
DOCA Services

Table of contents

NVIDIA BlueField DPU Container Deployment Guide 7

NVIDIA DOCA BlueMan Service Guide 24

NVIDIA DOCA Firefly Service Guide 32

NVIDIA DOCA Flow Inspector Service Guide 82

NVIDIA DOCA HBN Service Guide 99

HBN Service Release Notes 166

NVIDIA DOCA Telemetry Service Guide 177

OpenvSwitch Offload 218

DOCA Services 1

Table of contents

NVIDIA BlueField DPU Container Deployment Guide

NVIDIA DOCA BlueMan Service Guide

NVIDIA DOCA Firefly Service Guide

NVIDIA DOCA Flow Inspector Service Guide

NVIDIA DOCA HBN Service Guide

HBN Service Release Notes

NVIDIA DOCA Telemetry Service Guide

OpenvSwitch Offload

DOCA Services 2

This is an overview of the set of services provided by DOCA and their purpose.

Introduction

DOCA services are DOCA-based products, wrapped in a container for fast and easy
deployment on top of the NVIDIA® BlueField® DPU. DOCA services leverage DPU
capabilities to offer telemetry, time synchronization, networking solutions, and more.

Services containers can be found under the official NGC catalog, labeled under the
"DOCA" and "DPU" NGC labels, as well as the built-in NVIDIA platform option ("DOCA") on
the container catalog.

For information on the deployment of the services, refer to the NVIDIA BlueField DPU
Container Deployment Guide.

Development Lifecycle

DOCA-based containers consist of two main categories:

DOCA Base Images – containerized DOCA environments for both runtime and
development. Used either by developers for their development environment or in the
process of containerizing a DOCA-based solution.

DOCA Services – containerized DOCA-based products

The process of developing and containerizing a DOCA-based product is described in the
following sections.

Development

Before containerizing a product, users must first design and develop it using the same
process for a bare-metal deployment on the BlueField DPU.

This process consists of the steps:

1. Identifying the requirements for the DOCA-based solution.

2. Reviewing the feature set offered by the DOCA SDK libraries, as shown in detail in
their respective programming guides.

3. Starting the development process by following our Developer Guide to make the
best use of our provided tips and tools.

https://catalog.ngc.nvidia.com/
https://docs.nvidia.com/doca/archive/2-5-3/DOCA+Programming+Guide/index.html
https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Developer+Guide/index.html

DOCA Services 3

4. Testing the developed solution.

Once the developed product is mature enough, it is time to start containerizing it.

Containerization

In this process, it is recommended to make use of DOCA's provided base-images, as
available on DOCA's NGC page.

Three image flavors are provided:

base-rt – includes the DOCA runtime, using the most basic runtime environment
required by DOCA's SDK

full-rt – builds on the previous image and includes the full list of runtime
packages, which are all user-mode components that can be found under the doca-
runtime package

devel – builds on the previous image and adds headers and development tools for
developing and debugging DOCA applications. This image is particularly useful for
multi-stage builds.

All images are preconfigured to use to the DOCA repository of the matching DOCA
version. This means that installing an additional DOCA package as part of a Dockerfile /
within the development container can be done using the following commands:

For DOCA and CUDA environments, there are similar flavors for these images combined
with CUDA's images:

base-rt (DOCA) + base (CUDA)

full-rt (DOCA) + runtime (CUDA)

devel (DOCA) + devel (CUDA)

apt update
apt install <package name>

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/cuda

DOCA Services 4

Once the containerized solution is mature enough, users may start profiling it in
preparation for a production-grade deployment.

Profiling

As mentioned in the NVIDIA BlueField DPU Container Deployment Guide, the current
deployment model of containers on top of the DPU is based on kubelet-standalone. And
more specifically, this Kubernetes-based deployment makes use of YAML files to describe
the resources required by the pod such as:

CPU

RAM

Huge pages

It is recommended to profile your product so as to estimate the resources it requires
(under regular deployments, as well as under stress testing) so that the YAML would
contain an accurate "resources" section. This allows an administrator to better understand
what the requirements are for deploying your service, as well as allow the k8s
infrastructure to ensure that the service is not misbehaving once deployed.

Once done, the containerized DOCA-based product is ready for the final testing rounds,
after which it will be ready for deployment in production environments.

Services

Container Deployment

This page provides an overview and deployment configuration of DOCA containers for
NVIDIA® BlueField® DPU.

DOCA BlueMan

DOCA BlueMan service runs in the DPU as a standalone web dashboard and consolidates
all the basic information, health, and telemetry counters into a single interface. This

DOCA Services 5

friendly, easy-to-use web dashboard acts as a one-stop shop for all the information
needed to monitor the DPU.

DOCA Firefly

DOCA Firefly service provides precision time protocol (PTP) based time syncing services to
the BlueField DPU . PTP is used to synchronize clocks in a network which, when used in
conjunction with hardware support, PTP is capable of sub-microsecond accuracy, which is
far better than what is normally obtainable with network time protocol (NTP).

DOCA Flow Inspector

DOCA Flow Inspector service allows monitoring real-time data and extraction of telemetry
components which can be utilized by various services for security, big data and more.

Specific mirrored packets can be transferred to Flow Inspector for parsing and analyzing.
These packets are forwarded to DTS, which gathers predefined statistics determined by
various telemetry providers.

DOCA HBN

DOCA Host-based Networking service orchestrates network connectivity of dynamically
created VMs/containers on cloud servers. HBN service is a BGP router that supports E-
VPN extension to enable multi-tenant cloud.

At its core, HBN is the Linux networking acceleration driver of the DPU, Netlink to a DOCA
daemon which seamlessly accelerates Linux networking using hardware programming
APIs.

DOCA Telemetry

DOCA Telemetry service (DTS) collects data from built-in providers and from external
telemetry applications. Collected data is stored in binary format locally on the DPU and
can be propagated onwards using Prometheus endpoint pulling, pushing to Fluent Bit, or

DOCA Services 6

using other supported providers. Exporting NetFlow packets collected using the DOCA
Telemetry NetFlow API is a great example of DTS usage.

Info

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

mailto:DOCA-Feedback@exchange.nvidia.com
mailto:DOCA-Feedback@exchange.nvidia.com

DOCA Services 7

NVIDIA BlueField DPU
Container Deployment Guide
This guide provides an overview and deployment configuration of DOCA containers for
NVIDIA® BlueField® DPU.

Introduction

DOCA containers allow for easy deployment of ready-made DOCA environments to the
DPU, whether it is a DOCA service bundled inside a container and ready to be deployed, or
a development environment already containing the desired DOCA version.

Containerized environments enable the users to decouple DOCA programs from the
underlying BlueField software. Each container is pre-built with all needed libraries and
configurations to match the specific DOCA version of the program at hand. One only
needs to pick the desired version of the service and pull the ready-made container of that
version from NVIDIA's container catalog.

The different DOCA containers are listed on NGC, NVIDIA's container catalog, and can be
found under both the "DOCA" and "DPU" labels.

https://ngc.nvidia.com/catalog

DOCA Services 8

Prerequisites

Refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField related software

BlueField image version required is 3.9.0 and higher

Container Deployment

Deploying containers on top of the BlueField DPU requires the following setup sequence:

1. Pull the container .yaml configuration files.

2. Modify the container's .yaml configuration file.

3. Deploy the container. The image is automatically pulled from NGC.

Some of the steps only need to be performed once, while others are required before the
deployment of each container.

What follows is an example of the overall setup sequence using the DOCA application
recognition (AR) container as an example.

Note

Container deployment based on standalone Kubelet, as presented in
this guide, is currently in alpha version and is subject to change in
future releases.

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Installation+Guide+for+Linux/index.html

DOCA Services 9

Pull Container YAML Configurations

Pulling the latest resource version can be done using the following command:

Note

This step pulls the .yaml configurations from NGC. If you have
already performed this step for other DOCA containers you may skip
to the next section.

Pull the entire resource as a *.zip file

wget --content-disposition
https://api.ngc.nvidia.com/v2/resources/nvidia/doca/doca_container_
-O doca_container_configs_2.5.0v1.zip
Unzip the resource

DOCA Services 10

More information about additional versions can be found in the NGC resource page.

Container-specific Instructions

Some containers require specific configuration steps for the resources used by the
application running inside the container and modifications for the .yaml configuration
file of the container itself.

Refer to the container-specific instructions listed under the container's relevant page on
NGC.

Structure of NGC Resource

The DOCA NGC resource downloaded in section "Pull Container YAML Configurations"
contains a configs directory under which a dedicated folder per DOCA version is

located. For example, 2.0.2 will include all currently available .yaml configuration files
for DOCA 2.0.2 containers.

unzip -o doca_container_configs_2.5.0v1.zip -d
doca_container_configs_2.5.0v1

doca_container_configs_2.0.2v1
├── configs
│ ├── 1.2.0

│ │ ...
│ └── 2.0.2

│ ├── doca_application_recognition.yaml
│ ├── doca_blueman.yaml
│ ├── doca_devel.yaml
│ ├── doca_devel_cuda.yaml
│ ├── doca_firefly.yaml
│ ├── doca_flow_inspector.yaml
│ ├── doca_hbn.yaml

DOCA Services 11

In addition, the resource also contains a scripts directory under which services may
choose to provide additional helper-scripts and configuration files to use with their
services.

The folder structure of the scripts directory is as follows:

A user wishing to deploy an older version of the DOCA service would still have access to
the suitable YAML file (per DOCA release under configs) and scripts (under the service-

specific version folder which resides under scripts).

Spawn Container

Once the desired .yaml file is updated, simply copy the configuration file to Kubelet's

input folder. Here is an example using the doca_firefly.yaml , corresponding to the
DOCA Firefly service.

│ ├── doca_ips.yaml
│ ├── doca_snap.yaml
│ ├── doca_telemetry.yaml
│ └── doca_url_filter.yaml

+ doca_container_configs_2.0.2v1
+-+ configs
| +-- ...
+-+ scripts
 +-+ doca_firefly <== Name of DOCA Service
 +-+ doca_hbn <== Name of DOCA Service
 | +-+ 1.3.0

 | | +-- ... <== Files for the DOCA HBN
version "1.3.0"

 | +-+ 1.4.0

 | | +-- ... <== Files for the DOCA HBN
version "1.4.0"

DOCA Services 12

Kubelet automatically pulls the container image from NGC and spawns a pod executing
the container. In this example, the DOCA Firelfy service starts executing right away and its
printouts would be seen via the container's logs.

Review Container Deployment

When deploying a new container, it is recommended to follow this procedure to ensure
successful completion of each step in the deployment:

1. View currently active pods and their IDs:

When deploying a new container, search for a matching line in the command's
output:

cp doca_firefly.yaml /etc/kubelet.d

sudo crictl pods

Info

It may take up to 20 seconds for the pod to start.

POD ID CREATED STATE
NAME NAMESPACE
ATTEMPT RUNTIME
06bd84c07537e 4 seconds ago Ready
doca-firefly-my-dpu default 0
(default)

DOCA Services 13

2. If a matching line fails to appear, it is recommended to view Kubelet's logs to get
more information about the error:

Once the issue is resolved, proceed to the next steps.

3. Verify that the container image is successfully downloaded from NGC into the DPU's
container registry (download time may vary based on the size of the container
image):

Example output:

4. View currently active containers and their IDs:

sudo journalctl -u kubelet --since -5m

Info

For more troubleshooting information and tips, refer to the
matching section in our Troubleshooting Guide.

sudo crictl images

IMAGE TAG IMAGE
ID SIZE
k8s.gcr.io/pause 3.2
2a060e2e7101d 251kB
nvcr.io/nvidia/doca/doca_firefly 1.1.0-doca2.0.2
134cb22f34611 87.4MB

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Troubleshooting+Guide/index.html

DOCA Services 14

Once again, find a matching line for the deployed container (boot time may vary
depending on the container's image size):

5. In case of failure, to see a line matching the container, check the list of all recent
container deployments:

It is possible that the container encountered an error during boot and exited right
away:

6. During the container's lifetime, and for a short timespan after it exits, once can view
the containers logs as were printed to the standard output:

sudo crictl ps

CONTAINER IMAGE CREATED
STATE NAME ATTEMPT
POD ID POD
b505a05b7dc23 134cb22f34611 4 minutes ago
Running doca-firefly 0
06bd84c07537e doca-firefly-my-dpu

sudo crictl ps -a

CONTAINER IMAGE CREATED
STATE NAME ATTEMPT
POD ID POD
de2361ec15b61 134cb22f34611 1 second ago
Exited doca-firefly 1
4aea5f5adc91d doca-firefly-my-dpu

DOCA Services 15

In this case, the user can learn from the log that the wrong configuration was
passed to the container:

Stop Container

The recommended way to stop a pod and its containers is as follows:

1. Delete the .yaml configuration file for Kubelet to stop the pod:

2. Stop the pod directly (only if it still shows "Ready"):

sudo crictl logs <container-id>

$ sudo crictl logs de2361ec15b61
Starting DOCA Firefly - Version 1.1.0

...
Requested the following PTP interface: p10
Failed to find interface "p10". Aborting

Info

For additional information and guides on using crictl , refer to the
Kubernetes documentation.

rm /etc/kubelet.d/<file name>.yaml

https://kubernetes.io/docs/tasks/debug-application-cluster/crictl/

DOCA Services 16

3. Once the pod stops, it may also be necessary to stop the container itself:

Troubleshooting Common Errors

This section provides a list of common errors that may be encountered when spawning a
container. These account for the vast majority of deployment errors and are easy to verify
first before trying to parse the Kubelet journal log.

Yaml Syntax

The syntax of the .yaml file is extremely sensitive and minor indentation changes may
cause it to stop working. The file uses spaces (' ') for indentations (two per indent). Using
any other number of spaces causes an undefined behavior.

Huge Pages

The container only spawns once all the required system resources are allocated on the
DPU and can be reserved for the container. The most notable resource is huge pages.

1. Before deploying the container, make sure that:

sudo crictl stopp <pod-id>

sudo crictl stop <container-id>

Info

If more troubleshooting is required, refer to the matching section in
the Troubleshooting Guide.

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Troubleshooting+Guide/index.html

DOCA Services 17

1. Huge pages are allocated as required per container.

2. Both the amount and size of pages match the requirements precisely.

2. Once new huge pages are allocated, it is recommended to restart the container
service to apply the change:

3. Once the above operations are completed successfully, the container could be
deployed (YAML can be copied to /etc/kubelet.d).

Advanced Troubleshooting

Manual Execution from Within Container - Debugging

Although most containers define the entrypoint.sh script as the container's
ENTRYPOINT, this option is only valid for interaction-less sessions. In some debugging
scenarios, it is useful to have better control of the programs executed within the
container via an interactive shell session. Hence, the .yaml file supports an additional
execution option.

Uncommenting (i.e., removing # from) the following 2 lines in the .yaml file causes the
container to boot without spawning the container's entrypoint script.

sudo systemctl restart kubelet.service
sudo systemctl restart containerd.service

Note

The deployment described in this section requires an in-depth
knowledge of the container's structure. As this structure might
change from version to version, it is only recommended to use this
deployment for debugging, and only after other debugging steps have
been attempted.

DOCA Services 18

In this execution mode, users can attach a shell to the spawned container:

Once attached, users get a full shell session enabling them to execute internal programs
directly at the scope of the container.

Air-gapped Container Deployment

Container deployment on the BlueField DPU can be done in air-gapped networks and does
not require an Internet connection. As explained previously, per DOCA service container,
there are 2 required components for successful deployment:

Container image – hosted on NVIDIA's NGC catalog

YAML file for the container

From an infrastructure perspective, one additional module is required:

k8s.gcr.io/pause container image

Pulling Container for Offline Deployment

When preparing an air-gapped environment, users must pull the required container
images in advance so they could be imported locally to the target machine:

command: ["sleep"]
args: ["infinity"]

crictl exec -it <container-id> /bin/bash

docker pull <container-image:tag>
docker save <container-image:tag> > <name>.tar

DOCA Services 19

The following example pulls DOCA Firefly 1.1.0-doca2.0.2 :

Importing Container Image

After exporting the image from the container catalog, users must place the created
*.tar files on the target machine on which to deploy them. The import command is as

follows:

For example, to import the firefly .tar file pulled in the previous section:

docker pull nvcr.io/nvidia/doca/doca_firefly:1.1.0-doca2.0.2
docker save nvcr.io/nvidia/doca/doca_firefly:1.1.0-doca2.0.2 >
firefly_v1.1.0.tar

Note

Some of DOCA's container images support multiple architectures,
causing the docker pull command to pull the image according to
the architecture of the machine on which it is invoked. Users may
force the operation to pull an Arm image by passing the
--platform flag:

docker pull --platform=linux/arm64 <container-
image:tag>

ctr --namespace k8s.io image import <name>.tar

DOCA Services 20

Examining the status of the operation can be done using the image inspection command:

Built-in Infrastructure Support

The DOCA image comes pre-shipped with the k8s.gcr.io/pause image:

This image is imported by default during boot as part of the automatic activation of DOCA
Telemetry Service (DTS).

In versions prior to DOCA 4.2.0, this image can be pulled and imported as follows:

Exporting the image:

ctr --namespace k8s.io image import firefly_v1.1.0.tar

crictl images

/opt/mellanox/doca/services/infrastructure/
├── docker_pause_3_2.tar
└── enable_offline_containers.sh

Note

Importing the image independently of DTS can be done using the
enable_offline_container.sh script located under the same

directory as the image's *.tar file.

DOCA Services 21

Importing the image:

DOCA Services for Host

A subset of the DOCA services are available for host-based deployment as well. This is
indicated in those services' deployment and can also be identified by having container
tags on NGC with the *-host suffix.

In contrast to the managed DPU environment, the deployment of DOCA services on the
host is based on docker. This deployment can be extended further based on the user's
own container runtime solution.

Docker Deployment

DOCA services for the host are deployed directly using Docker.

1. Make sure Docker is installed on your host. Run:

docker pull k8s.gcr.io/pause:3.2

docker save k8s.gcr.io/pause:3.2 > docker_pause_3_2.tar

ctr --namespace k8s.io image import docker_pause_3_2.tar
crictl images
IMAGE TAG IMAGE
ID SIZE
k8s.gcr.io/pause 3.2
2a060e2e7101d 487kB

docker version

DOCA Services 22

If it is not installed, visit the official Install Docker Engine webpage for installation
instructions.

2. Make sure the Docker service is started. Run:

3. Pull the container image directly from NGC (can also be done using the
docker run command):

1. Visit the NGC page of the desired container.

2. Under the "Tags" menu, select the desired tag and click the paste icon so it is
copied to the clipboard.

3. The docker pull command will be as follows:

For example:

sudo systemctl daemon-reload
sudo systemctl start docker

sudo docker pull <NGC container tag here>

sudo docker pull nvcr.io/nvidia/doca/doca_firefly:1.1.0-
doca2.0.2-host

Note

For DOCA services with deployments on both DPU and
host, make sure to select the tag ending with -host .

https://docs.docker.com/engine/install/

DOCA Services 23

4. Deploy the DOCA service using Docker:

1. The deployment is performed using the following command:

2. The specific deployment command for each DOCA service is listed in their
respective deployment guide.

sudo docker run --privileged --net=host -v <host
directory>:<container directory> -e <env variables> -it
<container tag> /entrypoint.sh

Info

For more information, refer to Docker's official
documentation.

https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/

DOCA Services 24

NVIDIA DOCA BlueMan
Service Guide
This guide provides instructions on how to use the DOCA BlueMan service on top of
NVIDIA® BlueField® DPU.

