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This guide provides an overview and con�guration instructions for DOCA Telemetry API.

Introduction

DOCA Telemetry API o�ers a fast and convenient way to transfer user-de�ned data to
DOCA Telemetry Service (DTS). In addition, the API provides several built-in outputs for
user convenience, including saving data directly to storage, NetFlow, Fluent Bit forwarding,
and Prometheus endpoint.

The following �gure shows an overview of the telemetry API. The telemetry client side,
based on the telemetry API, collects user-de�ned telemetry and sends it to the DTS
which runs as a container on BlueField. DTS does further data routing, including export
with �ltering. DTS can process several user-de�ned telemetry clients and can collect pre-
de�ned counters by itself. Additionally, telemetry API has built-in data outputs that can be
used from telemetry client applications.

The following scenarios are available:

Send data via IPC transport to DTS. For IPC, refer to Inter-process Communication.

Write data as binary �les to storage (for debugging data format).

Export data directly from DOCA Telemetry API application using the following
options:

Fluent Bit exports data through forwarding

NetFlow exports data from NetFlow API. Available from both API and DTS. See
details in Data Outputs.
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Prometheus creates Prometheus endpoint and keeps the most recent data to
be scraped by Prometheus.

Users can either enable or disable any of the data outputs mentioned above. See Data
Outputs to see how to enable each output.

The library stores data in an internal bu�er and �ushes it to DTS/exporters in the
following scenarios:

Once the bu�er is full. Bu�er size is con�gurable with di�erent attributes.

When doca_telemetry_source_flush(void *doca_source)  function is
invoked.

When the telemetry client terminates. If the bu�er has data, it is processed before
the library's context cleanup.

Architecture

DOCA Telemetry API is fundamentally built around four major parts:

DOCA schema – de�nes a reusable structure (see doca_telemetry_type ) of
telemetry data which can be used by multiple sources

Source – the unique identi�er of the telemetry source that periodically reports
telemetry data.



DOCA Telemetry Exporter 5

Report – exports the information to the DTS

Finalize – releases all the resources

DOCA Telemetry API Walkthrough

The NVIDIA DOCA Telemetry API's de�nitions can be found in the doca_telemetry.h
�le.

The following is a basic walkthrough of the needed steps for using the DOCA Telemetry
API.

1. Create doca_schema .

1. Initialize an empty schema with default attributes:

2. Set the following attributes if needed:

doca_telemetry_schema_set_buffer_attr_*(…)

doca_telemetry_schema_set_file_write_*(…)

doca_telemetry_schema_set_ipc_*(…)

3. Add user event types:

Event type ( struct doca_telemetry_type ) is the user-de�ned data
structure that describes event �elds. The user is allowed to add multiple �elds
to the event type. Each �eld has its own attributes that can be set (see
example). Each event type is allocated an index (

struct doca_telemetry_schema *doca_schema;
doca_telemetry_schema_init("example_doca_schema_name", 
&doca_schema);
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doca_telemetry_type_index_t ) which can be used to refer to the event
type in future API calls.

4. Apply attributes and types to start using the schema:

2. Create doca_source :

1. Initialize:

struct doca_telemetry_type *doca_type;
struct doca_telemetry_field *field1;
 
doca_telemetry_type_create(&doca_type);
doca_telemetry_field_create(&field1);
 
doca_telemetry_field_set_name(field1, "sport");
doca_telemetry_field_set_description(field1, "Source port")
doca_telemetry_field_set_type_name(field1, 
DOCA_TELEMETRY_FIELD_TYPE_UINT16);
doca_telemetry_field_set_array_length(field1, 1);
 
/* The user loses ownership on field1 after a successful invocation of the function */

doca_telemetry_type_add_field(type, field1); 
 
/* Add more fields if needed */

 
/* The user loses ownership on doca_type after a successful invocation of the function */

doca_telemetry_schema_add_type(doca_schema, "example_event", 
doca_type, &type_index); 

doca_telemetry_schema_start(doca_schema)

struct doca_telemetry_source *doca_source;
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2. Set source ID and tag:

3. Apply attributes to start using the source:

You may optionally add more doca_sources  if needed.

3. Collect the data per source and use:

4. Finalize:

1. For every source:

2. Destroy:

doca_telemetry_source_create(doca_schema, &doca_source);

doca_telemetry_source_set_id(doca_source, "example id");
doca_telemetry_source_set_tag(doca_source, "example tag");

doca_telemetry_source_start(doca_source)

doca_telemetry_source_report(source, type_index, 
&my_app_test_ev1, num_events)

doca_telemetry_source_destroy(source)

doca_telemetry_schema_destroy(doca_schema)
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Example implementation may be found in the telemetry_export  DOCA sample (

telemetry_export_sample.c ).

