minimum BW of the
group.

For instruction on how to create groups of VFs, see Limit Bandwidth per Group of VFs
above.

Example

With a 40Gb link speed, assuming 4 groups and default group 0 have been created:

Assuming there are VFs attempting to transmit in full line rate in all groups, the results
would look like: In which case, the minimum BW allocation would be:

echo 20000 >
/sys/class/net/<ifname>/device/sriov/group/1/min_tx_rate
echo 5000 > /sys/class/net/<ifname>/device/sriov/group/2/min_tx_rate
echo 15000 >
/sys/class/net/<ifname>/device/sriov/group/3/min_tx_rate

Group 0(default) : 0 - No BW guarantee is configured.
Group 1 : 20000 - This is the maximum min rate among groups
Group 2 : 5000 which is 25% of the maximum min rate
Group 3 : 15000 which is 75% of the maximum min rate
Group 4 : 0 - No BW guarantee is configured.

Group0 – Will have no BW to use since no BW guarantee was set on
it while other groups do have such settings.
Group1 – Will transmit at 20Gb/s

https://docs.nvidia.compages/createpage.action?spaceKey=MLNXOFEDv24070610&title=.Single+Root+IO+Virtualization+%28SR-IOV%29+v5.1-2.3.7.1

Virtualization 24

Privileged VFs

In case a malicious driver is running over one of the VFs, and in case that VF's permissions
are not restricted, this may open security holes. However, VFs can be marked as trusted
and can thus receive an exclusive subset of physical function privileges or permissions.
For example, in case of allowing all VFs, rather than specific VFs, to enter a promiscuous
mode as a privilege, this will enable malicious users to sniff and monitor the entire physical
port for incoming traffic, including traffic targeting other VFs, which is considered a
severe security hole.

Privileged VFs Configuration

In the configuration example below, the VM is located on VF-0 and has the following MAC
address: 11:22:33:44:55:66.

There are two ways to enable or disable trust:

1. Use the standard IP link commands - available from Kernel 4.5 and above.

1. To enable trust for a specific VF, run:

2. To disable trust for a specific VF, run:

2. Specify echo "ON" or "OFF" to the file located under /sys/class/net/<ETH_IF_NAME> /
device/sriov/<VF index>/trust.

Group2 – Will transmit at 5Gb/s
Group3 – Will transmit at 15Gb/s
Group4 - Will have no BW to use since no BW guarantee was set on
it while other groups do have such settings.

ip link set ens785f1 vf 0 trust on

ip link set ens785f1 vf 0 trust off

Virtualization 25

1. To enable trust for a specific VF, run:

2. To disable trust for a specific VF, run:

Probed VFs

Probing Virtual Functions (VFs) after SR-IOV is enabled might consume the adapter cards'
resources. Therefore, it is recommended not to enable probing of VFs when no monitoring
of the VM is needed.

VF probing can be disabled in two ways, depending on the kernel version installed on your
server:

1. If the kernel version installed is v4.12 or above, it is recommended to use the PCI
sysfs interface sriov_drivers_autoprobe . For more information, see linux-next
branch .

2. If the kernel version installed is older than v4.12, it is recommended to use the
mlx5_core module parameter probe_vf with driver version 4.1 or above.

Example:

For more information on how to probe VFs, see HowTo Configure and Probe VFs on mlx5
DriversCommunity post.

echo "ON" > /sys/class/net/ens785f1/device/sriov/0/trust

echo "OFF" > /sys/class/net/ens785f1/device/sriov/0/trust

echo 0 > /sys/module/mlx5_core/parameters/probe_vf

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/diff/Documentation/ABI/testing/sysfs-bus-pci?id=0e7df22401a3dfd403b26dea62dd00e0598b538b
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/diff/Documentation/ABI/testing/sysfs-bus-pci?id=0e7df22401a3dfd403b26dea62dd00e0598b538b
https://enterprise-support.nvidia.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://enterprise-support.nvidia.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers

Virtualization 26

VF Promiscuous Rx Modes

VF Promiscuous Mode

VFs can enter a promiscuous mode that enables receiving the unmatched traffic and all
the multicast traffic that reaches the physical port in addition to the traffic originally
targeted to the VF. The unmatched traffic is any traffic's DMAC that does not match any
of the VFs' or PFs' MAC addresses.