Introduction

DOCA BlueMan runs in the DPU as a standalone web dashboard and consolidates all the
basic information, health, and telemetry counters into a single interface.

All the information that BlueMan provides is gathered from the DOCA Telemetry Service
(DTS), starting from DTS version 1.11.1-doca1.5.1.

Requirements

BlueField image version 3.9.3.1 or higher

DTS and the DOCA Privileged Executer (DPE) daemon must be up and running

DOCA Services 25

Verifying DTS Status

All the information that BlueMan provides is gathered from DTS .

Verify that the state of the DTS pod is ready :

Verify that the state of the DTS container is running :

Verifying DPE Status

All the information that DTS gathers for BlueMan is from the the DPE daemon .

Verify that the DPE daemon is active :

If the daemon is inactive, activate it by starting the dpe.service :

Service Deployment

$ crictl pods --name doca-telemetry-service

$ crictl ps --name doca-telemetry-service

$ systemctl is-active dpe.service
active

$ systemctl start dpe.service

DOCA Services 26

For information about the deployment of DOCA containers on top of the BlueField DPU,
refer to the NVIDIA DOCA Container Deployment Guide.

DOCA Service on NGC

BlueMan is available on NGC, NVIDIA's container catalog. Service-specific configuration
steps and deployment instructions can be found under the service's container page.

Default Deployment – BlueField BSP

BlueMan service is located under /opt/mellanox/doca/services/blueman /.

The following is a list of the files under the BlueMan directory:

Enabling BlueMan Service

Using Script

Run bring_up_doca_blueman_service.sh :

Manual Procedure

doca_blueman_fe_service_<version>-doca<version>_arm64.tar
doca_blueman_conv_service_<version>-doca<version>_arm64.tar
doca_blueman_standalone.yaml
bring_up_doca_blueman_service.sh

$ chmod +x
/opt/mellanox/doca/services/blueman/bring_up_doca_blueman_service.s
$
/opt/mellanox/doca/services/blueman/bring_up_doca_blueman_service.s

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_blueman_fe

DOCA Services 27

1. Import images to crictl images:

2. Verify that the DPE daemon is active:

If the daemon is inactive, activate it by starting the dpe.service :

3. Copy blueman_standalone.yaml to /etc/kubelet.d/ :

Verifying Deployment Success

1. Verify that the DPE daemon is active:

$ cd /opt/mellanox/doca/services/blueman/
$ ctr --namespace k8s.io image import
doca_blueman_fe_service_<version>-doca<version>_arm64.tar
$ ctr --namespace k8s.io image import
doca_blueman_conv_service_<version>-doca<version>_arm64.tar

$ systemctl is-active dpe.service
active

$ systemctl start dpe.service

$ cp doca_blueman_standalone.yaml /etc/kubelet.d/

DOCA Services 28

2. Verify that the state of the DTS container is running :

3. Verify that the state of the BlueMan service container is running :

Configuration

The configuration of the BlueMan back end is located under
/opt/mellanox/doca/services/telemetry/config/blueman_config.ini . Users

can interact with the blueman_config.ini file which contains the default range values
of the Pass, Warning, and Failed categories which are used in the health page. Changing
these values gets reflected in the BlueMan webpage within 60 seconds.

Example of blueman_config.ini :

$ systemctl is-active dpe.service

$ crictl ps --name doca-telemetry-service

$ crictl ps --name doca-blueman-fe
$ crictl ps --name doca-blueman-conv

;Health Cpu usages Pass, warning, Failed
[Health:CPU_Usages:Pass]
range = 0,80

[Health:CPU_Usages:Warning]
range = 80,90

[Health:CPU_Usages:Failed]
range = 90,100

DOCA Services 29

Collected Data

Info

General info – OS name, kernel, part number, serial number, DOCA version,
driver, board ID, etc.

Installed packages – list of all installed packages on the DPU including their
version

CPU info – vendor, cores, model, etc.

FW info – all the mlxconfig parameters with default/current/next boot data

DPU operation mode

Health

System service

Kernel modules

Dmesg

DOCA services

Port status of the PF and OOB

Core usage and processes running on each core

Memory usage

Disk usage

Temperature

Telemetry – all telemetry counters that come from DTS according to the enabled
providers displayed on tables

Users have the ability to build graphs of specific counters

Connecting to BlueMan Web Interface

DOCA Services 30

To log into BlueMan, enter the IP address of the DPU's OOB interface (
http://<DPU_OOB_IP>) to a web browser located in the same network as the DPU .

The login credentials to use are the same pair used for the SSH connection to the DPU.

Troubleshooting

For general troubleshooting, refer to the NVIDIA DOCA Troubleshooting Guide.

For container-related troubleshooting, refer to the "Troubleshooting" section in the
NVIDIA DOCA Container Deployment Guide.

The following are additional troubleshooting tips for DOCA BlueMan:

The following error message in the login page signifies a failure to connect to the
DPE daemon: "The service is currently unavailable. Please check server up and
running."

1. Restart the DPE daemon:

$ systemctl restart dpe.service

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Troubleshooting+Guide/index.html

DOCA Services 31

2. Verify that DTS is up and running by following the instructions in section
"Verifying DTS Status".

If the message "Invalid Credentials" appears in the login page, v erify that the
username and password are the same ones used to SSH to the DPU.

If all of the above is configured as expected and there is still some failure to log in, it
is recommended to check if there are any firewall rules that block the connection.

For other issues, check the /var/log/syslog and

/var/log/doca/telemetry/blueman_service.log log file.

DOCA Services 32

NVIDIA DOCA Firefly Service
Guide
This guide provides instructions on how to use the DOCA Firefly service container on top
of NVIDIA® BlueField® DPU.

Introduction

DOCA Firefly Service provides precision time protocol (PTP) based time syncing services
to the BlueField DPU .

PTP is a protocol used to synchronize clocks in a network. When used in conjunction with
hardware support, PTP is capable of sub-microsecond accuracy, which is far better than is
what is normally obtainable with network time protocol (NTP). PTP support is divided
between the kernel and user space. The ptp4l program implements the PTP boundary
clock and ordinary clock. With hardware time stamping, it is used to synchronize the PTP
hardware clock to the master clock.

DOCA Services 33

Requirements

Some of the features provided by Firefly require specific BlueField DPU hardware
capabilities:

PTP – Supported by all BlueField DPUs

PPS – Requires BlueField DPU with PPS capabilities

SyncE - Requires converged card BlueField DPUs

Failure to run PPS due to missing hardware support will be noted in the service's output.
However, the service will continue to run the timing services it can provide on the
provided hardware.

Firmware Version

DOCA Services 34

Firmware version must be 24.34.1002 or higher.

BlueField BSP Version

Supported BlueField image versions are 3.9.0 and higher.

Embedded Mode

Configuring Firmware Settings on DPU for Embedded Mode

1. Set the DPU to embedded mode (default mode):

2. Enable the real time clock (RTC):

3. Graceful shutdown and power cycle the DPU to apply the configuration.

4. You may check the DPU mode using the following command:

Ensuring OVS Hardware Offload

sudo mlxconfig -y -d 03:00.0 s INTERNAL_CPU_MODEL=1

sudo mlxconfig -d 03:00.0 set REAL_TIME_CLOCK_ENABLE=1

sudo mlxconfig -d 03:00.0 q | grep INTERNAL_CPU_MODEL
Example output

 INTERNAL_CPU_MODEL EMBEDDED_CPU(1)

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Troubleshooting+Guide/index.html

DOCA Services 35

DOCA Firefly requires that hardware offload is activated in Open vSwitch (OVS). This is
enabled by default as part of the BFB image installed on the DPU.

To verify the hardware offload configuration in OVS:

If inactive:

1. Activate hardware offloading by running:

2. Restart the OVS service:

3. Graceful shutdown and power cycle the DPU to apply the configuration.

Helper Scripts

Firefly's deployment contains a script to help with the configuration steps required for the
network interface in embedded mode:

scripts/doca_firefly/<firefly-
version>/prepare_for_embedded_mode.sh

scripts/doca_firefly/<firefly-version>/set_new_sf.sh

The latest DOCA Firefly version is 1.3.0 .

sudo ovs-vsctl get Open_vSwitch . other_config | grep hw-offload
Example output

 {hw-offload="true"}

sudo ovs-vsctl set Open_vSwitch . other_config:hw-offload=true;

sudo /etc/init.d/openvswitch-switch restart

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Troubleshooting+Guide/index.html

DOCA Services 36

Both scripts are included as part of DOCA's container resource which can be downloaded
according to the instructions in the NVIDIA DOCA Container Deployment Guide. For more
information about the structure of the DOCA container resource, refer to section
"Structure of NGC Resource" in the deployment guide.

prepare_for_embedded_mode.sh

This script automates all the steps mentioned in section "Setting Up Network Interfaces
for Embedded Mode" and configures a freshly installed BFB image to the settings
required by DOCA Firefly.

Notes:

The script deletes all previous OVS settings and creates a single OVS bridge that
matches the definitions in section "Setting Up Network Interfaces for Embedded
Mode"

The script should only be run once when connecting to the DPU for the first time or
after a power cycle

The only manual step required after using this script is configuring the IP address
for the created network interface (step 5 in section "Setting Up Network Interfaces
for Embedded Mode")

Script arguments:

SF number (checks if already exists)

Examples:

Note

Due to technical limitations of the NGC resource, both scripts are
provided without execute (+x) permissions. This could be resolved by
running the following command:

chmod +x scripts/doca_firefly/<firefly-
version>/*.sh

DOCA Services 37

Prepare OVS settings using an SF indexed 4:

The script makes use of set_new_sf.sh as a helper script.

set_new_sf.sh

Creates a new trusted SF and marks it as "trusted".

Script arguments:

PCIe address

SF number (checks if already exists)

MAC address (if absent, a random address is generated)

Examples:

Create SF with number "4" over port 0 of the DPU:

Create SF with number "5" over port 0 of the DPU and a specific MAC address:

Create SF with number "4" over port 1 of the DPU:

chmod +x ./*.sh
./prepare_for_embedded_mode.sh 4

./set_new_sf.sh 0000:03:00.0 4

./set_new_sf.sh 0000:03:00.0 5 aa:bb:cc:dd:ee:ff

DOCA Services 38

The first two examples should work out of the box for a BlueField-2 device and create SF4
and SF5 respectively.

Setting Up Network Interfaces for DPU Mode

1. Create a trusted SF to be used by the service according to the Scalable Function
Setup Guide .

2. Create the required OVS setting as is shown in the architecture diagram:

3. Verify the OVS settings:

./set_new_sf.sh 0000:03:00.1 4

Note

The following instructions assume that the SF has been created
using index 4.

$ sudo ovs-vsctl add-br uplink
$ sudo ovs-vsctl add-port uplink p0
$ sudo ovs-vsctl add-port uplink en3f0pf0sf4
This port is needed to ensure we have traffic host<->network as well

$ sudo ovs-vsctl add-port uplink pf0hpf

sudo ovs-vsctl show
 Bridge uplink
 Port pf0hpf

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide/index.html
https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide/index.html

DOCA Services 39

4. Enable TX timestamping on the SF interface (not the representor):

5. Enable the interface and set an IP address for it:

6. Configure OVS to support TX timestamping over this SF and multicast traffic in
general:

 Interface pf0hpf
 Port en3f0pf0sf4
 Interface en3f0pf0sf4
 Port p0
 Interface p0
 Port uplink
 Interface uplink
 type: internal

tx port timestamp offloading

sudo ethtool --set-priv-flags enp3s0f0s4 tx_port_ts on

configure ip for the interface:

sudo ifconfig enp3s0f0s4 <ip-addr> up

Multicast-related definitions

$ sudo ovs-vsctl set Bridge uplink mcast_snooping_enable=true

$ sudo ovs-vsctl set Bridge uplink other_config:mcast-snooping-
disable-flood-unregistered=true

$ sudo ovs-vsctl set Port p0 other_config:mcast-snooping-
flood=true

$ sudo ovs-vsctl set Port p0 other_config:mcast-snooping-flood-
reports=true
PTP-related definitions

DOCA Services 40

Separated Mode

Configuring Firmware Settings on DPU for Separated Mode

1. Set the BlueField mode of operation to "Separated":

2. Enable RTC:

$ sudo ovs-ofctl add-flow uplink
in_port=en3f0pf0sf4,udp,tp_src=319,actions=output:p0
$ sudo ovs-ofctl add-flow uplink
in_port=p0,udp,tp_src=319,actions=output:en3f0pf0sf4
$ sudo ovs-ofctl add-flow uplink
in_port=en3f0pf0sf4,udp,tp_src=320,actions=output:p0
$ sudo ovs-ofctl add-flow uplink
in_port=p0,udp,tp_src=320,actions=output:en3f0pf0sf4

Note

If your OVS bridge uses a name other than uplink , make sure

that the used name is reflected in the ovs-vsctl and

ovs-ofctl commands. For instance:

$ sudo ovs-vsctl set Bridge <bridge-name>
mcast_snooping_enable=true

sudo mlxconfig -y -d 03:00.0 s INTERNAL_CPU_MODEL=0

DOCA Services 41

3. Graceful shutdown and power cycle the DPU to apply the configuration.

4. You may check the BlueField's operation mode using the following command:

Setting Up Network Interfaces for Separated Mode

1. Make sure that that p0 is not connected to an OVS bridge:

2. Enable TX timestamping on the p0 interface:

3. Enable the interface and set an IP address for it:

sudo mlxconfig -d 03:00.0 set REAL_TIME_CLOCK_ENABLE=1

sudo mlxconfig -d 03:00.0 q | grep INTERNAL_CPU_MODEL
Example output

 INTERNAL_CPU_MODEL
SEPARATED_HOST(0)

sudo ovs-vsctl show

TX port timestamp offloading (assuming PTP interface is p0)

sudo ethtool --set-priv-flags p0 tx_port_ts on

Configure IP for the interface

sudo ifconfig p0 <ip-addr> up

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Troubleshooting+Guide/index.html

DOCA Services 42

Host-based Deployment

Host-based deployment requires the same configuration described under section
"Separated Mode".

Service Deployment

DPU Deployment

For information about the deployment of DOCA containers on top of the BlueField DPU,
refer to NVIDIA DOCA Container Deployment Guide.

Service-specific configuration steps and deployment instructions can be found under the
service's container page.

Host Deployment

DOCA Firefly has a version adapted for host-based deployments. For more information
about the deployment of DOCA containers on top of a host, refer to the NVIDIA BlueField
DPU Container Deployment Guide.

The following is the docker command for deploying DOCA Firefly on the host:

Note

DOCA Firefly can also be deployed on DPUs not connected to the
Internet. For instructions, refer to the relevant section in the NVIDIA
DOCA Container Deployment Guide.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_firefly

DOCA Services 43

Where:

Additional YAML configs may be passed as environment variables as additional -e
key-value pairs as done with PTP_INTERFACE above

The exact container tag should be the desired tag as chosen on DOCA Firefly's NGC
page

Configuration

All modules within the service have configuration files that allow customizing various
settings, both general and PTP-related.

Built-In Config File

Each profile has its own base PTP configuration file for ptp4l . For example, the Media

profile PTP configuration file is ptp4l-media.conf .

The built-in PTP configuration files can be found in section "PTP Profile Default Config
Files". For ease-of-use, those files are provided as part of DOCA's container resource as
downloaded from NGC and are placed under Firefly's configs directory (

scripts/doca_firefly/<firefly version>/configs).

sudo docker run --privileged --net=host -v
/var/log/doca/firefly:/var/log/firefly -v
/etc/firefly:/etc/firefly -e PTP_INTERFACE='eth2' -it
nvcr.io/nvidia/doca/doca_firefly:1.3.0-doca2.5.0-host
/entrypoint.sh

Note

When using a built-in configuration file, Firefly uses the files as stored
within the container itself in the /etc/linuxptp directory. The
configuration files included in the NGC resource are only provided for

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_firefly
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_firefly

DOCA Services 44

Custom Config File

Instead of using a profile's base config file, users can create a file of their own, for each of
the modules.

To set a custom config file, users should locate their config file in the directory
/etc/firefly and set the config file name in DOCA Firefly's YAML file.

For example, to set a custom linuxptp config file, the user can set the parameter

PTP_CONFIG_FILE in the YAML file:

In this example, my_custom_ptp.conf should be placed at

/etc/firefly/my_custom_ptp.conf .

ease of access. Modifying them does not impact the configuration
used in practice by the container. Instead, updates to the
configuration should be done as described in the following sections.

- name: PTP_CONFIG_FILE
 value: my_custom_ptp.conf

Note

A config file must not define values for the UDS-related ports (
/var/run/ptp4l and /var/run/ptp4lro), as those will impact

internal container behavior. Such settings will prompt a warning and
will be ignored when preparing the finalized configuration (See more
in the next sections).

DOCA Services 45

Overriding Specific Config File Parameters

Instead of replacing the entire config file, users may opt to override specific parameters.
This can be done using the following variable syntax in the YAML file:
CONF_<TYPE>_<SECTION>_<PARAMETER_NAME> .

TYPE – either PTP , PHC2SYS , SYNCE, MONITOR

SECTION – the section in the config file that the parameter should be placed in

PARAMETER_NAME – the config parameter name as should be placed in the config
file

For example, the following variable in the YAML file definition changes the value of the
parameter priority1 under section global in the PTP config file to 64 .

Note

If the specified section does not already exist in the config file, a
new section is created unless it refers to a PTP network
interface that has not been included in the PTP_INTERFACE
YAML field.

Note

If the parameter name already exists in the config file, then the
value is changed according to the value provided in the .yaml
file. If the parameter name does not already exist in the config
file, then it is added.

- name: CONF_PTP_global_priority1

DOCA Services 46

Ensuring and Debugging Correctness of Config Files

The previous sections describe 2 layers for the configuration file definitions:

Basic configuration file – either a built-in config file or a custom config file

Adding/overriding values to/from the YAML file

In practice, there are slightly more layers in place, and the precedence is as follows
(presented in increasing order):

Default configuration values of the PTP program (ptp4l for instance) – holds values
of all available configuration options

Your chosen configuration file – contains a subset of options

Definitions from the YAML file – narrower subset

Firefly mandatory values

When combining the supplied configuration file with the definitions from the YAML file,
Firefly goes over those definitions and checks them against a predefined set of
configuration options:

Warning only – warns if a certain value leads to known issues in a supported
deployment scenario

 value: "64"

Note

Configuring unicast_master_table through the YAML file is not
supported due to the structure of the table (i.e., multiple entries
sharing the same key).

DOCA Services 47

Override – container-internal definitions that should not be set by the user and will
be overridden by Firefly

Suitable log messages are provided in either case:

At the end of this process, an updated configuration file is generated by Firefly to be used
later by the various time providers (as mentioned below). To avoid accidental modification
of a user-supplied configuration file or permission issues, the finalized file is generated
within the container under the /tmp directory.

For instance, if using a custom configuration file named my_custom_ptp.conf under

the /etc/firefly directory on the DPU, the updated file will reside within the

container at the following path: /tmp/my_custom_ptp.conf .