DOCA Telemetry NetFlow API Walkthrough

The DOCA telemetry API also supports NetFlow using DOCA Telemetry NetFlow API. This
API is designed to allow customers to easily support the NetFlow protocol at the endpoint
side. Once an endpoint produces NetFlow data using the API, the corresponding exporter
can be used to send the data to a NetFlow collector.

The NVIDIA DOCA Telemetry Net�ow API's de�nitions can be found in the
doca_telemetry_netflow.h  �le.

The following are the steps to use the NetFlow API:

1. Initiate the API with an appropriate source ID:

2. Set the relevant attributes:

doca_telemetry_netflow_set_buffer_*(…)

doca_telemetry_netflow_set_file_write_*(…)

doca_telemetry_netflow_set_ipc_*(…)

doca_telemetry_netflow_source_set_*()

3. Start the API to use the con�gured attribute:

4. Form a desired NetFlow template and the corresponding NetFlow records.

doca_telemetry_netflow_init(source_id)

doca_telemetry_netflow_start();
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5. Collect the NetFlow data.

6. (Optional) Flush the NetFlow data to send data immediately instead of waiting for
the bu�er to �ll:

7. Clean up the API:

Example implementation may be found in the telemetry_netflow_export  DOCA

sample ( telemetry_netflow_export_sample.c ).

API

Refer to NVIDIA DOCA Library APIs, for more detailed information on DOCA Telemetry API.

The following sections provide additional details about the library API.

doca_telemetry_netflow_send(…)

doca_telemetry_netflow_flush()

doca_telemetry_netflow_destroy()

Note

The pkg-con�g ( *.pc  �le) for the DOCA Telemetry library is

included in DOCA's regular de�nitions (i.e., doca  ).

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Library+APIs/index.html
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Some attributes are optional as they are initialized with default values. Refer to the
documentation of the the setter functions of respective attributes.

DOCA Telemetry Bu�er Attributes

Bu�er attributes are used to set the internal bu�er size and data root used by all DOCA
sources in the schema.

Con�guring the attributes is optional as they are initialized with default values.

buffer_size [in]  – the size of the internal bu�er which accumulates the data
before sending it to the outputs. Data is sent automatically once the internal bu�er
is full. Larger bu�ers mean fewer data transmissions and vice versa.

data_root [in]  – the path to where data is stored (if file_write_enabled  is
set to true). See section "DOCA Telemetry File Write Attributes".

DOCA Telemetry File Write Attributes

File write attributes are used to enable and con�gure data storage to the �le system in
binary format.

Con�guring the attributes is optional as they are initialized with default values.

doca_telemetry_schema_set_buffer_size(doca_schema, 16 * 1024); /* 
16KB - arbitrary value */

doca_telemetry_schema_set_buffer_data_root(doca_schema, 
"/opt/mellanox/doca/services/telemetry/data/");

doca_telemetry_schema_set_file_write_enabled(doca_schema);
doca_telemetry_schema_set_file_write_max_size(doca_schema, 1 * 
1024 * 1024); /* 1 MB */

doca_telemetry_schema_set_file_write_max_age(doca_schema, 60 * 60 
* 1000000L); /* 1 Hour */
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file_write_enable [in]  – use this function to enable storage.
Storage/FileWrite is disabled by default.

file_write_max_size [in]  – maximum �le size (in bytes) before a new �le is
created.

file_write_max_age [in]  – maximum �le age (in microseconds) before a new
�le is created.

DOCA Telemetry IPC Attributes

IPC attributes are used to enable and con�gure IPC transport. IPC is disabled by default.

Con�guring the attributes is optional as they are initialized with default values.

ipc_enabled [in]  – use this function to enable communication. IPC is disabled
by default.

Note

It is important to make sure that the IPC location matches the IPC
location used by DTS, otherwise IPC communication will fail.

doca_telemetry_schema_set_ipc_enabled(doca_schema);
doca_telemetry_schema_set_ipc_sockets_dir(doca_schema, 
"/path/to/sockets/");
doca_telemetry_schema_set_ipc_reconnect_time(doca_schema, 100); /* 
100 milliseconds */

doca_telemetry_schema_set_ipc_reconnect_tries(doca_schema, 3);
doca_telemetry_schema_set_ipc_socket_timeout(doca_schema, 3 * 
1000) /* 3 seconds */
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ipc_sockets_dir [in]  – a directory that contains UDS for IPC messages. Both
the telemetry program and DTS must use the same folder. DTS that runs on
BlueField as a container has the default folder
/opt/mellanox/doca/services/telemetry/ipc_sockets .

ipc_reconnect_time [in]  – maximum reconnection time in milliseconds after
which the client is considered disconnected.

ipc_reconnect_tries [in]  – maximum reconnection attempts.

ipc_socket_timeout [in]  – timeout for the IPC socket.