Note: Only privileged/trusted VFs can enter the VF promiscuous mode.

To set the promiscuous mode on for a VF, run:

To exit the promiscuous mode, run:

VF All-Multi Mode

VFs can enter an all-multi mode that enables receiving all the multicast traffic sent
from/to the other functions on the same physical port in addition to the traffic originally
targeted to the VF.

Note: Only privileged/trusted VFs can enter the all-multi RX mode.

To set the all-multi mode on for a VF, run:

ifconfig eth2 promisc

ifconfig eth2 –promisc

ifconfig eth2 allmulti

Virtualization 27

To exit the all-multi mode, run:

Uninstalling the SR-IOV Driver

To uninstall SR-IOV driver, perform the following:

1. For Hypervisors, detach all the Virtual Functions (VF) from all the Virtual Machines
(VM) or stop the Virtual Machines that use the Virtual Functions.

Please be aware that stopping the driver when there are VMs that use the VFs, will
cause machine to hang.

2. Run the script below. Please be aware, uninstalling the driver deletes the entire
driver's file, but does not unload the driver.

#ifconfig eth2 –allmulti

[root@swl022 ~]# /usr/sbin/ofed_uninstall.sh
This program will uninstall all OFED packages on your
machine.
Do you want to continue?[y/N]:y
Running /usr/sbin/vendor_pre_uninstall.sh
Removing OFED Software installations
Running /bin/rpm -e --allmatches kernel-ib kernel-ib-devel
libibverbs libibverbs-devel libibverbs-devel-static libibverbs-
utils libmlx4 libmlx4-devel libibcm libibcm-devel libibumad
libibumad-devel libibumad-static libibmad libibmad-devel
libibmad-static librdmacm librdmacm-utils librdmacm-devel ibacm
opensm-libs opensm-devel perftest compat-dapl compat-dapl-

Virtualization 28

3. Restart the server.

SR-IOV Live Migration

Live migration refers to the process of moving a guest virtual machine (VM) running on
one physical host to another host without disrupting normal operations or causing other
adverse effects for the end user.

Using the Migration process is useful for:

load balancing

hardware independence

energy saving

geographic migration

fault tolerance

Migration works by sending the state of the guest virtual machine's memory and any
virtualized devices to a destination host physical machine. Migrations can be performed
live or not, in the live case, the migration will not disrupt the user operations and it will be
transparent to it as explained in the sections below.

Non-Live Migration

devel dapl dapl-devel dapl-devel-static dapl-utils srptools
infiniband-diags-guest ofed-scripts opensm-devel
warning: /etc/infiniband/openib.conf saved as
/etc/infiniband/openib.conf.rpmsave
Running /tmp/2818-ofed_vendor_post_uninstall.sh

Note

This feature is supported in Ethernet mode only.

Virtualization 29

When using the non-live migration process, the Hypervisor suspends the guest virtual
machine, then moves an image of the guest virtual machine's memory to the destination
host physical machine. The guest virtual machine is then resumed on the destination host
physical machine, and the memory the guest virtual machine used on the source host
physical machine is freed. The time it takes to complete such a migration depends on the
network bandwidth and latency. If the network is experiencing heavy use or low
bandwidth, the migration will take longer then desired.

Live Migration

When using the Live Migration process, the guest virtual machine continues to run on the
source host physical machine while its memory pages are transferred to the destination
host physical machine. During migration, the Hypervisor monitors the source for any
changes in the pages it has already transferred and begins to transfer these changes
when all of the initial pages have been transferred.

It also estimates transfer speed during migration, so when the remaining amount of data
to transfer will take a certain configurable period of time, it will suspend the original guest
virtual machine, transfer the remaining data, and resume the same guest virtual machine
on the destination host physical machine.

