
DOCA Telemetry Exporter

Table of contents

Introduction

Architecture

DOCA Telemetry API Walkthrough

DOCA Telemetry NetFlow API Walkthrough

API

DOCA Telemetry Bu�er Attributes

DOCA Telemetry File Write Attributes

DOCA Telemetry IPC Attributes

DOCA Telemetry Source Attributes

DOCA Telemetry Net�ow Collector Attributes

doca_telemetry_source_report

doca_telemetry_schema_add_type

Telemetry Data Format

Data Outputs

Inter-process Communication

Using IPC with Non-container Application

NetFlow

Fluent Bit

Prometheus

DOCA Telemetry Samples

Running the Sample

Samples

DOCA Telemetry Exporter 1

Table of contents

Introduction

Architecture

DOCA Telemetry API Walkthrough

DOCA Telemetry NetFlow API Walkthrough

API

DOCA Telemetry Bu�er Attributes

DOCA Telemetry File Write Attributes

DOCA Telemetry IPC Attributes

DOCA Telemetry Source Attributes

DOCA Telemetry Net�ow Collector Attributes

doca_telemetry_source_report

doca_telemetry_schema_add_type

Telemetry Data Format

Data Outputs

Inter-process Communication

Using IPC with Non-container Application

NetFlow

Fluent Bit

Prometheus

DOCA Telemetry Samples

Running the Sample

Samples

Telemetry Export

Telemetry NetFlow Export

DOCA Telemetry Exporter 2

Telemetry Export

Telemetry NetFlow Export

DOCA Telemetry Exporter 3

This guide provides an overview and con�guration instructions for DOCA Telemetry API.

Introduction

DOCA Telemetry API o�ers a fast and convenient way to transfer user-de�ned data to
DOCA Telemetry Service (DTS). In addition, the API provides several built-in outputs for
user convenience, including saving data directly to storage, NetFlow, Fluent Bit forwarding,
and Prometheus endpoint.

The following �gure shows an overview of the telemetry API. The telemetry client side,
based on the telemetry API, collects user-de�ned telemetry and sends it to the DTS
which runs as a container on BlueField. DTS does further data routing, including export
with �ltering. DTS can process several user-de�ned telemetry clients and can collect pre-
de�ned counters by itself. Additionally, telemetry API has built-in data outputs that can be
used from telemetry client applications.

The following scenarios are available:

Send data via IPC transport to DTS. For IPC, refer to Inter-process Communication.

Write data as binary �les to storage (for debugging data format).

Export data directly from DOCA Telemetry API application using the following
options:

Fluent Bit exports data through forwarding

NetFlow exports data from NetFlow API. Available from both API and DTS. See
details in Data Outputs.

DOCA Telemetry Exporter 4

Prometheus creates Prometheus endpoint and keeps the most recent data to
be scraped by Prometheus.

Users can either enable or disable any of the data outputs mentioned above. See Data
Outputs to see how to enable each output.

The library stores data in an internal bu�er and �ushes it to DTS/exporters in the
following scenarios:

Once the bu�er is full. Bu�er size is con�gurable with di�erent attributes.

When doca_telemetry_source_flush(void *doca_source) function is
invoked.

When the telemetry client terminates. If the bu�er has data, it is processed before
the library's context cleanup.

Architecture

DOCA Telemetry API is fundamentally built around four major parts:

DOCA schema – de�nes a reusable structure (see doca_telemetry_type) of
telemetry data which can be used by multiple sources

Source – the unique identi�er of the telemetry source that periodically reports
telemetry data.

DOCA Telemetry Exporter 5

Report – exports the information to the DTS

Finalize – releases all the resources

DOCA Telemetry API Walkthrough

The NVIDIA DOCA Telemetry API's de�nitions can be found in the doca_telemetry.h
�le.

The following is a basic walkthrough of the needed steps for using the DOCA Telemetry
API.

1. Create doca_schema .

1. Initialize an empty schema with default attributes:

2. Set the following attributes if needed:

doca_telemetry_schema_set_buffer_attr_*(…)

doca_telemetry_schema_set_file_write_*(…)

doca_telemetry_schema_set_ipc_*(…)

3. Add user event types:

Event type (struct doca_telemetry_type) is the user-de�ned data
structure that describes event �elds. The user is allowed to add multiple �elds
to the event type. Each �eld has its own attributes that can be set (see
example). Each event type is allocated an index (

struct doca_telemetry_schema *doca_schema;
doca_telemetry_schema_init("example_doca_schema_name",
&doca_schema);

DOCA Telemetry Exporter 6

doca_telemetry_type_index_t) which can be used to refer to the event
type in future API calls.