For troubleshooting possible issues with the configuration file, one can do one of the
following:

Connect to the container directly as is explained in the debugging finalized
configuration file bullet under "Troubleshooting".

Example for a warning
2023-01-31 11:55:13 - Firefly - Config - INFO - Missing
explicit definition "fault_reset_interval", verifying default
value instead: "4"
2023-01-31 11:55:13 - Firefly - Config - WARNING - Value "4" for
definition "fault_reset_interval" will be invalid in Embedded
Mode, expected a value lesser or equal to "1"
2023-01-31 11:55:13 - Firefly - Config - WARNING - Continuing
with invalid value
Example for an override
2023-01-31 11:21:00 - Firefly - Config - WARNING - Invalid value
"/var/run/ptp4l2" for definition "uds_address", expected
"/var/run/ptp4l"
2023-01-31 11:21:00 - Firefly - Config - INFO - Setting
definition "uds_address" value to the following: "/var/run/ptp4l"

DOCA Services 48

Map the container's /tmp directory to the DPU using the built-in support in the
YAML file:

Before the change:

After the change:

 # Uncomment when debugging the finalized
configuration files used - Part #1

 #- name: debug-firefly-volume
 # hostPath:
 # path: /tmp/firefly
 # type: DirectoryOrCreate
 containers:
 ...
 volumeMounts:
 - name: logs-firefly-volume
 mountPath: /var/log/firefly
 - name: conf-firefly-volume
 mountPath: /etc/firefly
 # Uncomment when debugging the finalized
configuration files used - Part #2

 #- name: debug-firefly-volume
 # mountPath: /tmp

 # Uncomment when debugging the finalized
configuration files used - Part #1

 - name: debug-firefly-volume
 hostPath:
 path: /tmp/firefly
 type: DirectoryOrCreate
 containers:
 ...
 volumeMounts:

DOCA Services 49

Description

Providers

DOCA Firefly Service uses the following third-party providers to provide time syncing
services:

Linuxptp - Version v4.1

PTP – PTP service, provided by the PTP4L program

PHC2SYS – OS time calibration, provided by the PHC2SYS program

Testptp

PPS - PPS settings service

 - name: logs-firefly-volume
 mountPath: /var/log/firefly
 - name: conf-firefly-volume
 mountPath: /etc/firefly
 # Uncomment when debugging the finalized
configuration files used - Part #2

 - name: debug-firefly-volume
 mountPath: /tmp

Note

The finalized configuration file keeps the sections and config options
in the same order as they appear in the original file, yet the file is
stripped from spare new lines or comment lines. This should be taken
into considerations when directly accessing it during a debugging
session.

DOCA Services 50

In addition, DOCA Firefly Service also makes use of the following NVIDIA modules:

SyncE

SYNCE – Synchronous Ethernet Deamon (synced)

Firefly

MONITOR - Firefly PTP Monitor

Each of the providers can be enabled, disabled, or set to use the setting defined by the
configuration profile:

YAML setting – <provider name>_STATE

Supported values – enable , disable , defined_by_profile

An example YAML setting for specifically disabling the phc2sys provider is the following:

Note

For the default profile settings per provider, refer to the table under
section "Profiles".

- name: PHC2SYS_STATE
 value: "disable"

Note

The defined_by_profile setting is only available for well-defined

profiles. As such, it cannot be used when the custom profile is

DOCA Services 51

Profiles

DOCA Firefly Service includes profiles which represent common use cases for the Firefly
service that provide a different default configuration per profile:

Profiles Default Media Custom

Purpose
Any user that
requires PTP

Media
productions

Custom configuration for a
dedicated user scenario

PTP Enabled Enabled
No default. Enable/disable should be
set by the user.

PTP profile PTP default profile
SMPTE 2059-
2

Set by the user

PTP
Client/Server(

a)

Both Client-only Set by the user

PHC2SYS Enabled Enabled
No default. Enable/disable should be
set by the user.

PPS (in/out) Enabled Enabled
No default. Enable/disable should be
set by the user.

PTP Monitor Disabled Disabled
No default. Enable/disable should be
set by the user.

SyncE Disabled Disabled
No default. Enable/disable should be
set by the user.

selected. For more information about the profile settings, refer to the
table under section "Profiles".

Note

DOCA Services 52

Outputs

Container Output

While running, the full output of the DOCA Firefly Service container can be viewed using
the following command:

Where CONTANIER-ID can be retrieved using the following command:

For example, in the following output, the container ID is 8f368b98d025b .

(a) Client-only is only relevant to a single PTP interface. If more than
one PTP interface is provided in the YAML file, both modes are
enabled.

sudo crictl logs <CONTAINER-ID>

sudo crictl ps

$ sudo crictl ps

CONTAINER IMAGE CREATED STATE
 NAME ATTEMPT POD ID
 POD
8f368b98d025b 289809f312b4c 2 seconds ago
Running doca-firefly 0
5af59511b4be4 doca-firefly-some-computer-name

DOCA Services 53

The output of the container depends on the services supported by the hardware and
enabled by configuration and the selected profile. However, note that any of the
configurations runs PTP, so when DOCA FireFly is running successfully expect to see the
line " Running ptp4l ".

The following is an example of the expected container output when running the default
profile on a DPU that supports PPS:

2023-09-07 14:04:23 - Firefly - Init - INFO - Starting
DOCA Firefly - Version 1.3.0
2023-09-07 14:04:23 - Firefly - Init - INFO - Selected
features:
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PTP
- Enabled - ptp4l will be used
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] MONITOR
- Enabled - PTP Monitor will be used
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PHC2SYS
- Enabled - phc2sys will be used
2023-09-07 14:04:23 - Firefly - Init - INFO - [-] SyncE
- Disabled
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PPS
- Enabled - testptp will be used (if supported by hardware)
2023-09-07 14:04:23 - Firefly - Init - INFO - Going to
analyze the configuration files
2023-09-07 14:04:23 - Firefly - Init - INFO - Requested
the following PTP interface: p0
2023-09-07 14:04:23 - Firefly
2023-09-07 14:04:23 - Firefly - Init - INFO - Starting PPS
configuration
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PPS is
supported by hardware
2023-09-07 14:04:23 - Firefly - Init - INFO - set pin
function okay
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PPS in -
Activated

DOCA Services 54

The following is an example of the expected container output when running the default
profile on a DPU that does not support PPS:

2023-09-07 14:04:23 - Firefly - Init - INFO - set pin
function okay
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PPS out
- Activated
2023-09-07 14:04:23 - Firefly - Init - INFO - name
mlx5_pps0 index 0 func 1 chan 0
2023-09-07 14:04:23 - Firefly - Init - INFO - name
mlx5_pps1 index 1 func 2 chan 0
2023-09-07 14:04:23 - Firefly - Init - INFO - periodic
output request okay
2023-09-07 14:04:23 - Firefly
2023-09-07 14:04:23 - Firefly - Init - INFO - Running
ptp4l
2023-09-07 14:04:23 - Firefly - Init - INFO - Running
Firefly PTP Monitor
2023-09-07 14:04:23 - Firefly - Init - INFO - Running
phc2sys

2023-09-07 14:04:23 - Firefly - Init - INFO - Starting
DOCA Firefly - Version 1.3.0
2023-09-07 14:04:23 - Firefly - Init - INFO - Selected
features:
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PTP
- Enabled - ptp4l will be used
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] MONITOR
- Enabled - PTP Monitor will be used
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PHC2SYS
- Enabled - phc2sys will be used
2023-09-07 14:04:23 - Firefly - Init - INFO - [-] SyncE
- Disabled

DOCA Services 55

2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PPS
- Enabled - testptp will be used (if supported by hardware)
2023-09-07 14:04:23 - Firefly - Init - INFO - Going to
analyze the configuration files
2023-09-07 14:04:23 - Firefly - Init - INFO - Requested
the following PTP interface: p0
2023-09-07 14:04:23 - Firefly
2023-09-07 14:04:23 - Firefly - Init - INFO - Starting PPS
configuration
2023-09-07 14:04:23 - Firefly - Init - WARNING - [-] PPS
capability is missing, seems that the card doesn't support PPS
2023-09-07 14:04:23 - Firefly - Init - INFO -
capabilities:
2023-09-07 14:04:23 - Firefly - Init - INFO - 50000000
maximum frequency adjustment (ppb)
2023-09-07 14:04:23 - Firefly - Init - INFO - 0
programmable alarms
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 external
time stamp channels
2023-09-07 14:04:23 - Firefly - Init - INFO - 0
programmable periodic signals
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 pulse
per second
2023-09-07 14:04:23 - Firefly - Init - INFO - 0
programmable pins
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 cross
timestamping
2023-09-07 14:04:23 - Firefly
2023-09-07 14:04:23 - Firefly - Init - INFO - Running
ptp4l
2023-09-07 14:04:23 - Firefly - Init - INFO - Running
Firefly PTP Monitor
2023-09-07 14:04:23 - Firefly - Init - INFO - Running
phc2sys

DOCA Services 56

Firefly Output

On top of the container's log, Firefly defines an additional, non-volatile log that can be
found in /var/log/doca/firefly/firefly.log .

This file contains the same output described in section "Container Output", and is useful
for debugging deployment errors should the container stop its execution.

ptp4l Output

The ptp4l output can be found in the file /var/log/doca/firefly/ptp4l.log .

Example output:

Note

To avoid disk space issues, the
/var/log/doca/firefly/firefly.log file only contains the log

from Firefly's initialization, and not the logs of the rest of the modules
(ptp4l, phc2sys, etc.) or that of the PTP monitor. The latter is still
included in the container log and can be inspected using the
command sudo crictl logs <CONTAINER-ID> .

ptp4l[192710.691]: rms 1 max 1 freq -114506 +/- 0 delay -15 +/- 0
ptp4l[192712.692]: rms 6 max 9 freq -114501 +/- 3 delay -15 +/- 0
ptp4l[192714.692]: rms 7 max 9 freq -114511 +/- 3 delay -13 +/- 0
ptp4l[192716.692]: rms 5 max 7 freq -114502 +/- 1 delay -13 +/- 0
ptp4l[192718.693]: rms 4 max 6 freq -114509 +/- 2 delay -13 +/- 0
ptp4l[192720.693]: rms 3 max 3 freq -114506 +/- 2 delay -13 +/- 0
ptp4l[192722.694]: rms 4 max 6 freq -114510 +/- 3 delay -12 +/- 0
ptp4l[192724.694]: rms 5 max 7 freq -114510 +/- 5 delay -12 +/- 1
ptp4l[192726.695]: rms 4 max 5 freq -114508 +/- 3 delay -11 +/- 0

DOCA Services 57

phc2sys Output

The phc2sys output can be found in the file /var/log/doca/firefly/phc2sys.log .

Example output:

SyncE Output

The SyncE output can be found in the file /var/log/doca/firefly/synced.log .

Example output:

ptp4l[192728.695]: rms 6 max 9 freq -114504 +/- 4 delay -11 +/- 0

phc2sys[1873325.928]: reconfiguring after port state change
phc2sys[1873325.928]: selecting CLOCK_REALTIME for
synchronization
phc2sys[1873325.928]: selecting enp3s0f0s4 as the master clock
phc2sys[1873325.928]: CLOCK_REALTIME phc offset 1378 s2 freq
-165051 delay 255
phc2sys[1873326.928]: CLOCK_REALTIME phc offset 1378 s2 freq
-163673 delay 240
phc2sys[1873327.928]: port 62b785.fffe.0c9369-1 changed state
phc2sys[1873327.929]: CLOCK_REALTIME phc offset 14 s2 freq
-164624 delay 255
phc2sys[1873328.936]: CLOCK_REALTIME phc offset 89 s2 freq
-164545 delay 240

INFO [05/09/2023 05:11:01.493414]: SyncE Group #0: is in
TRACKING holdover acquired mode on p0, frequency_diff: 0 (ppb)
INFO [05/09/2023 05:11:02.502963]: SyncE Group #0: is in
TRACKING holdover acquired mode on p0, frequency_diff: -113 (ppb)

DOCA Services 58

Tx Timestamping Support on DPU Mode

INFO [05/09/2023 05:11:03.512491]: SyncE Group #0: is in
TRACKING holdover acquired mode on p0, frequency_diff: 37 (ppb)

Note

The verbosity of the output from the SYNCE module is limited by

default. To set the output to be more verbose, set the verbose
option to 1 (True).

Before:

After:

Example #4 - Overwrite the value of verbose in
the [global] section of the SyncE configuration
file.
#- name: CONF_SYNCE_global_verbose
value: "1"

Example #4 - Overwrite the value of verbose in
the [global] section of the SyncE configuration
file.
- name: CONF_SYNCE_global_verbose
 value: "1"

DOCA Services 59

When the BlueField is operating in DPU mode, additional OVS configuration is required as
mentioned in step 6 of section "Setting Up Network Interfaces for DPU Mode". This
configuration achieves the following:

Proper support for incoming/outgoing multicast traffic

Enabling Tx timestamping

Firefly only gets the packet timestamping for outgoing PTP messages (Tx timestamping)
when they are offloaded to the hardware. As such, when working with OVS, users must
ensure this traffic flow is properly recognized and offloaded. If offloading does not take
place, Firefly gets stuck in a fault loop while waiting to receive the Tx timestamp events:

The solution to this issue:

Activation of hardware offloading in OVS

OpenFlow rules that ensure OVS properly recognizes the traffic and offloads it to the
hardware

Modification to the fault_reset_interval configuration value to ensure timely
recovery from the fault induced by the first packet being always treated by software
(until the rule is offloaded to hardware). As such, Firefly requires that the
fault_reset_interval value is 1 or less. Proper warnings are raised if an

improper value is detected. The value is updated accordingly in the built-in profiles.

When these configurations are in order, Firefly includes a report for a single fault during
boot, but recovers from it and continues as usual:

ptp4l[2912.797]: timed out while polling for tx timestamp
ptp4l[2912.797]: increasing tx_timestamp_timeout may correct this
issue, but it is likely caused by a driver bug
ptp4l[2912.797]: port 1 (enp3s0f0s4): send sync failed
ptp4l[2923.528]: timed out while polling for tx timestamp
ptp4l[2923.528]: increasing tx_timestamp_timeout may correct this
issue, but it is likely caused by a driver bug
ptp4l[2923.528]: port 1 (enp3s0f0s4): send sync failed

DOCA Services 60

Troubleshooting Tx Timestamp Issues

As explained earlier, there are several layers required to ensure Tx timestamping works as
necessary by Firefly. The following is a list of commands to debug the state of each layer:

1. Inspect the OpenFlow rules:

2. Inspect hardware TC rules while DOCA Firefly is deployed (the rules age out after 10
seconds without traffic):

ptp4l[3715.687]: timed out while polling for tx timestamp
ptp4l[3715.687]: increasing tx_timestamp_timeout may correct this
issue, but it is likely caused by a driver bug
ptp4l[3715.687]: port 1 (enp3s0f0s4): send delay request failed

$ sudo ovs-ofctl dump-flows uplink
cookie=0x0, duration=4075.576s, table=0, n_packets=2437,
n_bytes=209582, udp,in_port=en3f0pf0sf4,tp_src=319
actions=output:p0
cookie=0x0, duration=4075.549s, table=0, n_packets=1216,
n_bytes=109420, udp,in_port=p0,tp_src=319
actions=output:en3f0pf0sf4
cookie=0x0, duration=4075.521s, table=0, n_packets=13,
n_bytes=1242, udp,in_port=en3f0pf0sf4,tp_src=320
actions=output:p0
cookie=0x0, duration=4074.604s, table=0, n_packets=3034,
n_bytes=297376, udp,in_port=p0,tp_src=320
actions=output:en3f0pf0sf4
cookie=0x0, duration=4075.856s, table=0, n_packets=184,
n_bytes=12901, priority=0 actions=NORMAL

$ sudo tc -s -d filter show dev en3f0pf0sf4 egress
filter ingress protocol ip pref 4 flower chain 0

DOCA Services 61

filter ingress protocol ip pref 4 flower chain 0 handle 0x1
 eth_type ipv4
 ip_proto udp
 src_port 320
 ip_flags nofrag
 in_hw in_hw_count 1

action order 1: mirred (Egress Redirect to device p0)
stolen
 index 3 ref 1 bind 1 installed 7 sec used 7 sec
 Action statistics:

Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues
0)

backlog 0b 0p requeues 0
cookie bec8bd6ede4e86341e9045a6edb58ca2
no_percpu

filter ingress protocol ip pref 4 flower chain 0 handle 0x2
 eth_type ipv4
 ip_proto udp
 src_port 319
 ip_flags nofrag
 in_hw in_hw_count 1

action order 1: mirred (Egress Redirect to device p0)
stolen
 index 4 ref 1 bind 1 installed 6 sec used 6 sec
 Action statistics:

Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues
0)

backlog 0b 0p requeues 0
cookie c568d97efd400de98608fbbf86ccdf3c
no_percpu

Note

DOCA Services 62

PTP

Firefly uses the ptp4l utility to handle the Precision Time Protocol (IEEE 1588).

Through the YAML file, users can configure the network interfaces used for the protocol:

Before the deployment of the container, users should configure this field to point at the
desired network interface(s) configured in the previous steps.

PHC2SYS

Firefly uses the phc2sys utility to synchronize the OS's clock to the accurate time

stamps received by ptp4l .

Through the YAML file, users can configure the command-line arguments used by the
phc2sys program:

If no TC rules are present when Firefly is running, this usually
indicates that hardware offloading is disabled at the OVS level, in
which case it should be activated as explained under "Ensuring
OVS Hardware Offload".

Network interfaces to be used (For multiple interfaces use a
space (" ") separated list)
- name: PTP_INTERFACE
 # Set according to used interfaces on the local setup
 value: "p0"

- name: PHC2SYS_ARGS

DOCA Services 63

Firefly adds the following command-line arguments on top of the user-selected flags:

Use of chosen configuration file (empty configuration file by default, or user-
supplied file if specified in the YAML file)

Redirection of output to a log file using the -m command line option

SYNCE

 value: "-a -r"

Note

phc2sys must use the same domainNumber setting used by

ptp4l . If the same domainNumber is not set by the user, Firefly
does that automatically.

Note

phc2sys is only able to accurately sync the clock of the hosting
environment (usually the DPU, but may also be the host if deployed
there) if other timing services, such as NTP, are disabled.

So, for instance, on Ubuntu 22.04, users must ensure that the NTP
timing service is disabled by running:

systemctl stop systemd-timesyncd

DOCA Services 64

Firefly uses the proprietary synced utility to implement the Synchronous Ethernet
protocol, aimed at ensuring synchronization of the clock's frequency with the reference
clock. Once achieved, both clocks are declared as "syntonized".

Through the YAML file, users can configure the network interfaces used for the protocol:

Before the deployment of the container, one should configure this field to point at the
desired network interface(s) configured in the previous steps.

PTP Monitoring

Note

The SyncE module is supported at alpha level.

Network interfaces to be used (For multiple interfaces use a
space (" ") separated list)
- name: SYNCE_INTERFACE
 # Set according to used interfaces on the local setup
 value: "p0"

Note

SyncE is currently only supported over network interfaces of the
DPU's physical functions (i.e., p0 or p1).