MLX5 VF Live Migration

The purpose of this section is to demonstrate how to perform basic live migration of a
QEMU VM with an MLX5 VF assigned to it. This section does not explains how to create
VMs either using libvirt or directly via QEMU.

Requirements

The below are the requirements for working with MLX5 VF Live Migration.

Virtualization 30

Compo
nents

Description

Adapte
r Cards

ConnectX-7 ETH
BlueField-3 ETH

Firmwa
re

28.41.1000
32.41.1000

Kernel Linux v6.7 or newer

User
Space
Tools

iproute2 version 6.2 or newer

QEMU QEMU 8.1 or newer

Libvirt Libvirt 8.6 or newer

Setup

NVCONFIG

SR-IOV should be enabled and be configured to support the required number of VFs as of
enabling live migration. This can be achieved by the below command:

where:

Note
The same PSID must be used on both the source and the
target hosts (identical cards, same CAPs and features are
needed), and have the same firmware version.

mlxconfig -d *<PF_BDF>* s SRIOV_EN=1 NUM_OF_VFS=4
VF_MIGRATION_MODE=2

Virtualization 31

SRIOV_EN Enable Single-Root I/O Virtualization (SR-IOV)

NUM_OF_VFS
The total number of Virtual Functions (VFs) that can be supported,
for each PF.

VF_MIGRATION_M
ODE

Defines support for VF migration.

0x0: DEVICE_DEFAULT
0x1: MIGRATION_DISABLED
0x2: MIGRATION_ENABLED

Kernel Configuration

Needs to be compiled with driver MLX5_VFIO_PCI enabled. (i.e. CONFIG_MLX5_VFIO_PCI).

To load the driver, run:

QEMU

Needs to be compiled with VFIO_PCI enabled (this is enabled by default).

Host Preparation

As stated earlier, creating the VMs is beyond the scope of this guide and we assume that
they are already created. However, the VM configuration should be a migratable
configuration, similarly to how it is done without SRIOV VFs.

modprobe mlx5_vfio_pci

Note

Virtualization 32

Over libvirt

1. Set the PF in the "switchdev" mode.

2. Create the VFs that will be assigned to the VMs.

3. Set the VFs as migration capable.

1. See the name of the VFs, run:

2. Unbind the VFs from mlx5_core, run:

3. Use devlink to set each VF as migration capable, run:

The below steps should be done before running the VMs.

devlink dev eswitch set pci/<PF_BDF> mode switchdev

echo "1" > /sys/bus/pci/devices/<PF_BDF>/sriov_numvfs

devlink port show

echo '<VF_BDF>' > /sys/bus/pci/drivers/mlx5_core/unbind

devlink port function set pci/<PF_BDF>/1 migratable
enable

Virtualization 33

4. Assign the VFs to the VMs.

1. Edit the VMs XML file, run:

2. Assign the VFs to the VM by adding the following under the "devices" tag:

5. Set the destination VM in incoming mode.

1. Edit the destination VM XML file, run:

2. Set the destination VM in migration incoming mode by adding the following
under "domain" tag:

virsh edit <VM_NAME>

<hostdev mode='subsystem' type='pci' managed='no'>
 <driver name='vfio'/>
 <source>
 <address domain='0x0000' bus='0x08' slot='0x00' function='0x2'/>
 </source>
 <address type='pci' domain='0x0000' bus='0x09' slot='0x00' function='0x0'/>
</hostdev>

Note

The domain, bus, slot and function values above are
dummy values, replace them with your VFs values.

virsh edit <VM_NAME>

Virtualization 34

6. Bind the VFs to mlx5_vfio_pci driver.

1.