DOCA Telemetry Source Attributes

Source attributes are used to create proper folder structure. All the data collected from
the same host is written to the source_id  folder under data root.

source_id [in]  – describes the data's origin. It is recommended to set it to the
hostname. In later data�ow steps, data is aggregated from multiple hosts/DPUs and
source_id  helps navigate in it.

source_tag [in]  – a unique data identi�er. It is recommended to set it to
describe the data collected in the application. Several telemetry apps can be

Note

Sources attributes are mandatory and must be con�gured before
invoking doca_telemetry_source_start() .

doca_telemetry_source_set_id(doca_source, "example_source");
doca_telemetry_source_set_tag(doca_source, "example_tag");
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deployed on a single node (host/DPU). In that case, each telemetry data would have a
unique tag and all of them would share a single source_id .

DOCA Telemetry Net�ow Collector Attributes

DOCA Telemetry NetFlow API attributes are optional and should only be used for
debugging purposes. They represent the NetFlow collector's address while working locally,
e�ectively enabling the local NetFlow exporter.

collector_addr [in]  – NetFlow collector's address (IP or name). Default value is

NULL .

collector_port [in]  – NetFlow collector's port. Default value is

DOCA_NETFLOW_DEFAULT_PORT (2055) .

doca_telemetry_source_report

The source report function is the heart of communication with the DTS. The report
operation causes event data to be allocated to the internal bu�er. Once the bu�er is full,
data is forwarded onward according to the set con�guration.

doca_telemetry_netflow_set_collector_addr("127.0.0.1");
doca_telemetry_netflow_set_collector_port(6343);

doca_error_t doca_telemetry_source_report(struct 
doca_telemetry_source *doca_source,
                                          
doca_telemetry_type_index_t index,
                                          void *data,
                                          int count);
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doca_source [in]  – a pointer to the doca_telemetry_source  which reports
the event

index [in]  – the event type index received when the schema was created

data [in]  – a pointer to the data bu�er that needs to be sent

count [in]  – numbers of events to be written to the internal bu�er

The function returns DOCA_SUCCESS  if successful, or a doca_error_t  if an error
occurs. If a memory-related error occurs, try a larger bu�er size that matches the event's
size.

doca_telemetry_schema_add_type

This function allows adding a reusable telemetry data struct, also known as a schema. The
schema allows sending a prede�ned data structure to the telemetry service. Note that it
is mandatory to de�ne a schema for proper functionality of the library. After adding the
schemas, one needs to invoke the schema start function.

doca_schema [in]  – a pointer to the schema to which the type is added

new_type_name [in]  – name of the new type

fields [in]  – user-de�ned �elds to be used for the schema. Multiple �elds can
(and should) be added.

doca_error_t doca_telemetry_schema_add_type(struct 
doca_telemetry_schema *doca_schema,
                                            const char 
*new_type_name,
                                            struct 
doca_telemetry_type *type,
                                            
doca_telemetry_type_index_t *type_index);
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type_index [out]  – type index for the created type is written to this output
variable

The function returns DOCA_SUCCESS  if successful, or doca_error_t  if an error occurs.

Telemetry Data Format

The internal data format consists of 2 parts: A schema containing metadata, and the
actual binary data. When data is written to storage, the data schema is written in JSON
format, and the data is written as binary �les. In the case of IPC transport, both schema
and binary data are sent to DTS. In the case of export, data is converted to the formats
required by exporter.

Adding custom event types to the schema can be done using
doca_telemetry_schema_add_type  API call.

Note

See available DOCA_TELEMETRY_FIELD_TYPE s in

doca_telemetry.h . See example of usage in

/opt/mellanox/doca/samples/doca_telemetry/telemetry_export/telem
.

Note

It is highly recommended to have the timestamp �eld as the �rst �eld
since it is required by most databases. To get the current timestamp
in the correct format use:
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Data Outputs

This section describes available exporters:

IPC

NetFlow

Fluent Bit

Prometheus

Fluent Bit and Prometheus exporters are presented in both API and DTS. Even though DTS
export is preferable, the API has the same possibilities for development �exibility.