Note

https://en.wikipedia.org/wiki/Synchronous_Ethernet

DOCA Services 65

PTP monitoring periodically queries for various PTP-related information and prints it to
the container's log.

The following is a sample output of this tool:

Among others, this monitoring provides the following information:

Details about the Grandmaster the DPU is syncing with

Monitoring is still in beta phase. There will be updates to the API in
the near future.

gmIdentity: 48:B0:2D:FF:FE:5C:4D:24
(48b02d.fffe.5c4d24)
portIdentity: 48:B0:2D:FF:FE:5C:53:44
(48b02d.fffe.5c5344-1)
port_state: Active
domainNumber: 2

master_offset: avg: 1 max: -8 rms: 3

gmPresent: true

ptp_stable: Recovered
UtcOffset: 37

timeTraceable: 0

frequencyTraceable: 0

grandmasterPriority1: 128

gmClockClass: 248

gmClockAccuracy: 0x6

grandmasterPriority2: 128

gmOffsetScaledLogVariance: 0xffff

ptp_time (TAI): Thu Sep 7 11:22:50 2023

ptp_time (UTC adjusted): Thu Sep 7 11:22:13 2023

system_time (UTC): Thu Sep 7 11:22:13 2023

error_count: 1

last_err_time (UTC): Thu Sep 7 09:55:48 2023

DOCA Services 66

Current PTP timestamp

Health information such as connection errors during execution and whether they
have been recovered from

PTP monitoring is disabled by default and can be activated by replacing the disable
value with the IP address for the monitor server to use:

Once activated, the information can viewed from the container using the following
command:

It is recommended to use the following watch command to actively monitor the PTP
state:

When triaging deployment issues, additional logging information can be found in the
monitor's developer logs: /var/log/doca/firefly/firefly_monitor_dev.log .

- name: MONITOR_STATE
 Value: "<IP address for the monitoring server>"

sudo crictl logs --tail=20 <CONTAINER-ID>

sudo watch -n 1 crictl logs --tail=20 <CONTAINER-ID>

Note

The monitoring feature connects to ptp4l's local UDS server to query
the necessary information. This is why the configuration manager
prevents users from modifying the uds_address and

uds_ro_address fields used by ptp4l within the container.

DOCA Services 67

Configuration

The PTP monitor supports configuration options which are passed through a dedicated
configuration file like the rest of DOCA Firefly's modules. The built-in monitor
configuration file can be found in the section "PTP Monitor". For ease of use, the file is
also provided as part of DOCA's container resource as downloaded from NGC.

"Firefly Modules Configuration Options" contains a complete explanation of each of the
configuration options alongside their default values.

To set a custom config file, users should locate their config file in the directory
/etc/firefly and set the config file name in DOCA Firefly's YAML file.

In this example, my_custom_monitor.conf should be placed at

/etc/firefly/my_custom_monitor.conf .

Time Representations (PTP Time vs System Time)

Under most deployment scenarios, the PTP time shown by the monitor is presented
according to the International Atomic Time (TAI) standard, while the system time would
most commonly use the Coordinated Universal Time (UTC). Due to the differences
between these time representation models, the monitor provides 2 different time
readings (each marked accordingly):

- name: MONITOR_CONFIG_FILE
 value: my_custom_monitor.conf

...
UtcOffset: 37
...
ptp_time (TAI): Thu Sep 7 11:22:50 2023
ptp_time (UTC adjusted): Thu Sep 7 11:22:13 2023
system_time (UTC): Thu Sep 7 11:22:13 2023

DOCA Services 68

This difference (37 seconds in the above example) is intentional and stems from the
amount of leap seconds since epoch. This is indicated by the UtcOffset field that is
also included in the monitor's report.

Monitor Server

In addition to printing the monitoring data to the container's standard output available
through the container logs, the monitoring data is also exposed through a gRPC server
that clients can subscribe to. This allows a monitoring client on the host to subscribe to
monitor events from the service running on top of the DPU, thus providing better
visibility.

The following diagram presents the recommended deployment architecture for
connecting the monitoring client (on the host) to the monitor server (on the DPU), based
on the NVIDIA DOCA gRPC Infrastructure User Guide.

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+gRPC+Infrastructure+User+Guide/index.html

DOCA Services 69

Based on the above, when activating the monitor feature, the user must provide the IP
address to be used by the monitor server:

- name: MONITOR_STATE
 value: "<IP address for the monitoring server>"

DOCA Services 70

Users can choose to only view the monitoring events through the container logs without
connecting to the monitoring server. In this case, it is recommended to configure the local
host IP address (127.0.0.1) in the YAML file to avoid exposing it to an unwanted network.

Monitor Client

All the required files for the monitor client are available under the service's dedicated
installation directory:

Linux installations – /opt/mellanox/doca/services/firefly

Example command line for executing the compiled monitor client from a Linux
host:

Example command line for executing the python-based monitor client from a
Linux host:

$
/opt/mellanox/doca/services/firefly/bin/doca_firefly_monit
-g <ip-address-for-the-monitoring-server>

$ export
PYTHONPATH=${PYTHONPATH}:/opt/mellanox/grpc/python3/lib
$
/opt/mellanox/doca/services/firefly/bin/doca_firefly_monit
<ip-address-for-the-monitoring-server>

Note

DOCA Services 71

Windows installation – C:\Program Files\Mellanox\DOCA\SDK\firefly

Example command line for executing the python-based monitor client from a
Windows host:

Installing required pip packages:

Running the client:

VLAN Tagging

DOCA Firefly natively supports VLAN-tagging-enabled network interfaces.

Separated Mode

The name of the VLAN-enabled network interface should be the one passed through the
YAML file in the PTP_INTERFACE field.

Embedded Mode

Reference source files and the .proto file used for
Firefly's monitor are placed under
firefly/src/monitor .

$ pip3 install grpcio protobuf click

$ C:\Program
Files\Mellanox\DOCA\SDK\firefly\bin\doca_firefly_monit
<ip-address-for-the-monitoring-server>

DOCA Services 72

In addition to passing on the VLAN-enabled interface through the YAML as listed in the
previous section, the user is also required to configure the network routing within the
DPU to support the VLAN tagging:

1. The following example configures a VLAN tag of 10 to the enp3s0f0s4 interface:

In this example, enp3s0f0s4.10 is the interface to be passed to DOCA Firefly.

2. Additional commands to route the traffic within the DPU:

Multiple Interfaces

DOCA Firefly can support multiple network interfaces through the following YAML file
syntax:

For example:

$ sudo ip link add link enp3s0f0s4 name enp3s0f0s4.10 type vlan
id 10
$ sudo ip link set up enp3s0f0s4.10
$ sudo ifconfig enp3s0f0s4.10 192.168.104.1 up

$ sudo ovs-ofctl add-flow uplink
in_port=en3f0pf0sf4,dl_vlan=10,actions=output:p0
$ sudo ovs-ofctl add-flow uplink
in_port=p0,dl_vlan=10,actions=output:en3f0pf0sf4

- name: PTP_INTERFACE
 value: "<space (' ') separated list of interface names>"

DOCA Services 73

Troubleshooting

When troubleshooting container deployment issues, it is highly recommended to follow
the deployment steps and tips in the "Review Container Deployment" section of the
NVIDIA DOCA Container Deployment Guide.

To debug the finalized configuration file used by Firefly, users can connect to the
container as follows:

1. Open a shell session on the running container using the container ID:

- name: PTP_INTERFACE
 value: "p0 p1"

Note

The monitoring feature is supported for multiple interfaces only when
the clientOnly configuration is enabled.

Note

Automatic mode (-a) for phc2sys is not supported when working

with multiple interfaces. It is recommended to disable phc2sys in
this mode.

sudo crictl exec -it <container-id> /bin/bash

DOCA Services 74

2. Once connected the to container, the finalized configuration file can be found under
the /tmp directory using the same filename as the original configuration file.

Pod is Marked as "Ready" and No Container is Listed

Error

When deploying the container, the pod's STATE is marked as Ready , an image is listed,
however no container can be seen running:

Info

More information regarding the configuration files can be found
under section "Ensuring and Debugging Correctness of Config
File".

$ sudo crictl pods
POD ID CREATED STATE NAME
NAMESPACE ATTEMPT RUNTIME
06bd84c07537e 4 seconds ago Ready doca-
firefly-my-dpu default 0
(default)

$ sudo crictl images
IMAGE TAG IMAGE ID
SIZE
k8s.gcr.io/pause 3.2
2a060e2e7101d 251kB
nvcr.io/nvidia/doca/doca_firefly 1.1.0-doca2.0.2
134cb22f34611 87.4MB

$ sudo crictl ps

CONTAINER IMAGE CREATED STATE
NAME ATTEMPT POD ID

DOCA Services 75

Solution

In most cases, the container did start, but immediately exited. This could be checked
using the following command:

Should the container fail (i.e., state of Exited) it is recommended to examine Firefly's

main log at /var/log/doca/firefly/firefly.log .

In addition, for a short period of time after termination, the container logs could also be
viewed using the the container's ID:

Custom Config File is Not Found

Error

POD

$ sudo crictl ps -a
CONTAINER IMAGE CREATED STATE
NAME ATTEMPT POD ID
POD
556bb78281e1d 134cb22f34611 7 seconds ago
Exited doca-firefly 1
06bd84c07537e doca-firefly-my-dpu

$ sudo crictl logs 556bb78281e1d
Starting DOCA Firefly - Version 1.1.0
...
Requested the following PTP interface: p10
Failed to find interface "p10". Aborting

DOCA Services 76

When DOCA Firefly is deployed using a custom configuration file, a deployment error
occurs and the following log message appears:

Solution

Check the custom file name written in the YAML file and make sure that you properly
placed the file with that name under the /etc/firefly/ directory of the DPU.

Profile is Not Supported

Error

When DOCA Firefly is deployed, a deployment error occurs and the following log message
appears:

Solution

Verify that the profile selected in the YAML file matches one of the supported profiles as
listed in the profiles table.

...
2023-09-07 14:04:23 - Firefly - Init - ERROR - Custom
config file not found: my_file.conf. Aborting
...

...
2023-09-07 14:04:23 - Firefly - Init - ERROR - profile
<name> is not supported. Aborting
...

DOCA Services 77

PPS Capability is Missing

Error

When DOCA Firefly is deployed and configured to use the PPS module, a deployment
error occurs and the following log message appears:

Note

The profile name is case sensitive. The name must be specified in
lower-case letters.

...
2023-09-07 14:04:23 - Firefly - Init - INFO - Starting PPS
configuration
2023-09-07 14:04:23 - Firefly - Init - WARNING - [-] PPS
capability is missing, seems that the card doesn't support PPS
2023-09-07 14:04:23 - Firefly - Init - INFO -
capabilities:
2023-09-07 14:04:23 - Firefly - Init - INFO - 50000000
maximum frequency adjustment (ppb)
2023-09-07 14:04:23 - Firefly - Init - INFO - 0
programmable alarms
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 external
time stamp channels
2023-09-07 14:04:23 - Firefly - Init - INFO - 0
programmable periodic signals
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 pulse
per second
2023-09-07 14:04:23 - Firefly - Init - INFO - 0
programmable pins

DOCA Services 78

Solution

This log indicates that the DPU hardware does not support PPS. However, PTP can still run
on this hardware and you should see the line Running ptp4l in the container log,
indicating that PTP is running successfully.

Timed Out While Polling for Tx Timestamp

Error

When the BlueField is operating in DPU mode, DOCA Firefly gets stuck in a fault loop while
waiting to receive the Tx timestamp events:

2023-09-07 14:04:23 - Firefly - Init - INFO - 0 cross
timestamping
...

ptp4l[2912.797]: timed out while polling for tx timestamp
ptp4l[2912.797]: increasing tx_timestamp_timeout may correct this
issue, but it is likely caused by a driver bug
ptp4l[2912.797]: port 1 (enp3s0f0s4): send sync failed
ptp4l[2923.528]: timed out while polling for tx timestamp
ptp4l[2923.528]: increasing tx_timestamp_timeout may correct this
issue, but it is likely caused by a driver bug
ptp4l[2923.528]: port 1 (enp3s0f0s4): send sync failed

Info

DOCA Services 79

Solution

DOCA Firefly's configurations were already adjusted to accommodate for Tx port
timestamping. For more information about the reason for this error and for the designed
recovery mechanism from it, refer to section "Tx Timestamping Support on DPU Mode".

PTP Profile Default Config Files

Media Profile

DOCA Firefly has a known gap leading to this error appearing once,
after which ptp4l recovers from it. This section only covers the case in
which there is a fault loop and no recovery occurs.

#
This config file contains configurations for media &
entertainment alongside
DOCA Firefly specific adjustments.
#

[global]
domainNumber 127

priority1 128

priority2 127

use_syslog 1

logging_level 6

tx_timestamp_timeout 30

hybrid_e2e 1

dscp_event 46

dscp_general 46

DOCA Services 80

Default Profile

Firefly Modules Configuration Options

PTP Monitor

monitor-default.conf

logAnnounceInterval -2

announceReceiptTimeout 3

logSyncInterval -3

logMinDelayReqInterval -3

delay_mechanism E2E
network_transport UDPv4
Value lesser or equal to 1 is required for Embedded Mode
fault_reset_interval 1

Required for multiple interfaces support
boundary_clock_jbod 1

#
This config file extends linuxptp default.cfg config file with DOCA
Firefly
specific adjustments.
#

[global]
Value lesser or equal to 1 is required for Embedded Mode
fault_reset_interval 1

Required for multiple interfaces support
boundary_clock_jbod 1

DOCA Services 81

Configuration Options

report_interval – once in how many milliseconds should the monitor publish a
report to all defined output providers (standard output, gRPC clients, etc.)? Default
is 1 second (1000 milliseconds).

doca_logging_level – logging level for the module, based on DOCA's logging
levels (default is 50):

10=DISABLE

20=CRITICAL

30=ERROR

40=WARNING

50=INFO

60=DEBUG

#
Default values for all of Firefly's PTP monitor configuration
values.
#

[global]
General
report_interval 1000

Debugging & Logging
doca_logging_level 50

DOCA Services 82

NVIDIA DOCA Flow Inspector
Service Guide
This guide provides instructions on how to use the DOCA Flow Inspector service container
on top of NVIDIA® BlueField® DPU.

Introduction

DOCA Flow Inspector service enables real-time data monitoring and extraction of
telemetry components. These components can be leveraged by various services, including
those focused on security, big data, and other purposes.

DOCA Flow Inspector service is linked to DOCA Telemetry Service (DTS). It receives
mirrored packets from the user parses the data, and forwards it to the DTS, which
aggregates predefined statistics from various providers and sources. The service utilizes
the DOCA Telemetry API to communicate with the DTS, while the DPDK infrastructure
facilitates packet acquisition at a user-space layer.

DOCA Flow Inspector operates within its dedicated Kubernetes pod on BlueField, aimed at
receiving mirrored packets for analysis. The received packets are parsed and transmitted,
in a predefined structure, to a telemetry collector that manages the remaining telemetry
aspects.

DOCA Services 83

Service Flow

The DOCA Flow Inspector receives a configuration file in a JSON format which includes
which of the mirrored packets should be filtered and which information should be sent to
DTS for inspection.

The configuration file can include several export units under the "export-units" attribute.
Each one is comprised of a "filter" and an "export". Each packet that matches one filter
(based on the protocol and ports in the L4 header) is then parsed to the corresponding
requested struct defined in the export. That information only is sent for inspection. A
packet that does not match any filter is dropped.

In addition, the configuration file could contain FI optional configuration flags, see JSON
format and example in the Configuration section.

The service watches for changes in the JSON configuration file in runtime and for any
change that reconfigures the service.

The DOCA Flow Inspector runs on top of DPDK to acquire L4. The packets are then
filtered and HW-marked with their export unit index. The packets are then parsed
according to their export unit and export struct, and then forwarded to the telemetry
collector using IPC.

DOCA Services 84

Configuration phase:

1. A JSON file is used as input to configure the export units (i.e., filters and
corresponding export structs).

2. The filters are translated to HW rules on the SF (scalable function port) using the
DOCA Flow library.

3. The connection to the telemetry collector is initialized and all export structures are
registered to DTS.

Inspection phase:

1. Traffic is mirrored to the relevant SF.

2. Ingress traffic is received through the configured SF.

DOCA Services 85

3. Non-L4 traffic and packets that do not match any filter are dropped using hardware
rules.

4. Packets matching a filter are marked with the export unit index they match and are
passed to the software layer in the Arm cores.

5. Packets are parsed to the desired struct by the index of export unit.

6. The telemetry information is forwarded to the telemetry agent using IPC.

7. Mirrored packets are freed.

8. If the JSON file is changed, run the configuration phase with the updated file.

Requirements

Before deploying the flow inspector container, ensure that the following prerequisites are
satisfied:

1. Create the needed files and directories. Folders should be created automatically.
Make sure the .json file resides inside the folder:

Validate that DTS's configuration folders exist. They should be created automatically
when DTS is deployed.

2. Allocate huge pages as needed by DPDK. This requires root privileges.

$ touch
/opt/mellanox/doca/services/flow_inspector/bin/flow_inspector_c

$ sudo mkdir -p /opt/mellanox/doca/services/telemetry/config
$ sudo mkdir -p
/opt/mellanox/doca/services/telemetry/ipc_sockets
$ sudo mkdir -p /opt/mellanox/doca/services/telemetry/data

DOCA Services 86

Or alternatively:

Deploy a scalable function according to NVIDIA BlueField DPU Scalable Function
User Guide and mirror packets accordingly using the Open vSwitch command.

For example:

1. Mirror packets from p0 to sf4 :

2. Mirror packets from pf0hpf or p0 that pass through sf4 :

$ sudo echo 2048 > /sys/kernel/mm/hugepages/hugepages-
2048kB/nr_hugepages

$ sudo echo '2048' | sudo tee -a
/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
$ sudo mkdir /mnt/huge
$ sudo mount -t hugetlbfs nodev /mnt/huge

$ ovs-vsctl add-br ovsbr1
$ ovs-vsctl add-port ovsbr1 p0
$ ovs-vsctl add-port ovsbr1 en3f0pf0sf4
$ ovs-vsctl -- --id=@p1 get port en3f0pf0sf4 \
 -- --id=@p2 get port p0 \
 -- --id=@m create mirror name=m0 select-dst-
port=@p2 select-src-port=@p2 output-port=@p1 \
 -- set bridge ovsbr1 mirrors=@m

$ ovs-vsctl add-br ovsbr1
$ ovs-vsctl add-port ovsbr1 pf0hpf
$ ovs-vsctl add-port ovsbr1 p0

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide/index.html
https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide/index.html

DOCA Services 87

The output of last command (creating the mirror) should output a sequence of
letters and numbers similar to the following:

Service Deployment

For information about the deployment of DOCA containers on top of the BlueField DPU,
refer to NVIDIA DOCA Container Deployment Guide.

DTS is available on NGC, NVIDIA's container catalog. Service-specific configuration steps
and deployment instructions can be found under the service's container page.