1. Detach the VFs from libvirt management, run:

2. Unbind the VFs from vfio-pci driver (the VFs are automatically bound to it after
running "virsh nodedev-detach"), run:

3. Set driver override, run:

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
 [...]
 <qemu:commandline>
 <qemu:arg value='--incoming'/>
 <qemu:arg value='tcp:<DEST_IP>:<DEST_PORT>'/>
 </qemu:commandline>
</domain>

Note

To be able to save the file, the above "xmlns:qemu"
attribute of the "domain" tag must be added as well.

virsh nodedev-detach pci_<VF_BDF>

echo '<VF_BDF>' > /sys/bus/pci/drivers/vfio-pci/unbind

Virtualization 35

4. Bind the VFs to mlx5_vfio_pci driver, run:

Directly over QEMU

1. Set the PF in "switchdev" mode.

2. Create the VFs that will be assigned to the VMs.

3. Set the VFs as migration capable.

1. See the name of the VFs, run:

2. Unbind the VFs from mlx5_core, run:

echo 'mlx5_vfio_pci' >
/sys/bus/pci/devices/<VF_BDF>/driver_override

echo '<VF_BDF>' > /sys/bus/pci/drivers/mlx5_vfio_pci/bind

devlink dev eswitch set pci/<PF_BDF> mode switchdev

echo "1" > /sys/bus/pci/devices/<PF_BDF>/sriov_numvfs

devlink port show

Virtualization 36

3. Use devlink to set each VF as migration capable, run:

4. Bind the VFs to mlx5_vfio_pci driver:

1. Set driver override, run:

2. Bind the VFs to mlx5_vfio_pci driver, run:

Running the Migration

Over libvirt

1. Start the VMs in source and in destination, run:

echo '<VF_BDF>' > /sys/bus/pci/drivers/mlx5_core/unbind

devlink port function set pci/<PF_BDF>/1 migratable
enable

echo 'mlx5_vfio_pci' >
/sys/bus/pci/devices/<VF_BDF>/driver_override

echo '<VF_BDF>' > /sys/bus/pci/drivers/mlx5_vfio_pci/bind

virsh start <VM_NAME>

Virtualization 37

2. Enable switchover-ack QEMU migration capability. Run the following commands
both in source and destination:

3. [Optional] Configure the migration bandwidth and downtime limit in source side:

4. Start migration by running the migration command in source side:

5. Check the migration status by running the info command in source side:

virsh qemu-monitor-command <VM_NAME> --hmp "migrate_set_capability
return-path on"

virsh qemu-monitor-command <VM_NAME> --hmp "migrate_set_capability
switchover-ack on"

virsh qemu-monitor-command <VM_NAME> --hmp "migrate_set_parameter max-
bandwidth <VALUE>"

virsh qemu-monitor-command <VM_NAME> --hmp "migrate_set_parameter
downtime-limit <VALUE>"

virsh qemu-monitor-command <VM_NAME> --hmp "migrate -d tcp:<DEST_IP>:
<DEST_PORT>"

virsh qemu-monitor-command <VM_NAME> --hmp "info migrate"

Note

Virtualization 38

Directly over QEMU

1. Start the VM in source with the VF assigned to it:

2. Start the VM in destination with the VF assigned to it and with the "incoming"
parameter:

3. Enable switchover-ack QEMU migration capability. Run the following commands in
QEMU monitor, both in source and destination:

4. [Optional] Configure the migration bandwidth and downtime limit in source side:

When the migration status is "completed" it means the
migration has finished successfully.

qemu-system-x86_64 [...] -device vfio-pci,host=
<VF_BDF>,id=mlx5_1

qemu-system-x86_64 [...] -device vfio-pci,host=
<VF_BDF>,id=mlx5_1 -incoming tcp:<DEST_IP>:<DEST_PORT>

migrate_set_capability return-path on

migrate_set_capability switchover-ack on

migrate_set_parameter max-bandwidth <VALUE>

Virtualization 39

5. Start migration by running the migration command in QEMU monitor in source side:

6. Check the migration status by running the info command in QEMU monitor in source
side:

Migration with MultiPort vHCA

Enables the usage of a dual port Virtual HCA (vHCA) to share RDMA resources (e.g., MR,
CQ, SRQ, PDs) across the two Ethernet (RoCE) NIC network ports and display the NIC as a
dual port device.

MultiPort vHCA (MPV) VF is made of 2 "regular" VFs, one VF of each port. Creating a
migratable MPV VF requires the same steps as regular VF (see steps in section Over
libvirt). The steps should be performed on each of the NIC ports. MPV VFs traffic cannot
be configured with OVS. TC rules must be defined to configure the MPV VFs traffic.