4. Apply attributes and types to start using the schema:

2. Create doca_source :

1. Initialize:

struct doca_telemetry_type *doca_type;
struct doca_telemetry_field *field1;

doca_telemetry_type_create(&doca_type);
doca_telemetry_field_create(&field1);

doca_telemetry_field_set_name(field1, "sport");
doca_telemetry_field_set_description(field1, "Source port")
doca_telemetry_field_set_type_name(field1,
DOCA_TELEMETRY_FIELD_TYPE_UINT16);
doca_telemetry_field_set_array_length(field1, 1);

/* The user loses ownership on field1 after a successful invocation of the function */

doca_telemetry_type_add_field(type, field1);

/* Add more fields if needed */

/* The user loses ownership on doca_type after a successful invocation of the function */

doca_telemetry_schema_add_type(doca_schema, "example_event",
doca_type, &type_index);

doca_telemetry_schema_start(doca_schema)

struct doca_telemetry_source *doca_source;

DOCA Telemetry Exporter 7

2. Set source ID and tag:

3. Apply attributes to start using the source:

You may optionally add more doca_sources if needed.

3. Collect the data per source and use:

4. Finalize:

1. For every source:

2. Destroy:

doca_telemetry_source_create(doca_schema, &doca_source);

doca_telemetry_source_set_id(doca_source, "example id");
doca_telemetry_source_set_tag(doca_source, "example tag");

doca_telemetry_source_start(doca_source)

doca_telemetry_source_report(source, type_index,
&my_app_test_ev1, num_events)

doca_telemetry_source_destroy(source)

doca_telemetry_schema_destroy(doca_schema)

DOCA Telemetry Exporter 8

Example implementation may be found in the telemetry_export DOCA sample (

telemetry_export_sample.c).

DOCA Telemetry NetFlow API Walkthrough

The DOCA telemetry API also supports NetFlow using DOCA Telemetry NetFlow API. This
API is designed to allow customers to easily support the NetFlow protocol at the endpoint
side. Once an endpoint produces NetFlow data using the API, the corresponding exporter
can be used to send the data to a NetFlow collector.

The NVIDIA DOCA Telemetry Net�ow API's de�nitions can be found in the
doca_telemetry_netflow.h �le.

The following are the steps to use the NetFlow API:

1. Initiate the API with an appropriate source ID:

2. Set the relevant attributes:

doca_telemetry_netflow_set_buffer_*(…)

doca_telemetry_netflow_set_file_write_*(…)

doca_telemetry_netflow_set_ipc_*(…)

doca_telemetry_netflow_source_set_*()

3. Start the API to use the con�gured attribute:

4. Form a desired NetFlow template and the corresponding NetFlow records.

doca_telemetry_netflow_init(source_id)

doca_telemetry_netflow_start();

DOCA Telemetry Exporter 9

5. Collect the NetFlow data.

6. (Optional) Flush the NetFlow data to send data immediately instead of waiting for
the bu�er to �ll:

7. Clean up the API:

Example implementation may be found in the telemetry_netflow_export DOCA

sample (telemetry_netflow_export_sample.c).

API

Refer to NVIDIA DOCA Library APIs, for more detailed information on DOCA Telemetry API.

The following sections provide additional details about the library API.

doca_telemetry_netflow_send(…)

doca_telemetry_netflow_flush()

doca_telemetry_netflow_destroy()

Note

The pkg-con�g (*.pc �le) for the DOCA Telemetry library is

included in DOCA's regular de�nitions (i.e., doca).

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Library+APIs/index.html

DOCA Telemetry Exporter 10

Some attributes are optional as they are initialized with default values. Refer to the
documentation of the the setter functions of respective attributes.

DOCA Telemetry Bu�er Attributes

Bu�er attributes are used to set the internal bu�er size and data root used by all DOCA
sources in the schema.

Con�guring the attributes is optional as they are initialized with default values.

buffer_size [in] – the size of the internal bu�er which accumulates the data
before sending it to the outputs. Data is sent automatically once the internal bu�er
is full. Larger bu�ers mean fewer data transmissions and vice versa.

data_root [in] – the path to where data is stored (if file_write_enabled is
set to true). See section "DOCA Telemetry File Write Attributes".