Inter-process Communication

IPC transport automatically transfers the data from the telemetry-based program to DTS
service.

It is implemented as a UNIX domain socket (UDS) sockets for short messages and shared
memory for data. DTS and the telemetry-based program must share the same
ipc_sockets  directory.

When IPC transport is enabled, the data is sent from the DOCA-telemetry-based
application to the DTS process via shared memory.

To enable IPC, use the doca_telemetry_schema_set_ipc_enabled  API function.

doca_error_t 
doca_telemetry_get_timestamp(doca_telemetry_timestamp_t 
*timestamp);

Note



DOCA Telemetry Exporter 17

To check the IPC status for the current context, use:

If IPC is enabled and for some reason connection is lost, it would try to automatically
reconnect on every report's function call.

Using IPC with Non-container Application

When developing and testing a non-container DOCA Telemetry-based program and its
IPC interaction with DTS, some modi�cations are necessary in DTS's deployment for the
program to interact with DTS over IPC:

Shared memory mapping should be removed: telemetry-ipc-shm

Host IPC should be enabled: hostIPC

File before the change:

IPC transport relies on system folders. For the host's usage, run the
DOCA-telemetry-API-based application with sudo  to be able to use
IPC with system folders.

doca_error_t doca_telemetry_check_ipc_status(struct 
doca_telemetry_source *doca_source,
                                             
doca_telemetry_ipc_status_t *status)

spec:
  hostNetwork: true

  volumes:
  - name: telemetry-service-config
    hostPath:
      path: /opt/mellanox/doca/services/telemetry/config
      type: DirectoryOrCreate
  ...
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File after the change:

These changes ensure that a DOCA-based program running outside of a container is able
to communicate with DTS over IPC.

  - name: telemetry-ipc-shm
    hostPath:
      path: /dev/shm/telemetry
      type: DirectoryOrCreate
  containers:
  ...
      volumeMounts:
      - name: telemetry-service-config
        mountPath: /config
  ...
      - name: telemetry-ipc-shm
        mountPath: /dev/shm

spec:
  hostNetwork: true

  hostIPC: true

  volumes:
  - name: telemetry-service-config
    hostPath:
      path: /opt/mellanox/doca/services/telemetry/config
      type: DirectoryOrCreate
  ...
  containers:
  ...
      volumeMounts:
      - name: telemetry-service-config
        mountPath: /config
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NetFlow

When the NetFlow exporter is enabled (NetFlow Collector Attributes are set), it sends the
NetFlow data to the NetFlow collector speci�ed by the attributes: Address and port. This
exporter must be used when using DOCA Telemetry NetFlow API.

Fluent Bit

Fluent Bit export is based on fluent_bit_configs  with .exp  �les for each
destination. Every export �le corresponds to one of Fluent Bit's destinations. All found
and enabled .exp  �les are used as separate export destinations. Examples can be found
after running DTS container under its con�guration folder (
/opt/mellanox/doca/services/telemetry/config/fluent_bit_configs/ ).

All .exp  �les are documented in-place.

Fluent Bit .exp  �les have 2-level data routing:

source_tags  in .exp  �les (documented in-place)

DPU# ls -l 
/opt/mellanox/doca/services/telemetry/config/fluent_bit_configs/
/opt/mellanox/doca/services/telemetry/config/fluent_bit_configs/:
total 56

-rw-r--r-- 1 root root  528 Oct 11 07:52 es.exp
-rw-r--r-- 1 root root  708 Oct 11 07:52 file.exp
-rw-r--r-- 1 root root 1135 Oct 11 07:52 forward.exp
-rw-r--r-- 1 root root  719 Oct 11 07:52 influx.exp
-rw-r--r-- 1 root root  571 Oct 11 07:52 stdout.exp
-rw-r--r-- 1 root root  578 Oct 11 07:52 stdout_raw.exp
-rw-r--r-- 1 root root 2137 Oct 11 07:52 ufm_enterprise.fset
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Token-based �ltering governed by .fset  �les (documented in

ufm_enterprise.fset )

To run with Fluent Bit exporter, set enable=1  in required .exp  �les and set the
environment variables before running the application:

Prometheus

Prometheus exporter sets up endpoint (HTTP server) which keeps the most recent events
data as text records.

The Prometheus server can scrape the data from the endpoint while the DOCA-Telemetry-
API-based application stays active.