Notes

migrate_set_parameter downtime-limit <VALUE>

migrate -d tcp:<DEST_IP>:<DEST_PORT>

info migrate

Note

When the migration status is "completed" it means the
migration has finished successfully.

Virtualization 40

Note

In ConnectX-7 adapter cards, migration cannot run in parallel on more
than 4 VFs. It is the administrator's responsibility to control that.

Note

Live migration requires same firmware version on both the source and
the target hosts.

Virtualization 41

Enabling Paravirtualization
To enable Paravirtualization:

1. Create a bridge.

2. Change the related interface (in the example below bridge0 is created over eth5).

Note

The example below works on RHEL7.* without a Network Manager.

vim /etc/sysconfig/network-scripts/ifcfg-bridge0
DEVICE=bridge0
TYPE=Bridge
IPADDR=12.195.15.1

NETMASK=255.255.0.0

BOOTPROTO=static

ONBOOT=yes
NM_CONTROLLED=no
DELAY=0

DEVICE=eth5
BOOTPROTO=none
STARTMODE=on
HWADDR=00:02:c9:2e:66:52

TYPE=Ethernet
NM_CONTROLLED=no

Virtualization 42

3. Restart the service network.

4. Attach a bridge to VM.

ONBOOT=yes
BRIDGE=bridge0

ifconfig -a
…
eth6 Link encap:Ethernet HWaddr 52:54:00:E7:77:99

 inet addr:13.195.15.5 Bcast:13.195.255.255 Mask:255.255.0.0

 inet6 addr: fe80::5054:ff:fee7:7799/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:481 errors:0 dropped:0 overruns:0 frame:0

 TX packets:450 errors:0 dropped:0 overruns:0
carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:22440 (21.9 KiB) TX bytes:19232 (18.7 KiB)
 Interrupt:10 Base address:0xa000

…

Virtualization 43

VXLAN Hardware Stateless
Offloads
VXLAN technology provides scalability and security challenges solutions. It requires
extension of the traditional stateless offloads to avoid performance drop. ConnectX
family cards offer the following stateless offloads for a VXLAN packet, similar to the ones
offered to non-encapsulated packets. VXLAN protocol encapsulates its packets using
outer UDP header.

Available hardware stateless offloads:

Checksum generation (Inner IP and Inner TCP/UDP)

Checksum validation (Inner IP and Inner TCP/UDP)

TSO support for inner TCP packets

RSS distribution according to inner packets attributes

Receive queue selection - inner frames may be steered to specific QPs

Enabling VXLAN Hardware Stateless Offloads

VXLAN offload is enabled by default for ConnectX-4 family devices running the minimum
required firmware version and a kernel version that includes VXLAN support.

To confirm if the current setup supports VXLAN, run:

Example:

ethtool -k $DEV | grep udp_tnl

ethtool -k ens1f0 | grep udp_tnl

Virtualization 44

ConnectX-4 family devices support configuring multiple UDP ports for VXLAN offload.
Ports can be added to the device by configuring a VXLAN device from the OS command
line using the "ip" command.

Note: If you configure multiple UDP ports for offload and exceed the total number of
ports supported by hardware, then those additional ports will still function properly, but
will not benefit from any of the stateless offloads.

Example:

Note: dstport' parameters are not supported in Ubuntu 14.4.

The VXLAN ports can be removed by deleting the VXLAN interfaces.