DOCA Telemetry File Write Attributes

File write attributes are used to enable and con�gure data storage to the �le system in
binary format.

Con�guring the attributes is optional as they are initialized with default values.

doca_telemetry_schema_set_buffer_size(doca_schema, 16 * 1024); /*
16KB - arbitrary value */

doca_telemetry_schema_set_buffer_data_root(doca_schema,
"/opt/mellanox/doca/services/telemetry/data/");

doca_telemetry_schema_set_file_write_enabled(doca_schema);
doca_telemetry_schema_set_file_write_max_size(doca_schema, 1 *
1024 * 1024); /* 1 MB */

doca_telemetry_schema_set_file_write_max_age(doca_schema, 60 * 60
* 1000000L); /* 1 Hour */

DOCA Telemetry Exporter 11

file_write_enable [in] – use this function to enable storage.
Storage/FileWrite is disabled by default.

file_write_max_size [in] – maximum �le size (in bytes) before a new �le is
created.

file_write_max_age [in] – maximum �le age (in microseconds) before a new
�le is created.

DOCA Telemetry IPC Attributes

IPC attributes are used to enable and con�gure IPC transport. IPC is disabled by default.

Con�guring the attributes is optional as they are initialized with default values.

ipc_enabled [in] – use this function to enable communication. IPC is disabled
by default.

Note

It is important to make sure that the IPC location matches the IPC
location used by DTS, otherwise IPC communication will fail.

doca_telemetry_schema_set_ipc_enabled(doca_schema);
doca_telemetry_schema_set_ipc_sockets_dir(doca_schema,
"/path/to/sockets/");
doca_telemetry_schema_set_ipc_reconnect_time(doca_schema, 100); /*
100 milliseconds */

doca_telemetry_schema_set_ipc_reconnect_tries(doca_schema, 3);
doca_telemetry_schema_set_ipc_socket_timeout(doca_schema, 3 *
1000) /* 3 seconds */

DOCA Telemetry Exporter 12

ipc_sockets_dir [in] – a directory that contains UDS for IPC messages. Both
the telemetry program and DTS must use the same folder. DTS that runs on
BlueField as a container has the default folder
/opt/mellanox/doca/services/telemetry/ipc_sockets .

ipc_reconnect_time [in] – maximum reconnection time in milliseconds after
which the client is considered disconnected.

ipc_reconnect_tries [in] – maximum reconnection attempts.

ipc_socket_timeout [in] – timeout for the IPC socket.

DOCA Telemetry Source Attributes

Source attributes are used to create proper folder structure. All the data collected from
the same host is written to the source_id folder under data root.

source_id [in] – describes the data's origin. It is recommended to set it to the
hostname. In later data�ow steps, data is aggregated from multiple hosts/DPUs and
source_id helps navigate in it.

source_tag [in] – a unique data identi�er. It is recommended to set it to
describe the data collected in the application. Several telemetry apps can be

Note

Sources attributes are mandatory and must be con�gured before
invoking doca_telemetry_source_start() .

doca_telemetry_source_set_id(doca_source, "example_source");
doca_telemetry_source_set_tag(doca_source, "example_tag");

DOCA Telemetry Exporter 13

deployed on a single node (host/DPU). In that case, each telemetry data would have a
unique tag and all of them would share a single source_id .

DOCA Telemetry Net�ow Collector Attributes

DOCA Telemetry NetFlow API attributes are optional and should only be used for
debugging purposes. They represent the NetFlow collector's address while working locally,
e�ectively enabling the local NetFlow exporter.

collector_addr [in] – NetFlow collector's address (IP or name). Default value is

NULL .

collector_port [in] – NetFlow collector's port. Default value is

DOCA_NETFLOW_DEFAULT_PORT (2055) .

doca_telemetry_source_report

The source report function is the heart of communication with the DTS. The report
operation causes event data to be allocated to the internal bu�er. Once the bu�er is full,
data is forwarded onward according to the set con�guration.

doca_telemetry_netflow_set_collector_addr("127.0.0.1");
doca_telemetry_netflow_set_collector_port(6343);

doca_error_t doca_telemetry_source_report(struct
doca_telemetry_source *doca_source,

doca_telemetry_type_index_t index,
 void *data,
 int count);