Check the generic example of Prometheus records:

Labels are customizable metadata which can be set from data �le. Events names could be
�ltered by token-based name-match according to .fset  �les.

Set the following environment variables before running.

export FLUENT_BIT_EXPORT_ENABLE=1

export FLUENT_BIT_CONFIG_DIR=/path/to/fluent_bit_configs
export LD_LIBRARY_PATH=/opt/mellanox/collectx/lib

event_name_1{label_1="label_1_val", label_2="label_2_val", label_3="label_3_val", 
label_4="label_4_val"} counter_value_1 timestamp_1
event_name_2{label_1="label_1_val", label_2="label_2_val", label_3="label_3_val", 
label_4="label_4_val"} counter_value_2 timestamp_2
...

# Set the endpoint host and port to enable export.
export PROMETHEUS_ENDPOINT=http://0.0.0.0:9101  
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# Set indexes as a comma-separated list to keep data for every 
index field. In
# this example most recent data will be kept for every record with 
unique 
# `port_num`. If not set, only one data per source will be kept 
as the most 
# recent. 
export PROMETHEUS_INDEXES=Port_num
 
# Set path to a file with Prometheus custom labels. Use labels to 
store 
# information about data source and indexes. If not set, the 
default labels
# will be used. 
export CLX_METADATA_FILE=/path/to/labels.txt 
 
# Set the folder which contains fset-files. If set, Prometheus 
will scrape 
# only filtered data according to fieldsets.
export PROMETHEUS_CSET_DIR=/path/to/prometheus_cset

Note

To scrape the data without the Prometheus server, use:

Or:

curl -s http://0.0.0.0:9101/metrics
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DOCA Telemetry Samples

This section provides DOCA Telemetry sample implementations on top of the BlueField
DPU.

The telemetry samples in this document demonstrate an initial recommended
con�guration that covers two use cases:

Standard DOCA Telemetry data

DOCA Telemetry for NetFlow data

The telemetry samples run on the BlueField. If write-to-�le is enabled, telemetry data is
stored to BlueField's storage. If inter-process communication (IPC) is enabled, data is sent
to the DOCA Telemetry Service (DTS) running on the same BlueField.

For information on initializing and con�guring DTS, refer to NVIDIA DOCA Telemetry
Service Guide.

Running the Sample

1. Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

2. To build a given sample:

curl -s http://0.0.0.0:9101/{fset_name}

cd /opt/mellanox/doca/samples/doca_telemetry/<sample_name>
meson /tmp/build

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Telemetry+Service+Guide/index.html
https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Telemetry+Service+Guide/index.html
https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Installation+Guide+for+Linux/index.html
https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Troubleshooting+Guide/index.html
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3. Sample (e.g., telemetry_export ) usage:

4. For additional information per sample, use the -h  option:

ninja -C /tmp/build

Note

The binary doca_<sample_name>  will be created under

/tmp/build/ .

Usage: doca_telemetry_export [DOCA Flags]
 
DOCA Flags:
  -h, --help                        Print a help synopsis
  -v, --version                     Print program version 
information
  -l, --log-level                   Set the (numeric) log 
level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR, 
40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
  --sdk-log-level                   Set the SDK (numeric) log 
level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR, 
40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
  -j, --json <path>                 Parse all command flags 
from an input json file

/tmp/build/doca_<sample_name> -h
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Samples

Telemetry Export

This sample illustrates how to use the telemetry API. The sample uses a custom schema
for telemetry.

The sample logic includes:

1. Con�guring schema attributes.

2. Initializing schema.

3. Creating telemetry source.

4. Creating example events.

5. Reporting example events via DOCA Telemetry.

6. Destroying source and schema.

Reference:

/opt/mellanox/doca/samples/doca_telemetry/telemetry_export/teleme

/opt/mellanox/doca/samples/doca_telemetry/telemetry_export/teleme

/opt/mellanox/doca/samples/doca_telemetry/telemetry_export/meson.

Telemetry NetFlow Export

This sample illustrates how to use the NetFlow functionality of the telemetry API.

The sample logic includes:

1. Con�guring NetFlow attributes.

2. Initializing NetFlow.

3. Creating telemetry source.
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4. Starting NetFlow.

5. Creating example events.

6. Reporting example events via DOCA Telemetry.

7. Destroying NetFlow.

Reference:

/opt/mellanox/doca/samples/doca_telemetry/telemetry_netflow_expor

/opt/mellanox/doca/samples/doca_telemetry/telemetry_netflow_expor

/opt/mellanox/doca/samples/doca_telemetry/telemetry_netflow_expor
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