$ ovs-vsctl add-port ovsbr1 en3f0pf0sf4
$ ovs-vsctl -- --id=@p1 get port en3f0pf0sf4 \
 -- --id=@p2 get port pf0hpf \
 -- --id=@m create mirror name=m0 select-dst-
port=@p2 select-src-port=@p2 output-port=@p1 \
 -- set bridge ovsbr1 mirrors=@m

$ ovs-vsctl -- --id=@p1 get port en3f0pf0sf4 \
 -- --id=@p2 get port p0 \
 -- --id=@m create mirror name=m0 select-dst-
port=@p2 select-src-port=@p2 output-port=@p1 \
 -- set bridge ovsbr1 mirrors=@m

0d248ca8-66af-427c-b600-af1e286056e1

Note

The designated SF must be created as a trusted function.
Additional details can be found in the NVIDIA BlueField
DPU Scalable Function User Guide.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_flow_inspector
https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide/index.html
https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide/index.html

DOCA Services 88

Configuration

JSON Input

The DOCA Flow Inspector configuration file should be placed under
/opt/mellanox/doca/services/flow_inspector/bin/<json_file_name>.json

and be built in the following format:

Note

The order of running DTS and DOCA Flow Inspector is important. You
must launch DTS, wait a few seconds, and then launch DOCA Flow
Inspector.

{
/* Optional param, time period to check for changes in JSON config file (in seconds) and flush

telemetry buffer if enabled (default is 60 seconds) */

"config-sample-rate": <time>,

/* Optional param, telemetry buffer size in bytes (default is 60KB) */

"telemetry-buffer-size": <size>,

/* Optional param, enable periodic telemetry buffer flush and defining the period time (in

seconds) */
"telemetry-flush-rate": <numeric value in seconds>,

/* Mandatory param, Flow Inspector export units */

"export-units":
[

/* Export Unit 0 */

{
"filter":

DOCA Services 89

Export Unit Attributes

Allowed protocols:

"TCP"

"UDP"

Port range:

It is possible to insert a range of ports for both source and destination

Range should include borders [start_port-end_port]

{ "protocols": [<L4 protocols separated
by comma>], # What L4 protocols are allowed

 "ports":
[

[<source
port>, <destination port>],
 [<source ports range>,
<destination ports range>],
 <... more pairs of source, dest
ports>

]
},
"export":
{

 "fields": [<fields to be part of export
struct, separated by comma>] # the Telemetry event will contain
these fields.

}
},

 <... More Export Units>
]

}

DOCA Services 90

Allowed ports:

All ports in range 0 - 65535 as a string

Or * to indicate any ports

Allowed fields in export struct:

timestamp – timestamp indicating when it was received by the service

host_ip – the IP of the host running the service

src_mac – source MAC address

dst_mac – destination MAC address

src_ip – source IP

dst_ip – destination IP

protocol – L4 protocol

src_port – source port

dst_port – destination port

flags – additional flags (relevant to TCP only)

data_len – data payload length

data_short – short version of data (payload sliced to first 64 bytes)

data_medium – medium version of data (payload sliced to first 1500 bytes)

data_long – long version of data (payload sliced to first 9*1024 bytes)

JSON example:

{

DOCA Services 91

/* Optional param, time period to check for changes in JSON
config file (in seconds) and flush telemetry buffer if enabled
(default is 60 seconds) */
 "config-sample-rate": 30,

/* Optional param, telemetry maximum buffer size in bytes
*/

"telemetry-buffer-size": 70000,

/* Optional param, enable periodic telemetry buffer flush
and defining the period time (in seconds) */

"telemetry-flush-rate": 1.5,

 /* Mandatory param, Flow Inspector export units */

"export-units":
[

/* Export Unit 0 */
{

"filter":
{

"protocols": ["tcp", "udp"],
"ports":

[
["*","433-460"],
["20480","28341"],
["28341","20480"],
["68", "67"],
["67", "68"]

]
},
"export":
{

"fields": ["timestamp", "host_ip", "src_mac",
"dst_mac", "src_ip", "dst_ip", "protocol", "src_port",

DOCA Services 92

"dst_port", "flags", "data_len",
"data_long"]

}
},

/* Export Unit 1 */
{

"filter":
{

"protocols": ["tcp"],
"ports":

[
["5-10","422"],
["80","80"]

]
},
"export":
{

"fields": ["timestamp","dst_ip", "host_ip",
"data_len", "flags", "data_medium"]

}
}

]
}

Note

If a packet header contains L4 ports or L4 protocol which are not
specified in any filter, they are filtered out.

DOCA Services 93

Yaml File

The .yaml file downloaded from NGC can be easily edited according to your needs.

The SF_NUM_1 value can be changed according to the SF used in the OVS
configuration and can be found using the command in NVIDIA BlueField DPU
Scalable Function User Guide.

The EAL_FLAGS value must be changed according to the DPDK flags required
when running the container.

The SERVICE_ARGS are the runtime arguments received by the service:

-l , --log-level <value> – sets the (numeric) log level for the program
<10=DISABLE, 20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG,
70=TRACE>

-p , --policy <json_path> – sets the JSON path inside the container

Verifying Output

Enabling write to data in the DTS allows debugging the validity of the DOCA Flow
Inspector.

To allow DTS to write locally, uncomment the following line in
/opt/mellanox/doca/services/telemetry/config/dts_config.ini :

env:
 # Set according to the local setup
 - name: SF_NUM_1
 value: "2" # Additional EAL flags, if needed
 - name: EAL_FLAGS
 value: "" # Service-Specific command line arguments
 - name: SERVICE_ARGS
 value: "--policy /flow_inspector/flow_inspector_cfg.json -l 60"

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide/index.html
https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide/index.html

DOCA Services 94

The schema folder contains JSON-formatted metadata files which allow reading the
binary files containing the actual data. The binary files are written according to the
naming convention shown in the following example:

#output=/data

Note

Any changes in dts_config.ini necessitate restarting the pod for
the new settings to apply.

Note

Requires installing the tree runtime utility (apt install tree).

$ tree /opt/mellanox/doca/services/telemetry/data/
/opt/mellanox/doca/services/telemetry/data/
├── {year}
│ └── {mmdd}
│ └── {hash}
│ ├── {source_id}
│ │ └── {source_tag}{timestamp}.bin
│ └── {another_source_id}
│ └── {another_source_tag}{timestamp}.bin
└── schema
 └── schema_{MD5_digest}.json

DOCA Services 95

New binary files appear when:

The service starts

When the binary file's max age/size restriction is reached

When JSON file is changed and new schemas of telemetry are created

An hour passes

If no schema or no data folders are present, refer to the Troubleshooting section in
NVIDIA DOCA Telemetry Service Guide.

Reading the binary data can be done from within the DTS container using the following
command:

The data written locally should be shown in the following format assuming a packet
matching Export Unit 1 from the example has arrived:

Note

source_id is usually set to the machine hostname. source_tag is
a line describing the collected counters, and it is often set as the
provider's name or name of user-counters.

crictl exec -it <Container-ID>
/opt/mellanox/collectx/bin/clx_read -s /data/schema
/data/path/to/datafile.bin

{
 "timestamp": 1656427771076130,
 "host_ip": "10.237.69.238",
 "src_ip": "11.7.62.4",
 "dst_ip": "11.7.62.5",

DOCA Services 96

Troubleshooting

When troubleshooting container deployment issues, it is highly recommended to follow
the deployment steps and tips in the "Review Container Deployment" section of the
NVIDIA DOCA Container Deployment Guide.

Pod is Marked as "Ready" and No Container is Listed

Error

When deploying the container, the pod's STATE is marked as Ready , an image is listed,
however no container can be seen running:

 "data_len": 1152,
 "data_short": "Hello World"

}

$ sudo crictl pods
POD ID CREATED STATE NAME
NAMESPACE ATTEMPT RUNTIME
3162b71e67677 4 seconds ago Ready
doca-flow-inspector-my-dpu default
0 (default)

$ sudo crictl images
IMAGE TAG
IMAGE ID SIZE
k8s.gcr.io/pause 3.2
 2a060e2e7101d 487kB
nvcr.io/nvidia/doca/doca_flow_inspector 1.1.0-doca2.0.2
2af1e539eb7ab 86.8MB

$ sudo crictl ps

DOCA Services 97

Solution

In most cases, the container did start, but immediately exited. This could be checked
using the following command:

Should the container fail (i.e., state of Exited), it is recommended to examine the Flow
Inspector's main log at
/var/log/doca/flow_inspector/flow_inspector_fi_dev.log .

In addition, for a short period of time after termination, the container logs could also be
viewed using the container's ID:

Pod is Not Listed

CONTAINER IMAGE CREATED STATE
NAME ATTEMPT POD ID
POD

$ sudo crictl ps -a
CONTAINER IMAGE CREATED STATE
NAME ATTEMPT POD ID
POD
556bb78281e1d 2af1e539eb7ab 6 seconds ago
Exited doca-flow-inspector 1
3162b71e67677 doca-flow-inspector-my-dpu

$ sudo crictl logs 556bb78281e1d
...
2023-10-04 11:42:55 - flow_inspector - FI - ERROR - JSON
file was not found <config-file-path>.

DOCA Services 98

Error

When placing the container's YAML file in the Kubelet's input folder, the service pod is not
listed in the list of pods:

Solution

In most cases, the pod does not start due to the absence of the requested hugepages.
This can be verified using the following command:

$ sudo crictl pods
POD ID CREATED STATE NAME
NAMESPACE ATTEMPT RUNTIME

$ sudo journalctl -u kubelet -e. . .
Oct 04 12:12:19 <my-dpu> kubelet[2442376]: I1004 12:12:19.905064
2442376 predicate.go:103] "Failed to admit pod, unexpected error while attempting to

recover from admission failure" pod="default/doca-flow-inspector-<my-dpu>" err="preemption: error
finding a set of pods to preempt: no set of running pods found to reclaim resources: [(res: hugepages-2Mi,
q: 104563999874),]"

DOCA Services 99

NVIDIA DOCA HBN Service
Guide
This guide provides instructions on how to use the DOCA HBN Service container on top of
NVIDIA® BlueField® DPU.

Release Notes

For the release notes of HBN 2.0.0, please refer to "HBN Service Release Notes".

HBN Overview

Host-based networking (HBN) is a DOCA service that enables the network architect to
design a network purely on L3 protocols, enabling routing to run on the server-side of the
network by using the DPU as a BGP router. The EVPN extension of BGP, supported by
HBN, extends the L3 underlay network to multi-tenant environments with overlay L2 and
L3 isolated networks.

The HBN solution packages a set of network functions inside a container which, itself, is
packaged as a service pod to be run on the DPU. At the core of HBN is the Linux
networking DPU acceleration driver. Netlink to DOCA daemon, or nl2docad, implements
the DPU acceleration driver. nl2docad seamlessly accelerates Linux networking using DPU
hardware programming APIs.

The driver mirrors the Linux kernel routing and bridging tables into the DPU hardware by
discovering the configured Linux networking objects using the Linux Netlink API. Dynamic
network flows, as learned by the Linux kernel networking stack, are also programmed by
the driver into DPU hardware by listening to Linux kernel networking events.

DOCA Services 100

The following diagram captures an overview of HBN and the interactions between various
components of HBN.

DOCA Services 101

ifupdown2 is the interface manager which pushes all the interface related states to
kernel

The routing stack is implemented in FRR and pushes all the control states (EVPN
MACs and routes) to kernel via netlink

Kernel maintains the whole network state and relays the information using netlink.
The kernel is also involved in the punt path and handling traffic that does not match
any rules in the eSwitch.

nl2docad listens for the network state via netlink and invokes the DOCA interface to
accelerate the flows in the DPU hardware tables. nl2docad also offloads these flows
to eSwitch.

Service Deployment

Preparing DPU for HBN Deployment

HBN requires service function chaining (SFC) to be activated on the DPU before running
the HBN service container. SFC allows for additional services/containers to be chained to
HBN and provides additional data manipulation capabilities.

The following subsections provide additional information about SFC and instructions on
enabling it during DPU BFB installation.

Service Function Chaining

The diagram below shows the fully detailed default configuration for HBN with Service
Function Chaining (SFC).

In this setup, the HBN container is configured to use sub-function ports (SFs) instead of
the actual uplinks, PFs and VFs. To illustrate, for example:

Uplinks – use p0_sf instead of p0

PF – use pf0hpf_sf instead of pf0hpf

VF – use pf0vf0_sf instead of pf0vf0

The indirection layer between the SF and the actual ports is managed via a br-hbn OVS
bridge automatically configured when the BFB image is installed on the DPU with HBN
enabled. This indirection layer allows other services to be chained to existing SFs and
provide additional functionality to transit traffic.

DOCA Services 102

Enabling SFC for HBN Deployment

Deployment from BFB

DPU installation should follow the NVIDIA DOCA Installation Guide for Linux.

1. Make sure link type is set to ETH in step 5 of the "Installing Software on Host"
section in the NVIDIA DOCA Installation Guide for Linux.

2. Add the following parameters to the bf.cfg configuration file:

3. Then run:

ENABLE_SFC_HBN=yes

NUM_VFs_PHYS_PORT0=12 # <num VFs supported by HBN on Physical Port 0> (valid range:
0-127) Default 14

NUM_VFs_PHYS_PORT1=2 # <num VFs supported by HBN on Physical Port 1> (valid range:
0-127) Default 0

bfb-install -c bf.cfg -r rshim0 -b <BFB-image>

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Installation+Guide+for+Linux/index.html
https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Installation+Guide+for+Linux/index.html

DOCA Services 103

Deployment from PXE Boot

To enable HBN SFC using a PXE installation environment with BFB content, use the
following configuration for PXE:

The kickstart script (bash) should include the following lines:

/etc/bf.cfg is sourced by the BFB install.sh script.

bfnet=<IFNAME>:<IPADDR>:<NETMASK> or <IFNAME>:dhcp
bfks=<URL of the kickstart script>

cat >> /etc/bf.cfg << EOF
ENABLE_SFC_HBN=yes
NUM_VFs_PHYS_PORT0=12 # <num VFs supported by HBN on Physical
Port 0> (valid range: 0-127) Default 14

NUM_VFs_PHYS_PORT1=2 # <num VFs supported by HBN on Physical
Port 1> (valid range: 0-127) Default 0

EOF

Note

It is recommended to verify the accuracy of the DPU's clock post-
installation. This can be done using the following command:

Please refer to the known issues listed in the "NVIDIA DOCA Release
Notes" for more information.

$ date

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Release+Notes/index.html
https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Release+Notes/index.html

DOCA Services 104

HBN Service Container Deployment

HBN service is available on NGC, NVIDIA's container catalog. Service-specific
configuration steps and deployment instructions can be found under the service's
container page. Make sure to follow the instructions in the NGC page to verify that the
container is running properly.

For information about the deployment of DOCA containers on top of the BlueField DPU,
refer to NVIDIA DOCA Container Deployment Guide.

HBN Default Deployment Configuration

The HBN service comes with four types of configurable interfaces:

Two uplinks (p0_sf , p1_sf)

Two PF port representors (pf0hpf_sf , pf1hpf_sf)

User-defined number of VFs (i.e., pf0vf0_sf , pf0vf1_sf , …, pf1vf0_sf ,

pf1vf1_sf , …)

One interface to connect to services running on the DPU, outside of the HBN
container (pf0dpu1_sf)

The *_sf suffix indicates that these are sub-functions and are different from the
physical uplinks (i.e., PFs, VFs). They can be viewed as virtual interfaces from a virtualized
DPU.

Each of these interfaces is connected outside the HBN container to the corresponding
physical interface, see section "Service Function Chaining" (SFC) for more details.

The HBN container runs as an isolated namespace and does not see any interfaces
outside the container (oob_net0 , real uplinks and PFs, *_sf_r representors).

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_hbn

DOCA Services 105

pf0dpu1_sf is a special interface for HBN to connect to services running on the DPU.

Its counterpart pf0dpu0_sf is located outside the HBN container. See section
"Connecting to Services on DPU" for deployment considerations when using the
dpu1_sf interface in HBN.

eth0 is equivalent to the oob_net0 interface in the HBN container. It is part of the
management VRF of the container. It is not configurable via NVUE and does not need any
configuration from the user. See section "MGMT VRF in HBN Container" for more details
on this interface and the management VRF.

HBN Deployment Considerations

DOCA Services 106

SF Interface State Tracking

When HBN is deployed with SFC, the interface state of the following network devices is
propagated to their corresponding SFs:

Uplinks – p0 , p1

PFs – pf0hpf , pf1hpf

VFs – pf0vfX , pf1vfX where X is the VF number

For example, if the p0 uplink cable gets disconnected:

p0 transitions to DOWN state with NO-CARRIER (default behavior on Linux); and

p0 state is propagated to p0_sf whose state also becomes DOWN with NO-
CARRIER

After p0 connection is reestablished:

p0 transitions to UP state; and

p0 state is propagated to p0_sf whose state becomes UP

Interface state propagation only happens in the uplink/PF/VF-to-SF direction.

A daemon called sfc-state-propagation runs on the DPU, outside of the HBN
container, to sync the state. The daemon listens to netlink notifications for interfaces and
transfers the state to SFs.

SF Interface MTU

In the HBN container, all the interfaces MTU are set to 9216 by default. MTU of specific
interfaces can be overwritten using flat-files configuration or NVUE.

On the DPU side (i.e., outside of the HBN container), the MTU of the uplinks, PFs and VFs
interfaces are also set to 9216. This can be changed by modifying
/etc/systemd/network/30-hbn-mtu.network or by adding a new configuration file

in the /etc/systemd/network for specific directories.

DOCA Services 107

To reload this configuration, execute systemctl restart systemd-networkd .

Connecting to Services on DPU

pf0dpu1_sf can be used by HBN to connect to services running on the DPU. Its

counterpart, pf0dpu0_sf , is located outside the HBN container.

Traffic between the DPU and the outside world is not hardware-accelerated in the HBN
container when using a native L3 connection over pf0dpu0_sf / pf0dpu1_sf . To get

hardware-acceleration, configure pf0dpu1_sf in the HBN container with

bridge-access over an SVI.

Disabling DPU Uplinks

The uplink ports must be always kept administratively up for proper operation of HBN.
Otherwise, the NVIDIA® ConnectX® firmware would bring down the corresponding
representor port which would cause data forwarding to stop.

When using ECMP failover on the two uplink SFs, locally disabling one uplink does not
result in traffic switching to the second uplink. Disabling local link in this case means to
set one uplink admin DOWN directly on the DPU.

To test ECMP failover scenarios correctly, the uplink must be disabled from its remote
counterpart (i.e., execute admin DOWN on the remote system's link which is connected to
the uplink).

Note

Change in operational status of uplink (e.g., carrier down) would result
in traffic being switched to the other uplink.

DOCA Services 108

Configuration

General Network Configuration

Flat Files Configuration

Add network interfaces and FRR configuration files to the DPU to achieve the desired
configuration:

/etc/network/interfaces

/etc/frr/frr.conf ; /etc/frr/daemons

NVUE Configuration

This section assumes familiarity with NVIDIA user experience (NVUE) Cumulus Linux
documentation. The following subsections, only expand on DPU-specific aspects of NVUE.

NVUE Service

Note

Refer to NVIDIA® Cumulus® Linux documentation for more
information.

Note

Refer to NVIDIA® Cumulus® Linux documentation for more
information.

https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/System-Configuration/NVIDIA-User-Experience-NVUE/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/System-Configuration/NVIDIA-User-Experience-NVUE/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/Layer-3/FRRouting/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/Layer-3/FRRouting/

DOCA Services 109

HBN installs NVUE by default and enables NVUE service at boot.