Example:

Important Note

VXLAN tunneling adds 50 bytes (14-eth + 20-ip + 8-udp + 8-vxlan) to the VM Ethernet
frame. Please verify that either the MTU of the NIC who sends the packets, e.g. the VM
virtio-net NIC or the host side veth device or the uplink takes into account the tunneling
overhead. Meaning, the MTU of the sending NIC has to be decremented by 50 bytes (e.g
1450 instead of 1500), or the uplink NIC MTU has to be incremented by 50 bytes (e.g
1550 instead of 1500)

tx-udp_tnl-segmentation: on

ip link add vxlan0 type vxlan id 10 group 239.0.0.10 ttl 10 dev
ens1f0 dstport 4789

ip addr add 192.168.4.7/24 dev vxlan0
ip link set up vxlan0

ip link delete vxlan0

Virtualization 45

Q-in-Q Encapsulation per VF
in Linux (VST)

This section describes the configuration of IEEE 802.1ad QinQ VLAN tag (S-VLAN) to the
hypervisor per Virtual Function (VF). The Virtual Machine (VM) attached to the VF (via SR-
IOV) can send traffic with or without C-VLAN. Once a VF is configured to VST QinQ
encapsulation (VST QinQ), the adapter's hardware will insert S-VLAN to any packet from
the VF to the physical port. On the receive side, the adapter hardware will strip the S-VLAN
from any packet coming from the wire to that VF.

Setup

The setup assumes there are two servers equipped with ConnectX-5/ConnectX-6 adapter
cards.

Note

This feature is supported on ConnectX-5 and ConnectX-6 adapter
cards only.

Note

ConnectX-4 and ConnectX-4 Lx adapter cards support 802.1Q
double-tagging (C-tag stack- ing on C-tag), refer to "802.1Q Double-
Tagging" section.

Virtualization 46

Prerequisites

Kernel must be of v3.10 or higher, or custom/inbox kernel must support vlan-stag

Firmware version 16/20.21.0458 or higher must be installed for ConnectX-
5/ConnectX-6 HCAs

The server should be enabled in SR-IOV and the VF should be attached to a VM on
the hypervisor.

In order to configure SR-IOV in Ethernet mode for ConnectX-5/ConnectX-6
adapter cards, please refer to "Configuring SR-IOV for ConnectX-4/ConnectX-5
(Ethernet)" section. In the following configuration example, the VM is attached
to VF0.

Network Considerations - the network switches may require increasing the MTU (to
support 1522 MTU size) on the relevant switch ports.

Configuring Q-in-Q Encapsulation per Virtual Function for
ConnectX-5/ConnectX-6

1. Add the required S-VLAN (QinQ) tag (on the hypervisor) per port per VF. There are
two ways to add the S-VLAN:

1. By using sysfs:

2. By using the ip link command (available only when using the latest Kernel
version):

echo '100:0:802.1ad' > /sys/class/net/ens1f0/device/sriov/0/vlan

Virtualization 47

Check the configuration using the ip link show command:

2. Optional: Add S-VLAN priority. Use the qos parameter in the ip link command (or
sysfs):

Check the configuration using the ip link show command:

ip link set dev ens1f0 vf 0 vlan 100 proto 802.1ad

ip link show ens1f0
 ens1f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
mq state UP mode DEFAULT qlen 1000

 link/ether ec:0d:9a:44:37:84 brd ff:ff:ff:ff:ff:ff
 vf 0 MAC 00:00:00:00:00:00, vlan 100, vlan protocol
802.1ad, spoof checking off, link-state auto, trust off
 vf 1 MAC 00:00:00:00:00:00, spoof checking off, link-
state auto, trust off
 vf 2 MAC 00:00:00:00:00:00, spoof checking off, link-
state auto, trust off
 vf 3 MAC 00:00:00:00:00:00, spoof checking off, link-
state auto, trust off
 vf 4 MAC 00:00:00:00:00:00, spoof checking off, link-
state auto, trust off

ip link set dev ens1f0 vf 0 vlan 100 qos 3 proto 802.1ad

ip link show ens1f0
ens1f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq
state UP mode DEFAULT qlen 1000

 link/ether ec:0d:9a:44:37:84 brd ff:ff:ff:ff:ff:ff

Virtualization 48

3. Create a VLAN interface on the VM and add an IP address.

4. To verify the setup, run ping between the two VMs and open Wireshark or tcpdump
to capture the packet.

 vf 0 MAC 00:00:00:00:00:00, vlan 100, qos 3, vlan protocol
802.1ad, spoof checking off, link-state auto, trust off
 vf 1 MAC 00:00:00:00:00:00, spoof checking off, link-state
auto, trust off
 vf 2 MAC 00:00:00:00:00:00, spoof checking off, link-state
auto, trust off
 vf 3 MAC 00:00:00:00:00:00, spoof checking off, link-state
auto, trust off
 vf 4 MAC 00:00:00:00:00:00, spoof checking off, link-state
auto, trust off