DOCA Telemetry Exporter 14

doca_source [in] – a pointer to the doca_telemetry_source which reports
the event

index [in] – the event type index received when the schema was created

data [in] – a pointer to the data bu�er that needs to be sent

count [in] – numbers of events to be written to the internal bu�er

The function returns DOCA_SUCCESS if successful, or a doca_error_t if an error
occurs. If a memory-related error occurs, try a larger bu�er size that matches the event's
size.

doca_telemetry_schema_add_type

This function allows adding a reusable telemetry data struct, also known as a schema. The
schema allows sending a prede�ned data structure to the telemetry service. Note that it
is mandatory to de�ne a schema for proper functionality of the library. After adding the
schemas, one needs to invoke the schema start function.

doca_schema [in] – a pointer to the schema to which the type is added

new_type_name [in] – name of the new type

fields [in] – user-de�ned �elds to be used for the schema. Multiple �elds can
(and should) be added.

doca_error_t doca_telemetry_schema_add_type(struct
doca_telemetry_schema *doca_schema,
 const char
*new_type_name,
 struct
doca_telemetry_type *type,

doca_telemetry_type_index_t *type_index);

DOCA Telemetry Exporter 15

type_index [out] – type index for the created type is written to this output
variable

The function returns DOCA_SUCCESS if successful, or doca_error_t if an error occurs.

Telemetry Data Format

The internal data format consists of 2 parts: A schema containing metadata, and the
actual binary data. When data is written to storage, the data schema is written in JSON
format, and the data is written as binary �les. In the case of IPC transport, both schema
and binary data are sent to DTS. In the case of export, data is converted to the formats
required by exporter.

Adding custom event types to the schema can be done using
doca_telemetry_schema_add_type API call.

Note

See available DOCA_TELEMETRY_FIELD_TYPE s in

doca_telemetry.h . See example of usage in

/opt/mellanox/doca/samples/doca_telemetry/telemetry_export/telem
.

Note

It is highly recommended to have the timestamp �eld as the �rst �eld
since it is required by most databases. To get the current timestamp
in the correct format use:

DOCA Telemetry Exporter 16

Data Outputs

This section describes available exporters:

IPC

NetFlow

Fluent Bit

Prometheus

Fluent Bit and Prometheus exporters are presented in both API and DTS. Even though DTS
export is preferable, the API has the same possibilities for development �exibility.

Inter-process Communication

IPC transport automatically transfers the data from the telemetry-based program to DTS
service.

It is implemented as a UNIX domain socket (UDS) sockets for short messages and shared
memory for data. DTS and the telemetry-based program must share the same
ipc_sockets directory.

When IPC transport is enabled, the data is sent from the DOCA-telemetry-based
application to the DTS process via shared memory.

To enable IPC, use the doca_telemetry_schema_set_ipc_enabled API function.

doca_error_t
doca_telemetry_get_timestamp(doca_telemetry_timestamp_t
*timestamp);

Note

DOCA Telemetry Exporter 17

To check the IPC status for the current context, use:

If IPC is enabled and for some reason connection is lost, it would try to automatically
reconnect on every report's function call.

Using IPC with Non-container Application

When developing and testing a non-container DOCA Telemetry-based program and its
IPC interaction with DTS, some modi�cations are necessary in DTS's deployment for the
program to interact with DTS over IPC:

Shared memory mapping should be removed: telemetry-ipc-shm

Host IPC should be enabled: hostIPC

File before the change:

IPC transport relies on system folders. For the host's usage, run the
DOCA-telemetry-API-based application with sudo to be able to use
IPC with system folders.

doca_error_t doca_telemetry_check_ipc_status(struct
doca_telemetry_source *doca_source,

doca_telemetry_ipc_status_t *status)

spec:
 hostNetwork: true

 volumes:
 - name: telemetry-service-config
 hostPath:
 path: /opt/mellanox/doca/services/telemetry/config
 type: DirectoryOrCreate
 ...

DOCA Telemetry Exporter 18

File after the change:

These changes ensure that a DOCA-based program running outside of a container is able
to communicate with DTS over IPC.