NVUE REST API

HBN enables REST API by default.

Users may run the cURL commands from the command line. Use the default HBN
username nvidia and password nvidia .

To change the default password of the nvidia user or add additional users for NVUE
access, refer to section "NVUE User Credentials".

REST API example:

curl -u 'nvidia:nvidia' --insecure
https://10.188.108.58:8765/nvue_v1/interface/p0
{
 "ip": {
 "address": {
 "30.0.0.1/24": {}
 }
 },
 "link": {
 "auto-negotiate": "on",
 "duplex": "full",
 "fec": "auto",
 "mac": "b8:ce:f6:a8:83:9a",
 "mtu": 9216,
 "speed": "100G",
 "state": {
 "up": {}
 },
 "stats": {
 "carrier-transitions": 13,
 "in-bytes": 0,

DOCA Services 110

NVUE CLI

For information about using the NVUE CLI, refer to the NVUE CLI documentation

NVUE Startup Configuration File

 "in-drops": 0,
 "in-errors": 0,
 "in-pkts": 0,
 "out-bytes": 14111,
 "out-drops": 0,
 "out-errors": 0,
 "out-pkts": 161
 }
 },
 "pluggable": {
 "identifier": "QSFP28",
 "vendor-name": "Mellanox",
 "vendor-pn": "MCP1600-C00AE30N",
 "vendor-rev": "A4",
 "vendor-sn": "MT2105VB02844"
 },
 "type": "swp"
}

Note

For information about using the NVUE REST API, refer to the NVUE
API documentation .

https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/System-Configuration/NVIDIA-User-Experience-NVUE/#nvue-cli
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/api/index.html
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/api/index.html

DOCA Services 111

When the network configuration is saved using NVUE, HBN writes the configuration to
the /etc/nvue.d/startup.yaml file.

Startup configuration is applied by following the supervisor daemon at boot time.
nvued-startup will appear in EXITED state after applying the startup configuration.

NVUE User Credentials

The preconfigured default user credentials are as follows:

Username nvidia

Password nvidia

NVUE user credentials can be added post installation. This functionality is enabled by the
HBN startup script by using the –-username and –-password script switches. For

supervisorctl status nvued-startup
nvued-startup EXITED Apr 17 10:04 AM

Note

nv config apply startup applies the yaml configuration saved

at /etc/nvue.d/ .

Note

nv config save saves the running configuration to

/etc/nvue.d/startup.yaml .

DOCA Services 112

example:

After executing this script, respawn the container or start the decrypt-user-add
script:

The script creates a user on the HBN container:

NVUE Interface Classification

Interface Interface Type NVUE Type

p0_sf Uplink representor swp

p1_sf Uplink representor swp

lo Loopback loopback

pf0hpf_sf Host representor swp

pf1hpf_sf Host representor swp

pf0vfx_sf (where x is 0-255) VF representor swp

pf1vfx_sf (where x is 0-255) VF representor swp

./hbn-dpu-setup.sh -u newuser -p newpassword

supervisorctl start decrypt-user-add
decrypt-user-add: started

cat /etc/passwd | grep newuser
newuser:x:1001:1001::/home/newuser:/bin/bash

DOCA Services 113

Configuration Persistence

The following directories are mounted from the host DPU to the HBN container and are
persistent across HBN restarts and DPU reboots:

Host DPU Mount Point HBN Container Mount Point

Configuration Files Mount Pints

/var/lib/hbn/etc/network/ /etc/network/

/var/lib/hbn/etc/frr/ /etc/frr/

/var/lib/hbn/etc/nvue.d/ /etc/nvue.d/

/var/lib/hbn/etc/supervisor/conf.d/ /etc/supervisor/conf.d/

/var/lib/hbn/var/lib/nvue/ /var/lib/nvue/

Support and Log Files Mount Points

/var/lib/hbn/var/support/ /var/support/

/var/log/doca/hbn/ /var/log/hbn/

SR-IOV Support

Creating VFs on Host Server

The first step to use SR-IOV is to create VFs on the host server. VFs can be created using
the following command:

Where:

<host-rep> is one of the two host representors (e.g., ens1f0 or ens1f1)

0≤ N ≤16 is the desired total number of VFs

echo N > /sys/class/net/<host-rep>/device/sriov_numvfs

DOCA Services 114

Set N =0 to delete all the VFs on 0≤N≤16

N =16 is the maximum number of VFs supported on HBN across all
representors

Automatic Creation of VF Representors on DPU

VFs created on the host must have corresponding SF representors on the DPU side. For
example:

ens1f0vf0 is the first VF from the first host representor; this interface is created
on the host server

pf0vf0 is the corresponding VF representor to ens1f0vf0 ; this interface is on

the DPU and automatically created at the same time as ens1f0vf0 is created

pf0vf0_sf is the corresponding SF for pf0vf0 which is used by HBN

The creation of the SF representor for VFs is done ahead of time when installing the BFB,
see section "Enabling SFC for HBN Deployment" to see how to select how many SFs to
create ahead of time.

The SF representors for VFs (i.e., pfXvfY) are pre-mapped to work with the
corresponding VF representors when these are created with the command from section
"Creating VFs on Host Server".

Management VRF

Two management VRFs are setup for HBN with SFC:

The first management VRF is outside the HBN container on the DPU. This VRF
provides separation between out-of-band (OOB) traffic (via oob_net0 or

tmfifo_net0) and data-plane traffic via uplinks and PFs.

The second management VRF is inside the HBN container and provides similar
separation. The OOB traffic (via eth0) is isolated from the traffic via the *_sf
interfaces.

DOCA Services 115

MGMT VRF on Host DPU

The management (mgmt) VRF is enabled by default when the DPU is deployed with SFC
(see section "Enabling SFC for HBN Deployment"). The mgmt VRF provides separation
between the OOB management network and the in-band data plane network.

The uplinks and PFs/VFs use the default routing table while the oob_net0 (OOB

Ethernet port) and the tmifo_net0 netdevices use the mgmt VRF to route their
packets.

When logging in either via SSH or the console, the shell is by default in mgmt VRF context.
This is indicated by a mgmt added to the shell prompt:

When logging into the HBN container with crictl , the HBN shell will be in the default
VRF. Users must switch to MGMT VRF manually if OOB access is required. Use
ip vrf exec to do so.

The user must run ip vrf exec mgmt to perform operations requiring OOB access
(e.g., apt-get update).

Network devices belonging to the mgmt VRF can be listed with the vrf utility:

root@bf2:mgmt:/home/ubuntu#
root@bf2:mgmt:/home/ubuntu# ip vrf identify
mgmt.

root@bf2:mgmt:/home/ubuntu# ip vrf exec mgmt bash

root@bf2:mgmt:/home/ubuntu# vrf link list

VRF: mgmt

tmfifo_net0 UP 00:1a:ca:ff:ff:03
<BROADCAST,MULTICAST,UP,LOWER_UP>

DOCA Services 116

To show the routing table for the default VRF, run:

To show the routing table for the mgmt VRF, run:

oob_net0 UP 08:c0:eb:c0:5a:32
<BROADCAST,MULTICAST,UP,LOWER_UP>

root@bf2:mgmt:/home/ubuntu# vrf help
vrf <OPTS>

VRF domains:
 vrf list

Links associated with VRF domains:
 vrf link list [<vrf-name>]

Tasks and VRF domain asociation:
 vrf task exec <vrf-name> <command>
 vrf task list [<vrf-name>]
 vrf task identify <pid>

 NOTE: This command affects only AF_INET and AF_INET6 sockets
opened by the
 command that gets exec'ed. Specifically, it has *no*
impact on netlink
 sockets (e.g., ip command).

root@bf2:mgmt:/home/ubuntu# ip route show

root@bf2:mgmt:/home/ubuntu# ip route show vrf mgmt

DOCA Services 117

MGMT VRF in HBN Container

Inside the HBN container, a separate mgmt VRF is present. Similar commands as those
listed under section "MGMT VRF on Host DPU" can be used to query management routes.

The *_sf interfaces use the default routing table while the eth0 (OOB) uses the mgmt
VRF to route out-of-band packets out of the container. The OOB traffic gets NATed
through the DPU oob_net0 interface, ultimately using the DPU OOB's IP address.

When logging into the HBN container via crictl , the shell enters the default VRF
context by default. Switching to the mgmt VRF can be done using the command
ip vrf exec mgmt <cmd> .

Existing Services in MGMT VRF on Host DPU

On the host DPU, outside the HBN container, a set of existing services run in the mgmt
VRF context as they need OOB network access:

containerd

kubelet

ssh

docker

These services can be restarted and queried for their status using the command
systemctl while adding @mgmt to the original service name. For example:

To restart containerd:

To query containerd status:

root@bf2:mgmt:/home/ubuntu# systemctl restart containerd@mgmt

DOCA Services 118

Running New Service in MGMT VRF

If a service needs OOB access to run, it can be added to the set of services running in
mgmt VRF context. Adding such a service is only possible on the host DPU (i.e., outside
the HBN container).

To add a service to the set of mgmt VRF services:

1. Add it to /etc/vrf/systemd.conf (if it is not present already). For example, NTP
is already listed in this file.

2. Run the following:

3. Stop and disable to the non-VRF version of the service to be able to start the mgmt
VRF one:

root@bf2:mgmt:/home/ubuntu# systemctl status containerd@mgmt

Note

The original version of these services (without @mgmt) are not used
and must not be started.

root@bf2:mgmt:/home/ubuntu# systemctl daemon-reload

root@bf2:mgmt:/home/ubuntu# systemctl stop ntp
root@bf2:mgmt:/home/ubuntu# systemctl disable ntp
root@bf2:mgmt:/home/ubuntu# systemctl enable ntp@mgmt

DOCA Services 119

HBN Configuration Examples

HBN Default Configuration

After a fresh HBN installation, the default /etc/network/interfaces file would
contain only the declaration of the two uplink SFs and a loopback interface.

FRR configuration files would also be present under /etc/frr/ but no configuration
would be enabled.

Native Routing with BGP and ECMP

HBN supports unicast routing with BGP and ECMP for IPv4 and IPv6 traffic. ECMP is
achieved by distributing traffic using hash calculation based on the source IP , destination
IP, and protocol type of the IP header.

root@bf2:mgmt:/home/ubuntu# systemctl start ntp@mgmt

source /etc/network/interfaces.d/*.intf

auto lo
iface lo inet loopback

auto p0_sf
iface p0_sf

auto p1_sf
iface p1_sf

Info

DOCA Services 120

ECMP Configuration

ECMP is implemented any time routes have multiple paths over uplinks or host ports. For
example, 20.20.20.0/24 has 2 paths using both uplinks, so a path is selected based on a
hash of the IP headers.

Sample NVUE Configuration

For TCP and UDP packets, it also includes source port and destination
port.

20.20.20.0/24 proto bgp metric 20
nexthop via 169.254.0.1 dev p0_sf weight 1 onlink <<<<<

via uplink p0_sf
nexthop via 169.254.0.1 dev p1_sf weight 1 onlink <<<<<

via uplink p1_sf

Info

HBN supports up to 16 paths for ECMP.

nv set interface lo ip address 10.10.10.1/32
nv set interface lo ip address 2010:10:10::1/128
nv set interface vlan100 type svi
nv set interface vlan100 vlan 100
nv set interface vlan100 base-interface br_default
nv set interface vlan100 ip address 2030:30:30::1/64
nv set interface vlan100 ip address 30.30.30.1/24
nv set bridge domain br_default vlan 100

DOCA Services 121

Sample Flat Files Configuration

Example /etc/network/interfaces configuration:

nv set interface pf0hpf_sf,pf1hpf_sf bridge domain br_default
access 100
nv set vrf default router bgp router-id 10.10.10.1
nv set vrf default router bgp autonomous-system 65501
nv set vrf default router bgp path-selection multipath aspath-
ignore on
nv set vrf default router bgp address-family ipv4-unicast enable
on
nv set vrf default router bgp address-family ipv4-unicast
redistribute connected enable on
nv set vrf default router bgp address-family ipv6-unicast enable
on
nv set vrf default router bgp address-family ipv6-unicast
redistribute connected enable on
nv set vrf default router bgp neighbor p0_sf remote-as external
nv set vrf default router bgp neighbor p0_sf type unnumbered
nv set vrf default router bgp neighbor p0_sf address-family ipv4-
unicast enable on
nv set vrf default router bgp neighbor p0_sf address-family ipv6-
unicast enable on
nv set vrf default router bgp neighbor p1_sf remote-as external
nv set vrf default router bgp neighbor p1_sf type unnumbered
nv set vrf default router bgp neighbor p1_sf address-family ipv4-
unicast enable on
nv set vrf default router bgp neighbor p1_sf address-family ipv6-
unicast enable on

auto lo
iface lo inet loopback

DOCA Services 122

Example /etc/frr/daemons configuration:

 address 10.10.10.1/32
 address 2010:10:10::1/128

auto p0_sf
iface p0_sf

auto p1_sf
iface p1_sf

auto pf0hpf_sf
iface pf0hpf_sf

bridge-access 100

auto pf1hpf_sf
iface pf1hpf_sf
 bridge-access 100

auto vlan100
iface vlan100
 address 2030:30:30::1/64
 address 30.30.30.1/24
 vlan-raw-device br_default
 vlan-id 100

auto br_default
iface br_default
 bridge-ports pf0hpf_sf pf1hpf_sf
 bridge-vlan-aware yes
 bridge-vids 100
 bridge-pvid 1

bgpd=yes

DOCA Services 123

vtysh_enable=yes

FRR Config file @ /etc/frr/frr.conf -
!
frr version 7.5+cl5.3.0u0
frr defaults datacenter
hostname BLUEFIELD2
log syslog informational
no zebra nexthop kernel enable
!
router bgp 65501
 bgp router-id 10.10.10.1
 bgp bestpath as-path multipath-relax
 neighbor p0_sf interface remote-as external
 neighbor p0_sf advertisement-interval 0
 neighbor p0_sf timers 3 9
 neighbor p0_sf timers connect 10
 neighbor p1_sf interface remote-as external
 neighbor p1_sf advertisement-interval 0
 neighbor p1_sf timers 3 9
 neighbor p1_sf timers connect 10
 !
 address-family ipv4 unicast
 redistribute connected
 maximum-paths 64
 maximum-paths ibgp 64
 exit-address-family
 !
 address-family ipv6 unicast
 redistribute connected
 neighbor p0_sf activate
 neighbor p1_sf activate
 maximum-paths 64
 maximum-paths ibgp 64
 exit-address-family

DOCA Services 124

BGP Peering with Host

HBN supports the ability to establish a BGP session between the host and DPU and allow
the host to announce arbitrary route prefixes through the DPU into the underlay fabric.
The host can use any standard BGP protocol stack implementation to establish BGP
peering with HBN.

Traffic to and from endpoints on the host gets offloaded.

It is possible to apply route filtering for these prefixes to limit the potential security
impact in this configuration.

Sample NVUE Configuration

The following code block shows configuration to peer to host at 45.3.0.4 and

2001:cafe:1ead::4 . The BGP session can be established using IPv4 or IPv6 address.

!
line vty
!
end

Note

Both IPv4 and IPv6 unicast AFI/SAFI are supported.

Note

Either of these sessions can support IPv4 unicast and IPv6 unicast
AFI/SAFI.

DOCA Services 125

NVUE configuration for peering with host:

Sample Flat Files Configuration

The following block shows configuration to peer to host at 45.3.0.4 and

2001:cafe:1ead::4 . The BGP session can be established using IPv4 or IPv6 address.

frr.conf file:

nv set vrf default router bgp autonomous-system 63642
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor 45.3.0.4 nexthop-
connected-check off
nv set vrf default router bgp neighbor 45.3.0.4 peer-group
dpu_host
nv set vrf default router bgp neighbor 45.3.0.4 type numbered
nv set vrf default router bgp neighbor 2001:cafe:1ead::4 nexthop-
connected-check off
nv set vrf default router bgp neighbor 2001:cafe:1ead::4 peer-
group dpu_host
nv set vrf default router bgp neighbor 2001:cafe:1ead::4 type
numbered
nv set vrf default router bgp peer-group dpu_host address-family
ipv4-unicast enable on
nv set vrf default router bgp peer-group dpu_host address-family
ipv6-unicast enable on
nv set vrf default router bgp peer-group dpu_host remote-as
external

router bgp 63642
 bgp router-id 27.0.0.4
 bgp bestpath as-path multipath-relax
 neighbor dpu_host peer-group

DOCA Services 126

Sample Configuration on Host Running FRR

Any BGP implementation can be used on the host to peer to HBN and advertise
endpoints. The following is an example using FRR BGP:

Sample FRR configuration on the host:

 neighbor dpu_host remote-as external
 neighbor dpu_host bfd 3 1000 1000
 neighbor dpu_host advertisement-interval 0
 neighbor dpu_host timers 3 9
 neighbor dpu_host timers connect 10
 neighbor dpu_host disable-connected-check
 neighbor fabric peer-group
 neighbor fabric remote-as external
 neighbor fabric advertisement-interval 0
 neighbor fabric timers 3 9
 neighbor fabric timers connect 10
 neighbor 45.3.0.4 peer-group dpu_host
 neighbor 2001:cafe:1ead::4 peer-group dpu_host
 neighbor p0_sf interface peer-group fabric
 neighbor p1_sf interface peer-group fabric
 !
 address-family ipv4 unicast

neighbor dpu_host activate
 !
 address-family ipv6 unicast

neighbor dpu_host activate

bf2-s12# sh run
Building configuration...

Current configuration:
!

DOCA Services 127

Sample interface configuration on the host:

frr version 7.2.1
frr defaults traditional
hostname bf2-s12
no ip forwarding
no ipv6 forwarding
!
router bgp 1000008
!
router bgp 1000008 vrf v_200_2000
 neighbor 45.3.0.2 remote-as external
 neighbor 2001:cafe:1ead::2 remote-as external
 !
 address-family ipv4 unicast
 redistribute connected
 exit-address-family
 !
 address-family ipv6 unicast
 redistribute connected
 neighbor 45.3.0.2 activate
 neighbor 2001:cafe:1ead::2 activate
 exit-address-family
!
line vty
!
end

root@bf2-s12:/home/cumulus# ifquery -a
auto lo
iface lo inet loopback

address 27.0.0.7/32
address 2001:c15c:d06:f00d::7/128

DOCA Services 128

L2 EVPN with BGP and ECMP

HBN supports VXLAN with EVPN control plane for intra-subnet bridging (L2) services for
IPv4 and IPv6 traffic in the overlay.

For the underlay, only IPv4 or BGP unnumbered configuration is supported.

Single VXLAN Device

With a single VXLAN device, a set of VNIs represents a single device model. The single
VXLAN device has a set of attributes that belong to the VXLAN construct. Individual VNIs
include VLAN-to-VNI mapping which allows users to specify which VLANs are associated
with which VNIs. A single VXLAN device simplifies the configuration and reduces the
overhead by replacing multiple traditional VXLAN devices with a single VXLAN device.

auto v_200_2000
iface v_200_2000

address 60.1.0.1
address 60.1.0.2
address 60.1.0.3

 address 2001:60:1::1
address 2001:60:1::2
address 2001:60:1::3

 vrf-table auto
auto ens1f0np0
iface ens1f0np0

address 45.3.0.4/24
address 2001:cafe:1ead::4/64
gateway 45.3.0.1
gateway 2001:cafe:1ead::1
vrf v_200_2000
hwaddress 00:03:00:08:00:12
mtu 9162

DOCA Services 129

Users may configure a single VXLAN device automatically with NVUE, or manually by
editing the /etc/network/interfaces file. When users configure a single VXLAN
device with NVUE, NVUE creates a unique name for the device in the following format
using the bridge name as the hash key: vxlan<id> .