ip link add link ens5 ens5.40 type vlan protocol 802.1q id 40

ip addr add 42.134.135.7/16 brd 42.134.255.255 dev ens5.40

ip link set dev ens5.40 up

Virtualization 49

802.1Q Double-Tagging
This section describes the configuration of 802.1Q double-tagging support to the
hypervisor per Virtual Function (VF). The Virtual Machine (VM) attached to the VF (via SR-
IOV) can send traffic with or without C-VLAN. Once a VF is configured to VST
encapsulation, the adapter's hardware will insert C-VLAN to any packet from the VF to the
physical port. On the receive side, the adapter hardware will strip the C-VLAN from any
packet coming from the wire to that VF.

Configuring 802.1Q Double-Tagging per Virtual Function

1. Add the required C-VLAN tag (on the hypervisor) per port per VF. There are two ways
to add the C-VLAN:

1. By using sysfs:

2. By using the ip link command (available only when using the latest Kernel
version):

Check the configuration using the ip link show command:

echo '100:0:802.1q' > /sys/class/net/ens1f0/device/sriov/0/vlan

ip link set dev ens1f0 vf 0 vlan 100

ip link show ens1f0
 ens1f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
mq state UP mode DEFAULT qlen 1000

 link/ether ec:0d:9a:44:37:84 brd ff:ff:ff:ff:ff:ff
 vf 0 MAC 00:00:00:00:00:00, vlan 100, spoof checking
off, link-state auto, trust off

Virtualization 50

2. Create a VLAN interface on the VM and add an IP address.

3. To verify the setup, run ping between the two VMs and open Wireshark or tcpdump
to capture the packet.

 vf 1 MAC 00:00:00:00:00:00, spoof checking off, link-
state auto, trust off
 vf 2 MAC 00:00:00:00:00:00, spoof checking off, link-
state auto, trust off
 vf 3 MAC 00:00:00:00:00:00, spoof checking off, link-
state auto, trust off
 vf 4 MAC 00:00:00:00:00:00, spoof checking off, link-
state auto, trust off

ip link add link ens5 ens5.40 type vlan protocol 802.1q id
40

ip addr add 42.134.135.7/16 brd 42.134.255.255 dev ens5.40

ip link set dev ens5.40 up

Virtualization 51

Scalable Functions
Scalable function is a lightweight function that has a parent PCI function on which it is
deployed. Scalable functions are useful for containers where netdevice and RDMA devices
of a scalable function can be assigned to a container. This way, the container can get
complete offload capabilities of an eswitch, isolation and dedicated accelerated network
device. For Step-by-Step Configuration instructions, follow the User Guide here.

Notice

This document is provided for information purposes only and shall not be regarded as a
warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no
representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in
this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code,
or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements,
and any other changes to this document, at any time without notice.

Customer should obtain the latest
relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of
order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives
of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or
warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where
failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property
or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no
representation or warranty that products based on this document will be suitable for any specified use. Testing of all
parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and
determine the applicability of any information contained in this document, ensure the product is suitable and fit for the
application planned by customer, and perform the necessary testing for the application in order to avoid a default of the
application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this
document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or
attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer
product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright,
or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property
rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in
advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS
DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of

https://github.com/Mellanox/scalablefunctions/wiki/MLNX_OFED-step-by-step-guide

Virtualization 52

Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are
trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright 2025. PDF Generated on 01/15/2025

	Single Root IO Virtualization (SR-IOV)
	SR-IOV Live Migration

	Enabling Paravirtualization
	VXLAN Hardware Stateless Offloads
	Q-in-Q Encapsulation per VF in Linux (VST)
	802.1Q Double-Tagging
	Scalable Functions