 - name: telemetry-ipc-shm
 hostPath:
 path: /dev/shm/telemetry
 type: DirectoryOrCreate
 containers:
 ...
 volumeMounts:
 - name: telemetry-service-config
 mountPath: /config
 ...
 - name: telemetry-ipc-shm
 mountPath: /dev/shm

spec:
 hostNetwork: true

 hostIPC: true

 volumes:
 - name: telemetry-service-config
 hostPath:
 path: /opt/mellanox/doca/services/telemetry/config
 type: DirectoryOrCreate
 ...
 containers:
 ...
 volumeMounts:
 - name: telemetry-service-config
 mountPath: /config

DOCA Telemetry Exporter 19

NetFlow

When the NetFlow exporter is enabled (NetFlow Collector Attributes are set), it sends the
NetFlow data to the NetFlow collector speci�ed by the attributes: Address and port. This
exporter must be used when using DOCA Telemetry NetFlow API.

Fluent Bit

Fluent Bit export is based on fluent_bit_configs with .exp �les for each
destination. Every export �le corresponds to one of Fluent Bit's destinations. All found
and enabled .exp �les are used as separate export destinations. Examples can be found
after running DTS container under its con�guration folder (
/opt/mellanox/doca/services/telemetry/config/fluent_bit_configs/).

All .exp �les are documented in-place.

Fluent Bit .exp �les have 2-level data routing:

source_tags in .exp �les (documented in-place)

DPU# ls -l
/opt/mellanox/doca/services/telemetry/config/fluent_bit_configs/
/opt/mellanox/doca/services/telemetry/config/fluent_bit_configs/:
total 56

-rw-r--r-- 1 root root 528 Oct 11 07:52 es.exp
-rw-r--r-- 1 root root 708 Oct 11 07:52 file.exp
-rw-r--r-- 1 root root 1135 Oct 11 07:52 forward.exp
-rw-r--r-- 1 root root 719 Oct 11 07:52 influx.exp
-rw-r--r-- 1 root root 571 Oct 11 07:52 stdout.exp
-rw-r--r-- 1 root root 578 Oct 11 07:52 stdout_raw.exp
-rw-r--r-- 1 root root 2137 Oct 11 07:52 ufm_enterprise.fset

DOCA Telemetry Exporter 20

Token-based �ltering governed by .fset �les (documented in

ufm_enterprise.fset)

To run with Fluent Bit exporter, set enable=1 in required .exp �les and set the
environment variables before running the application:

Prometheus

Prometheus exporter sets up endpoint (HTTP server) which keeps the most recent events
data as text records.

The Prometheus server can scrape the data from the endpoint while the DOCA-Telemetry-
API-based application stays active.

Check the generic example of Prometheus records:

Labels are customizable metadata which can be set from data �le. Events names could be
�ltered by token-based name-match according to .fset �les.

Set the following environment variables before running.

export FLUENT_BIT_EXPORT_ENABLE=1

export FLUENT_BIT_CONFIG_DIR=/path/to/fluent_bit_configs
export LD_LIBRARY_PATH=/opt/mellanox/collectx/lib

event_name_1{label_1="label_1_val", label_2="label_2_val", label_3="label_3_val",
label_4="label_4_val"} counter_value_1 timestamp_1
event_name_2{label_1="label_1_val", label_2="label_2_val", label_3="label_3_val",
label_4="label_4_val"} counter_value_2 timestamp_2
...

Set the endpoint host and port to enable export.
export PROMETHEUS_ENDPOINT=http://0.0.0.0:9101

DOCA Telemetry Exporter 21

Set indexes as a comma-separated list to keep data for every
index field. In
this example most recent data will be kept for every record with
unique
`port_num`. If not set, only one data per source will be kept
as the most
recent.
export PROMETHEUS_INDEXES=Port_num

Set path to a file with Prometheus custom labels. Use labels to
store
information about data source and indexes. If not set, the
default labels
will be used.
export CLX_METADATA_FILE=/path/to/labels.txt

Set the folder which contains fset-files. If set, Prometheus
will scrape
only filtered data according to fieldsets.
export PROMETHEUS_CSET_DIR=/path/to/prometheus_cset

Note

To scrape the data without the Prometheus server, use:

Or:

curl -s http://0.0.0.0:9101/metrics

DOCA Telemetry Exporter 22

DOCA Telemetry Samples

This section provides DOCA Telemetry sample implementations on top of the BlueField
DPU.