This example configuration performs the following steps:

1. Creates a single VXLAN device (vxlan21).

2. Maps VLAN 10 to VNI 10 and VLAN 20 to VNI 20.

3. Adds the VXLAN device to the default bridge.

Alternately, users may edit the file /etc/network/interfaces as follows, then run the

ifreload -a command to apply the SVD configuration.

cumulus@leaf01:~$ nv set bridge domain bridge vlan 10 vni 10
cumulus@leaf01:~$ nv set bridge domain bridge vlan 20 vni 20
cumulus@leaf01:~$ nv set nve vxlan source address 10.10.10.1
cumulus@leaf01:~$ nv config apply

auto lo
iface lo inet loopback
 vxlan-local-tunnelip 10.10.10.1

auto vxlan21
iface vxlan21
 bridge-vlan-vni-map 10=10 20=20
 bridge-learning off

auto bridge
iface bridge
 bridge-vlan-aware yes
 bridge-ports vxlan21 pf0hpf_sf pf1hpf_sf
 bridge-vids 10 20

DOCA Services 130

Sample NVUE Configuration on DPU

The following is a sample NVUE configuration which has L2-VNIs (2000 , 2001) for EVPN
bridging on DPU.

 bridge-pvid 1

Note

Users may not use a combination of single and traditional VXLAN
devices.

nv set bridge domain br_default encap 802.1Q
nv set bridge domain br_default type vlan-aware
nv set bridge domain br_default vlan 200 vni 2000 flooding enable
auto
nv set bridge domain br_default vlan 200 vni 2000 mac-learning
off
nv set bridge domain br_default vlan 201 vni 2001 flooding enable
auto
nv set bridge domain br_default vlan 201 vni 2001 mac-learning
off

nv set evpn enable on
nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan mac-learning off
nv set nve vxlan source address 27.0.0.4
nv set router bgp enable on
nv set system global anycast-mac 44:38:39:42:42:07
nv set vrf default router bgp address-family ipv4-unicast enable
on

DOCA Services 131

nv set vrf default router bgp address-family ipv4-unicast
redistribute connected enable on

nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp autonomous-system 63642
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor p0_sf peer-group fabric
nv set vrf default router bgp neighbor p0_sf type unnumbered
nv set vrf default router bgp neighbor p1_sf peer-group fabric
nv set vrf default router bgp neighbor p1_sf type unnumbered
nv set vrf default router bgp path-selection multipath aspath-
ignore on
nv set vrf default router bgp peer-group fabric address-family
ipv4-unicast enable on
nv set vrf default router bgp peer-group fabric address-family
ipv4-unicast policy outbound route-map MY_ORIGIN_ASPATH_ONLY
nv set vrf default router bgp peer-group fabric address-family
ipv6-unicast enable on
nv set vrf default router bgp peer-group fabric address-family
ipv6-unicast policy outbound route-map MY_ORIGIN_ASPATH_ONLY
nv set vrf default router bgp peer-group fabric address-family
l2vpn-evpn add-path-tx off
nv set vrf default router bgp peer-group fabric address-family
l2vpn-evpn enable on
nv set vrf default router bgp peer-group fabric remote-as
external
nv set vrf default router bgp router-id 27.0.0.4

nv set interface lo ip address 2001:c15c:d06:f00d::4/128
nv set interface lo ip address 27.0.0.4/32
nv set interface lo type loopback
nv set interface p0_sf,p1_sf,pf0hpf_sf,pf1hpf_sf type swp
nv set interface pf0hpf_sf bridge domain br_default access 200
nv set interface pf1hpf_sf bridge domain br_default access 201

nv set interface vlan200-201 base-interface br_default

DOCA Services 132

Sample Flat Files Configuration on HBN

The following is a sample flat files configuration which has L2-VNIs (vx-2000 , vx-2001)
for EVPN bridging on DPU.

This file is located at /etc/network/interfaces :

nv set interface vlan200-201 ip ipv4 forward on
nv set interface vlan200-201 ip ipv6 forward on
nv set interface vlan200-201 ip vrr enable on
nv set interface vlan200-201 ip vrr state up
nv set interface vlan200-201 link mtu 9050
nv set interface vlan200-201 type svi
nv set interface vlan200 ip address 2001:cafe:1ead::3/64
nv set interface vlan200 ip address 45.3.0.2/24
nv set interface vlan200 ip vrr address 2001:cafe:1ead::1/64
nv set interface vlan200 ip vrr address 45.3.0.1/24
nv set interface vlan200 vlan 200
nv set interface vlan201 ip address 2001:cafe:1ead:1::3/64
nv set interface vlan201 ip address 45.3.1.2/24
nv set interface vlan201 ip vrr address 2001:cafe:1ead:1::1/64
nv set interface vlan201 ip vrr address 45.3.1.1/24
nv set interface vlan201 vlan 201

auto lo
iface lo inet loopback
 address 2001:c15c:d06:f00d::4/128
 address 27.0.0.4/32
 vxlan-local-tunnelip 27.0.0.4

auto p0_sf
iface p0_sf

auto p1_sf

DOCA Services 133

iface p1_sf

auto pf0hpf_sf
iface pf0hpf_sf
 bridge-access 200

auto pf1hpf_sf
iface pf1hpf_sf
 bridge-access 201

auto vlan200
iface vlan200
 address 2001:cafe:1ead::3/64
 address 45.3.0.2/24
 mtu 9050
 address-virtual 00:00:5e:00:01:01 2001:cafe:1ead::1/64
45.3.0.1/24
 vlan-raw-device br_default
 vlan-id 200

auto vlan201
iface vlan201
 address 2001:cafe:1ead:1::3/64
 address 45.3.1.2/24
 mtu 9050
 address-virtual 00:00:5e:00:01:01 2001:cafe:1ead:1::1/64
45.3.1.1/24
 vlan-raw-device br_default
 vlan-id 201

auto vxlan48
iface vxlan48
 bridge-vlan-vni-map 200=2000 201=2001
217=2017
 bridge-learning off

DOCA Services 134

This file tells the frr package which daemon to start and is located at

/etc/frr/daemons :

auto br_default
iface br_default
 bridge-ports pf0hpf_sf pf1hpf_sf vxlan48
 bridge-vlan-aware yes
 bridge-vids 200 201
 bridge-pvid 1

bgpd=yes
ospfd=no
ospf6d=no
isisd=no
pimd=no
ldpd=no
pbrd=no
vrrpd=no
fabricd=no
nhrpd=no
eigrpd=no
babeld=no
sharpd=no
fabricd=no
ripngd=no
ripd=no

vtysh_enable=yes
zebra_options=" -M cumulus_mlag -M snmp -A 127.0.0.1 -s
90000000"
bgpd_options=" -M snmp -A 127.0.0.1"
ospfd_options=" -M snmp -A 127.0.0.1"
ospf6d_options=" -M snmp -A ::1"
ripd_options=" -A 127.0.0.1"

DOCA Services 135

This file is located at /etc/frr/frr.conf :

ripngd_options=" -A ::1"
isisd_options=" -A 127.0.0.1"
pimd_options=" -A 127.0.0.1"
ldpd_options=" -A 127.0.0.1"
nhrpd_options=" -A 127.0.0.1"
eigrpd_options=" -A 127.0.0.1"
babeld_options=" -A 127.0.0.1"
sharpd_options=" -A 127.0.0.1"
pbrd_options=" -A 127.0.0.1"
staticd_options="-A 127.0.0.1"
fabricd_options="-A 127.0.0.1"
vrrpd_options=" -A 127.0.0.1"

frr_profile="datacenter"

!---- Cumulus Defaults ----
frr defaults datacenter
log syslog informational
no zebra nexthop kernel enable
vrf default
outer bgp 63642 vrf default
bgp router-id 27.0.0.4
bgp bestpath as-path multipath-relax
timers bgp 3 9
bgp deterministic-med
! Neighbors
neighbor fabric peer-group
neighbor fabric remote-as external
neighbor fabric timers 3 9
neighbor fabric timers connect 10
neighbor fabric advertisement-interval 0
neighbor p0_sf interface peer-group fabric

DOCA Services 136

Sample Switch Configuration for EVPN

The following is a sample NVUE config for underlay switches (NVIDIA® Spectrum® with
Cumulus Linux) for EVPN use case.

It assumes that the uplinks on DPUs are connected to ports swp1-4 on the switch.

neighbor p1_sf interface peer-group fabric
address-family ipv4 unicast
maximum-paths ibgp 64
maximum-paths 64
distance bgp 20 200 200
neighbor fabric activate
exit-address-family
address-family ipv6 unicast
maximum-paths ibgp 64
maximum-paths 64
distance bgp 20 200 200
neighbor fabric activate
exit-address-family
address-family l2vpn evpn
advertise-all-vni
neighbor fabric activate
exit-address-family

nv set evpn enable on
nv set router bgp enable on

nv set vrf default router bgp address-family ipv4-unicast enable
on
nv set vrf default router bgp address-family ipv4-unicast
redistribute connected enable on

nv set vrf default router bgp address-family l2vpn-evpn enable on

DOCA Services 137

Access Control Lists

Access Control Lists (ACLs) are a set of rules that are used to filter network traffic. These
rules are used to specify the traffic flows that must be permitted or blocked at

nv set vrf default router bgp autonomous-system 63640
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor swp1 peer-group fabric
nv set vrf default router bgp neighbor swp1 type unnumbered
nv set vrf default router bgp neighbor swp2 peer-group fabric
nv set vrf default router bgp neighbor swp2 type unnumbered
nv set vrf default router bgp neighbor swp3 peer-group fabric
nv set vrf default router bgp neighbor swp3 type unnumbered
nv set vrf default router bgp neighbor swp4 peer-group fabric
nv set vrf default router bgp neighbor swp4 type unnumbered
nv set vrf default router bgp path-selection multipath aspath-
ignore on
nv set vrf default router bgp peer-group fabric address-family
ipv4-unicast enable on
nv set vrf default router bgp peer-group fabric address-family
ipv6-unicast enable on
nv set vrf default router bgp peer-group fabric address-family
l2vpn-evpn add-path-tx off
nv set vrf default router bgp peer-group fabric address-family
l2vpn-evpn enable on
nv set vrf default router bgp peer-group fabric remote-as
external
nv set vrf default router bgp router-id 27.0.0.10

nv set interface lo ip address 2001:c15c:d06:f00d::10/128
nv set interface lo ip address 27.0.0.10/32
nv set interface lo type loopback
nv set interface swp1,swp2,swp3,swp4 type swp

DOCA Services 138

networking device interfaces. There are two types of ACLs:

Stateless ACLs – rules that are applied to individual packets. They inspect each
packet individually and permit/block the packets based on the packet header
information and the match criteria specified by the rule.

Stateful ACLs – rules that are applied to traffic sessions/connections. They inspect
each packet with respect to the state of the session/connection to which the packet
belongs to determine whether to permit/block the packet.

ACL Ordering

ACL ordering ensures that the order in which ACLs are executed in DPU hardware is the
same as the order in which the ACLs are configured. In general, IPv4 ACLs should be
configured before IPv6 ACLs which in turn should be configured before L2 ACLs. ACLs
should be configured in the following order:

1. IPv4 header match fields + UDP header match fields

2. IPv4 header match fields + TCP header match fields

3. IPv4 header match fields + ICMP header match fields

4. IPv4 header match fields

5. IPv6 header match fields + UDP header match fields

6. IPv6 header match fields + TCP header match fields

7. IPv6 header match fields + ICMP header match fields

8. IPv6 header match fields

9. Ethernet header match fields

Stateless ACLs

HBN supports configuration of stateless ACLs for IPv4 packets, IPv6 packets, and
Ethernet frames. The following examples depict how stateless ACLs are configured for
each case, with NVUE and with flat files (cl-acltool).

NVUE Examples for Stateless ACLs

DOCA Services 139

NVUE IPv4 ACLs Example

The following is an example of an ingress IPv4 ACL that permits DHCP request packets
ingressing on the pf0hpf_sf port towards the DHCP server:

Bind the ingress IPv4 ACL to host representor port pf0hpf_sf of the DPU in the
inbound direction:

The following is an example of an egress IPv4 ACL that permits DHCP reply packets
egressing out of the pf0hpf_sf port towards the DHCP client:

root@hbn01-host01:~# nv set acl acl1_ingress type ipv4
root@hbn01-host01:~# nv set acl acl1_ingress rule 100 match ip
protocol udp
root@hbn01-host01:~# nv set acl acl1_ingress rule 100 match ip
dest-port 67
root@hbn01-host01:~# nv set acl acl1_ingress rule 100 match ip
source-port 68
root@hbn01-host01:~# nv set acl acl1_ingress rule 100 action
permit

root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl1_ingress
inbound
root@hbn01-host01:~# nv config apply

root@hbn01-host01:~# nv set acl acl2_egress type ipv4
root@hbn01-host01:~# nv set acl acl2_egress rule 200 match ip
protocol udp
root@hbn01-host01:~# nv set acl acl2_egress rule 200 match ip
dest-port 68
root@hbn01-host01:~# nv set acl acl2_egress rule 200 match ip
source-port 67

DOCA Services 140

Bind the egress IPv4 ACL to host representor port pf0hpf_sf of the DPU in the
outbound direction:

NVUE IPv6 ACLs Example

The following is an example of an ingress IPv6 ACL that permits traffic with matching
dest-ip and protocol tcp ingress on port pf0hpf_sf :

Bind the ingress IPv6 ACL to host representor port pf0hpf_sf of the DPU in the
inbound direction:

root@hbn01-host01:~# nv set acl acl2_egress rule 200 action
permit

root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl2_egress
outbound
root@hbn01-host01:~# nv config apply

root@hbn01-host01:~# nv set acl acl5_ingress type ipv6
root@hbn01-host01:~# nv set acl acl5_ingress rule 100 match ip
protocol tcp
root@hbn01-host01:~# nv set acl acl5_ingress rule 100 match ip
dest-ip 48:2034::80:9
root@hbn01-host01:~# nv set acl acl5_ingress rule 100 action
permit

root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl5_ingress
inbound
root@hbn01-host01:~# nv config apply

DOCA Services 141

The following is an example of an egress IPv6 ACL that permits traffic with matching
source-ip and protocol tcp egressing out of port pf0hpf_sf :

Bind the egress IPv6 ACL to host representor port pf0hpf_sf of the DPU in the
outbound direction:

NVUE L2 ACLs Example

The following is an example of an ingress MAC ACL that permits traffic with matching
source-mac and dest-mac ingressing to port pf0hpf_sf :

root@hbn01-host01:~# nv set acl acl6_egress type ipv6
root@hbn01-host01:~# nv set acl acl6_egress rule 101 match ip
protocol tcp
root@hbn01-host01:~# nv set acl acl6_egress rule 101 match ip
source-ip 48:2034::80:9
root@hbn01-host01:~# nv set acl acl6_egress rule 101 action
permit

root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl6_egress
outbound
root@hbn01-host01:~# nv config apply

root@hbn01-host01:~# nv set acl acl3_ingress type mac
root@hbn01-host01:~# nv set acl acl3_ingress rule 1 match mac
source-mac 00:00:00:00:00:0a
root@hbn01-host01:~# nv set acl acl3_ingress rule 1 match mac
dest-mac 00:00:00:00:00:0b
root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl3_ingress
inbound

DOCA Services 142

Bind the ingress MAC ACL to host representor port pf0hpf_sf of the DPU in the
inbound direction:

The following is an example of an egress MAC ACL that permits traffic with matching
source-mac and dest-mac egressing out of port pf0hpf_sf :

Bind the egress MAC ACL to host representor port pf0hpf_sf of the DPU in the
outbound direction:

Flat Files (cl-acltool) Examples for Stateless ACLs

For the same examples cited above, the following are the corresponding ACL rules which
must be configured under /etc/cumulus/acl/policy.d/<rule_name.rules>
followed by invoking cl-acltool -i . The rules in

/etc/cumulus/acl/policy.d/<rule_name.rules> are configured using Linux
iptables/ip6tables/ebtables.

root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl3_ingress
inbound
root@hbn01-host01:~# nv config apply

root@hbn01-host01:~# nv set acl acl4_egress type mac
root@hbn01-host01:~# nv set acl acl4_egress rule 2 match mac
source-mac 00:00:00:00:00:0b
root@hbn01-host01:~# nv set acl acl4_egress rule 2 match mac
dest-mac 00:00:00:00:00:0a
root@hbn01-host01:~# nv set acl acl4_egress rule 2 action permit

root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl4_egress
outbound
root@hbn01-host01:~# nv config apply

DOCA Services 143

Flat Files IPv4 ACLs Example

The following example configures an ingress IPv4 ACL rule matching with DHCP request
under /etc/cumulus/acl/policy.d/<rule_name.rules> with the ingress interface

as the host representor of the DPU followed by invoking cl-acltool -i :

The following example configures an egress IPv4 ACL rule matching with DHCP reply
under /etc/cumulus/acl/policy.d/<rule_name.rules> with the egress interface

as the host representor of the DPU followed by invoking cl-acltool -i :

Flat File IPv6 ACLs Example

The following example configures an ingress IPv6 ACL rule matching with dest-ip and

tcp protocol under /etc/cumulus/acl/policy.d/<rule_name.rules> with the
ingress interface as the host representor of the DPU followed by invoking
cl-acltool -i :

[iptables]
ACL acl1_ingress in dir inbound on interface pf0hpf_sf
-t filter -A FORWARD -i pf1vf1_sf -p udp --sport 68 --dport 67 -j
ACCEPT

[iptables]
ACL acl2_egress in dir outbound on interface pf0hpf_sf
-t filter -A FORWARD -o pf0hpf_sf -p udp --sport 67 --dport 68 -j
ACCEPT

[ip6tables]
ACL acl5_ingress in dir inbound on interface pf0hpf_sf
-t filter -A FORWARD -i pf0hpf_sf -d 48:2034::80:9 -p tcp -j
ACCEPT

DOCA Services 144

The following example configures an egress IPv6 ACL rule matching with source-ip
and tcp protocol under /etc/cumulus/acl/policy.d/<rule_name.rules> with
the egress interface as the host representor of the DPU followed by invoking
cl-acltool -i :

Flat Files L2 ACLs Example

The following example configures an ingress MAC ACL rule matching with source-mac
and dest-mac under /etc/cumulus/acl/policy.d/<rule_name.rules> with the
ingress interface as the host representor of the DPU followed by invoking
cl-acltool -i :

The following example configures an egress MAC ACL rule matching with source-mac
and dest-mac under /etc/cumulus/acl/policy.d/<rule_name.rules> with

egress interface as host representor of DPU followed by invoking cl-acltool -i :

[ip6tables]
ACL acl6_egress in dir outbound on interface pf0hpf_sf
-t filter -A FORWARD -o pf0hpf_sf -s 48:2034::80:9 -p tcp -j
ACCEPT

[ebtables]
ACL acl3_ingress in dir inbound on interface pf0hpf_sf
-t filter -A FORWARD -i pf0hpf_sf -s
00:00:00:00:00:0a/ff:ff:ff:ff:ff:ff -d
00:00:00:00:00:0b/ff:ff:ff:ff:ff:ff -j ACCEPT

[ebtables]
ACL acl4_egress in dir outbound on interface pf0hpf_sf

DOCA Services 145

Stateful ACLs

Stateful ACLs facilitate monitoring and tracking traffic flows to enforce per-flow traffic
filtering (unlike stateless ACLs which filter traffic on a per-packet basis). HBN supports
stateful ACLs using reflexive ACL mechanism. Reflexive ACL mechanism is used to permit
initiation of connections from within the network to outside the network and allow only
replies to the initiated connections from outside the network.