The telemetry samples in this document demonstrate an initial recommended
con�guration that covers two use cases:

Standard DOCA Telemetry data

DOCA Telemetry for NetFlow data

The telemetry samples run on the BlueField. If write-to-�le is enabled, telemetry data is
stored to BlueField's storage. If inter-process communication (IPC) is enabled, data is sent
to the DOCA Telemetry Service (DTS) running on the same BlueField.

For information on initializing and con�guring DTS, refer to NVIDIA DOCA Telemetry
Service Guide.

Running the Sample

1. Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

2. To build a given sample:

curl -s http://0.0.0.0:9101/{fset_name}

cd /opt/mellanox/doca/samples/doca_telemetry/<sample_name>
meson /tmp/build

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Telemetry+Service+Guide/index.html
https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Telemetry+Service+Guide/index.html
https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Installation+Guide+for+Linux/index.html
https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Troubleshooting+Guide/index.html

DOCA Telemetry Exporter 23

3. Sample (e.g., telemetry_export) usage:

4. For additional information per sample, use the -h option:

ninja -C /tmp/build

Note

The binary doca_<sample_name> will be created under

/tmp/build/ .

Usage: doca_telemetry_export [DOCA Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version
information
 -l, --log-level Set the (numeric) log
level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR,
40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log
level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR,
40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags
from an input json file

/tmp/build/doca_<sample_name> -h

DOCA Telemetry Exporter 24

Samples

Telemetry Export

This sample illustrates how to use the telemetry API. The sample uses a custom schema
for telemetry.

The sample logic includes:

1. Con�guring schema attributes.

2. Initializing schema.

3. Creating telemetry source.

4. Creating example events.

5. Reporting example events via DOCA Telemetry.

6. Destroying source and schema.

Reference:

/opt/mellanox/doca/samples/doca_telemetry/telemetry_export/teleme

/opt/mellanox/doca/samples/doca_telemetry/telemetry_export/teleme

/opt/mellanox/doca/samples/doca_telemetry/telemetry_export/meson.

Telemetry NetFlow Export

This sample illustrates how to use the NetFlow functionality of the telemetry API.

The sample logic includes:

1. Con�guring NetFlow attributes.

2. Initializing NetFlow.

3. Creating telemetry source.

DOCA Telemetry Exporter 25

4. Starting NetFlow.

5. Creating example events.

6. Reporting example events via DOCA Telemetry.

7. Destroying NetFlow.

Reference:

/opt/mellanox/doca/samples/doca_telemetry/telemetry_netflow_expor

/opt/mellanox/doca/samples/doca_telemetry/telemetry_netflow_expor

/opt/mellanox/doca/samples/doca_telemetry/telemetry_netflow_expor

Notice

This document is provided for information purposes only and shall not be regarded as a
warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no
representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in
this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (de�ned below), code,
or functionality.

NVIDIA reserves the right to make corrections, modi�cations, enhancements, improvements,
and any other changes to this document, at any time without notice.

Customer should obtain the latest
relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of
order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives
of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or
warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where
failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property
or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no
representation or warranty that products based on this document will be suitable for any speci�ed use. Testing of all
parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and
determine the applicability of any information contained in this document, ensure the product is suitable and �t for the
application planned by customer, and perform the necessary testing for the application in order to avoid a default of the
application or the product. Weaknesses in customer’s product designs may a�ect the quality and reliability of the
NVIDIA product and may result in additional or di�erent conditions and/or requirements beyond those contained in this
document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or
attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer
product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright,
or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property
rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in
advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS

DOCA Telemetry Exporter 26

DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of
Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are
trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

© Copyright 2024, NVIDIA. PDF Generated on 01/15/2025

	Introduction
	Architecture
	DOCA Telemetry API Walkthrough
	DOCA Telemetry NetFlow API Walkthrough

	API
	DOCA Telemetry Buffer Attributes
	DOCA Telemetry File Write Attributes
	DOCA Telemetry IPC Attributes
	DOCA Telemetry Source Attributes
	DOCA Telemetry Netflow Collector Attributes
	doca_telemetry_source_report
	doca_telemetry_schema_add_type

	Telemetry Data Format
	Data Outputs
	Inter-process Communication
	Using IPC with Non-container Application
	NetFlow
	Fluent Bit
	Prometheus

	DOCA Telemetry Samples
	Running the Sample
	Samples
	Telemetry Export
	Telemetry NetFlow Export