HBN supports stateful ACL configuration for IPv4 traffic.

Stateful ACLs can be applied for routed traffic (north-south traffic) or bridged traffic
(east-west traffic). Stateful ACLs applied for routed traffic are called "L3 stateful ACLs"
and for bridged traffic are called "L2 stateful ACLs". Currently, NVUE-based configuration
is supported only for L3 stateful ACLs (L2 stateful ACLs must be configured using flat-file
configuration).

Stateful ACLs in HBN are disabled by default. To enable stateful ACL functionality, use the
following NVUE commands:

If using flat-file configuration (and not NVUE), edit the file
/etc/cumulus/nl2docad.d/acl.conf and set the knob

rflx.reflexive_acl_enable to TRUE . To apply this change, execute:

NVUE Examples for L3 Stateful ACLs

-t filter -A FORWARD -o pf0hpf_sf -s
00:00:00:00:00:0b/ff:ff:ff:ff:ff:ff -d
00:00:00:00:00:0a/ff:ff:ff:ff:ff:ff -j ACCEPT

root@hbn03-host00:~# nv set system reflexive-acl enable
root@hbn03-host00:~# nv config apply

root@hbn03-host00:~# supervisorctl start nl2doca-reload

DOCA Services 146

The following is an example of allowing HTTP (TCP) connection originated by the host
where the DPU is hosted to an HTTP server (with the IP address 11.11.11.11) on an
external network. Two sets of ACLs matching with CONNTRACK state must be configured
for a CONNTRACK entry to be established in the kernel which would be offloaded to
hardware:

Configure an ACL rule matching TCP/HTTP connection/flow details with
CONNTRACK state of NEW, ESTABLISHED and bind it to the host representor of the
DPU and the associated VLAN's SVI in the inbound direction.

Configure an ACL rule matching TCP/HTTP connection/flow details with
CONNTRACK state of ESTABLISHED and bind it to the host representor of the DPU
and the associated VLAN's SVI in the outbound direction.

In this example, the host representor on the DPU is pf0hpf_sf and it is part of VLAN

101 (SVI interface is vlan101).

1. Configure the ingress ACL rule:

2. Bind this ACL to the host representor of the DPU and the associated VLAN's SVI
interface in the inbound direction:

root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule
11 action permit
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule
11 match conntrack new
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule
11 match conntrack established
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule
11 match ip dest-ip 11.11.11.11/32
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule
11 match ip dest-port 80
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule
11 match ip protocol tcp
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host type
ipv4

DOCA Services 147

3. Configure the egress ACL rule:

4. Bind this ACL to the host representor of the DPU and the associated VLAN's SVI
interface in the outbound direction:

root@hbn03-host00:~# nv set interface pf0hpf_sf,vlan101 acl
allow_tcp_conn_from_host inbound
root@hbn03-host00:~# nv config apply

root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server
rule 21 action permit
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server
rule 21 match conntrack established
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server
rule 21 match ip protocol tcp
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server
type ipv4
root@hbn03-host00:~# nv config apply

root@hbn03-host00:~# nv set interface pf0hpf_sf,vlan101 acl
allow_tcp_resp_from_server outbound
root@hbn03-host00:~# nv config apply

Note

If virtual router redundancy (VRR) is set, L3 stateful ACLs must
be bound to all the related SVI interfaces. For example, if VRR is
configured on SVI vlan101 as follows in the

/etc/network/interfaces file:

DOCA Services 148

With this configuration, two SVI interfaces, vlan101 and

vlan101-v0 would be created in the system:

In this case, stateful ACLs must be bound to both SVI interfaces
(vlan101 and vlan101-v0). In the stateful ACL described in
the current section, the binding would be:

auto vlan101
iface vlan101
 address 45.3.1.2/24

 address-virtual 00:00:5e:00:01:01 45.3.1.1/24

 vlan-raw-device br_default
 vlan-id 101

root@hbn03-host00:~# ip -br addr show | grep
vlan101
vlan101@br_default UP 45.3.1.2/24
fe80::204:4bff:fe8a:f100/64
vlan101-v0@vlan101 UP 45.3.1.1/24
metric 1024 fe80::200:5eff:fe00:101/64

root@hbn03-host00:~# nv set interface
pf0hpf_sf,vlan101,vlan101-v0 acl
allow_tcp_conn_from_host inbound
root@hbn03-host00:~# nv set interface
pf0hpf_sf,vlan101,vlan101-v0 acl
allow_tcp_resp_from_server outbound
root@hbn03-host00:~# nv config apply

DOCA Services 149

Flat Files (cl-acltool) Examples for L3 Stateful ACLs

For the example described under section "NVUE Examples for L3 Stateful ACLs", the
following are the corresponding ACL rules which must be configured under
/etc/cumulus/acl/policy.d/<rule_name.rules> followed by invoking

cl-acltool -i to install the rules in DPU hardware.

1. Configure an ingress ACL rule matching with TCP flow details and CONNTRACK
state of NEW, ESTABLISHED under
/etc/cumulus/acl/policy.d/stateful_acl.rules with the ingress interface

as the host representor of the DPU and the associated VLAN's SVI followed by
invoking cl-acltool -i :

[iptables]
ACL allow_tcp_conn_from_host in dir inbound on interface
pf1vf7_sf ##
-t mangle -A PREROUTING -p tcp -d 11.11.11.11/32 --dport 80 -
m conntrack --ctstate EST,NEW -m connmark ! --mark 9998 -j
CONNMARK --set-mark 9999
-t filter -A FORWARD -i pf1vf7_sf -p tcp -d 11.11.11.11/32 --
dport 80 -m conntrack --ctstate EST,NEW -j ACCEPT

ACL allow_tcp_conn_from_host in dir inbound on interface
vlan118 ##
-t filter -A FORWARD -i vlan118 -p tcp –d 11.11.11.11/32--
dport 80 -m conntrack --ctstate EST,NEW -j ACCEPT

Note

A mangle table rule must be configured with CONNMARK action.
The CONNMARK values (
-j CONNMARK --set-mark <value>) for ingress ACL rules

DOCA Services 150

2. Configure an egress ACL rule matching with TCP and CONNTRACK state of
ESTABLISHED, RELATED under
/etc/cumulus/acl/policy.d/stateful_acl.rules file with the egress

interface as the host representor of the DPU and the associated VLAN's SVI
followed by invoking cl-acltool -i :

Flat Files (cl-acltool) Examples for L2 Stateful ACLs

are protocol dependent: 9999 for TCP, 9997 for UDP, and 9995
for ICMP.

[iptables]
ACL allow_tcp_resp_from_server in dir outbound on
interface pf1vf7_sf ##
-t mangle -A PREROUTING -p tcp -s 11.11.11.11/32 --sport 80 -
m conntrack --ctstate EST -j CONNMARK --set-mark 9998
-t filter -A FORWARD -o pf1vf7_sf -p tcp -m conntrack --
ctstate EST,REL -j ACCEPT

ACL allow_tcp_resp_from_server in dir outbound on
interface vlan118 ##
-t filter -A FORWARD -o vlan118 -p tcp -m conntrack --ctstate
EST,REL -j ACCEPT

Note

A mangle table rule must be configured with CONNMARK action.
The CONNMARK values (
-j CONNMARK --set-mark <value>) for egress ACL rules

are protocol dependent: 9998 for TCP, 9996 for UDP, and 9994
for ICMP.

DOCA Services 151

For the same example cited above (HTTP server at IP address 192.168.5.5 accessible over
bridged network), the following are the corresponding ACL rules which must be
configured under /etc/cumulus/acl/policy.d/<rule_name.rules> followed by

invoking cl-acltool -i .

1. Configure an ingress ACL rule matching with TCP flow details and CONNTRACK
state of NEW, ESTABLISHED under
/etc/cumulus/acl/policy.d/stateful_acl.rules with the ingress interface

as the host representor of the DPU and the associated VLAN's SVI followed by
invoking cl-acltool -i :

[iptables]
ACL allow_tcp_conn_from_host in dir inbound on interface
pf1vf7_sf
-t mangle -A PREROUTING -p tcp -d 192.168.5.5/32 --dport 80 -
m conntrack --ctstate EST,NEW -m connmark ! --mark 9998 -j
CONNMARK --set-mark 9999
-t filter -A FORWARD -m physdev --physdev-in pf1vf7_sf -p tcp
-d 192.168.5.5/32 --dport 80 -m conntrack --ctstate EST,NEW -
j ACCEPT

ACL allow_tcp_conn_from_host in dir inbound on interface
vlan118 ##
-t filter -A FORWARD -i vlan118 -p tcp –d 192.168.5.5/32--
dport 80 -m conntrack --ctstate EST,NEW -j ACCEPT

Note

A mangle table rule must be configured with CONNMARK action.
The CONNMARK values (
-j CONNMARK --set-mark <value>) for ingress ACL rules

are protocol dependent: 9999 for TCP, 9997 for UDP, and 9995
for ICMP.

DOCA Services 152

2. Configure an egress ACL rule matching with TCP and CONNTRACK state of
ESTABLISHED, RELATED under
/etc/cumulus/acl/policy.d/stateful_acl.rules file with the egress

interface as the host representor of the DPU and the associated VLAN's SVI
followed by invoking cl-acltool -i :

DHCP Relay on HBN

[iptables]
ACL allow_tcp_resp_from_server in dir outbound on
interface pf1vf7_sf ##
-t mangle -A PREROUTING -p tcp -s 192.168.5.5/32 --sport 80 -
m conntrack --ctstate EST -j CONNMARK --set-mark 9998
-t filter -A FORWARD -m physdev --physdev-out pf1vf7_sf -p
tcp -m conntrack --ctstate EST,REL -j ACCEPT

ACL allow_tcp_resp_from_server in dir outbound on
interface vlan118 ##
-t filter -A FORWARD -o vlan118 -p tcp -m conntrack --ctstate
EST,REL -j ACCEPT

Note

A mangle table rule must be configured with CONNMARK action.
The CONNMARK values (
-j CONNMARK --set-mark <value>) for egress ACL rules

are protocol dependent: 9998 for TCP, 9996 for UDP, and 9994
for ICMP.

DOCA Services 153

DHCP is a client server protocol that automatically provides IP hosts with IP addresses
and other related configuration information. A DHCP relay (agent) is a host that forwards
DHCP packets between clients and servers. DHCP relays forward requests and replies
between clients and servers that are not on the same physical subnet.

DHCP relay can be configured using either flat file (supervisord configuration) or through
NVUE.

Configuration

HBN is a non-systemd based container. Therefore, the DHCP relay must be configured as
explained in the following subsections.

Flat File Configuration (Supervisord)

The HBN initialization script installs default configuration files on the DPU in
/var/lib/hbn/etc/supervisor/conf.d/ . The DPU directory is mounted to

/etc/supervisor/conf.d which achieves configuration persistence.

By default, DHCP relay is disabled. Default configuration applies to one instance of
DHCPv4 relay and DHCPv6 relay in the default VRF.

NVUE Configuration

The user can use NVUE to configure and maintain DHCPv4 and DHCPv6 relays with CLI
and REST API. NVUE generates all the required configurations and maintains the relay
service.

DHCPv4 Relay Configuration

NVUE Example

The following configuration starts a relay service which listens for the DHCP messages on
p0_sf , p1_sf , and vlan482 and relays the requests to DHCP server 10.89.0.1 with

gateway-interface as lo .

nv set service dhcp-relay default gateway-interface lo

DOCA Services 154

Flat Files Example

Where:

Option Description

-i Network interface to listen on for requests and replies

-iu Upstream network interface

-id Downstream network interface

-U
[address]%
%ifname

Gateway IP address interface. Use %% for IP%%ifname . % is used as
an escape character.

--
loglevel-
debug

Debug logging. Location: /var/log/syslog .

-a
Append an agent option field to each request before forwarding it to
the server with default values for circuit-id and remote-id

nv set service dhcp-relay default interface p0_sf
nv set service dhcp-relay default interface p1_sf
nv set service dhcp-relay default interface vlan482 downstream
nv set service dhcp-relay default server 10.89.0.1

[program: isc-dhcp-relay-default]
command = /usr/sbin/dhcrelay --nl -d -i p0_sf -i p1_sf -id
vlan482 -U lo 10.89.0.1
autostart = true
autorestart = unexpected
startsecs = 3
startretries = 3
exitcodes = 0
stopsignal = TERM
stopwaitsecs = 3

DOCA Services 155

Option Description

-r remote-
id

Set a custom remote ID string (max of 255 chars). To use this option,
you must also enable the -a option.

--use-pif-
circuit-id

Set the underlying physical interface which receives the packet as the
circuit-id . To use this option you must also enable the -a option.

DHCPv4 Relay Option 82

NVUE Example

The following NVUE command is used to enable option 82 insertion in DHCP packets with
default values:

To provide a custom remote-id (e.g., host10) using NVUE:

To use the underlying physical interface on which the request is received as circuit-id
using NVUE:

Flat Files Example

nv set service dhcp-relay default agent enable on

nv set service dhcp-relay default agent remote-id host10

nv set service dhcp-relay default agent use-pif-circuit-id enable
on

[program: isc-dhcp-relay-default]
command = /usr/sbin/dhcrelay --nl -d -i p0_sf -i p1_sf -id
vlan482 -U lo -a --use-pif-circuit-id -r host10 10.89.0.1

DOCA Services 156

DHCPv6 Relay Configuration

NVUE Example

The following NVUE command starts the DHCPv6 Relay service which listens for DHCPv6
requests on vlan482 and sends relayed DHCPv6 requests towards p0_sf and p1_sf .

Flat Files Example

autostart = true
autorestart = unexpected
startsecs = 3
startretries = 3
exitcodes = 0
stopsignal = TERM
stopwaitsecs = 3

nv set service dhcp-relay6 default interface downstream vlan482
nv set service dhcp-relay6 default interface upstream p0_sf
nv set service dhcp-relay6 default interface upstream p1_sf

[program: isc-dhcp-relay6-default]
command = /usr/sbin/dhcrelay --nl -6 -d -l vlan482 -u p0_sf -u
p1_sf
autostart = true
autorestart = unexpected
startsecs = 3
startretries = 3
exitcodes = 0
stopsignal = TERM
stopwaitsecs = 3

DOCA Services 157

Where:

Option Description

-l
[address]%%ifname[#i
ndex]

Downstream interface. Use %% for IP%%ifname . % is
used as escape character.

-u [address]%%ifname Upstream interface. Use % % for IP%%ifname . % is
used as escape character.

-6 IPv6

--loglevel-debug Debug logging located at /var/log/syslog

DHCP Relay and VRF Considerations

DHCP relay can be spawned inside a VRF context to handle the DHCP requests in that
VRF. There can only be 1 instance each of DHCPv4 relay and DHCPv6 relay per VRF. To
achieve that, the user can follow these guidelines:

DHCPv4 on default VRF:

DHCPv4 on VRF:

DHCPv6 on default VRF:

/usr/sbin/dhcrelay --nl -i <interface> -U [address]%%
<interface> <server_ip>

/usr/sbin/ip vrf exec <vrf> /usr/sbin/dhcrelay –-nl -i
<interface> -U [address]%%<interface> <server_ip>

DOCA Services 158

DHCPv6 on VRF:

Troubleshooting

HBN Container Stuck in init-sfs

The HBN container starts as init-sfs and should transition to doca-hbn within 2

minutes as can be seen using crictl ps . But sometimes it may remain as init-sfs .

This can happen if interface p0_sf is missing. Run the command

ip -br link show dev p0_sf in the DPU and inside the container to check if

p0_sf is present or not. If its missing, make sure the firmware is upgraded to the latest
version. Gracefully shutdown and power cycle the host for the new firmware to take
effect.

BGP Session not Establishing

One of the main causes of a BGP session not getting established is a mismatch in MTU
configuration. Make sure the MTU on all interfaces is the same. For example, if BGP is
failing on p0 , check and verify that there is a matching MTU value for p0 , p0_sf_r ,

p0_sf , and the remote peer of p0 .

/usr/sbin/dhcrelay --nl -6 -l <interface> -u <interface>

/usr/sbin/ip vrf exec <vrf> /usr/sbin/dhcrelay --nl -6 -l
<interface> -u <interface>

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Troubleshooting+Guide/index.html

DOCA Services 159

Generating Support Dump

HBN support dump can be generated using the cl-support command, inside the HBN
container:

The generated dump would be available in /var/support in the HBN container and
would contain any process core dump as well as log files.

The /var/support directory is also mounted on the host DPU at

/var/lib/hbn/var/support .

SFC Troubleshooting

To troubleshoot flows going through SFC interfaces, the first step is to disable the
nl2doca service in the HBN container:

Stopping nl2doca effectively stops hardware offloading and switches to software

forwarding. All packets would appear on tcpdump capture on the DPU interfaces.

tcpdump can be performed on SF interfaces as well as VLAN, VXLAN, and uplinks to
determine where a packet gets dropped or which flow a packet is taking.

General nl2doca Troubleshooting

root@bf2:/tmp# cl-support
Please send /var/support/cl_support_bf2-s02-1-
ipmi_20221025_180508.txz to Cumulus support

root@bf2:/tmp# supervisorctl stop nl2doca
nl2doca: stopped

DOCA Services 160

The following steps can be used to make sure the nl2doca daemon is up and running:

1. Make sure there are no errors in the nl2doca log file at
/var/log/hbn/nl2docad.log .

2. To check the status of the nl2doca daemon under supervisor, run:

3. Use ps to check that the actual nl2doca process is running:

4. The core file should be in /var/support/core/ .

5. Check if the /cumulus/nl2docad/run/stats/punt ​ is accessible. Otherwise,
nl2doca may be stuck and should be restarted:

nl2doca Offload Troubleshooting

If a certain traffic flow does not work as expected, disable nl2doca (i.e., disable hardware
offloading):

supervisorctl status nl2doca

ps -eaf | grep nl2doca
root 18 1 0 06:31 ? 00:00:00 /bin/bash
/usr/bin/nl2doca-docker-start
root 1437 18 0 06:31 ? 00:05:49
/usr/sbin/nl2docad

supervisorctl restart nl2doca

DOCA Services 161

​With hardware offloading disabled, you can confirm it is an offloading issue if the traffic
starts working. If it is not an offloading issue, use tcpdump on various interfaces to see
where the packet gets dropped.

Offloaded entries can be checked in following files, which contain the programming status
of every IP prefix and MAC address known to system.

Bridge entries are available in the file
/cumulus/nl2docad/run/software-tables/17​. It includes all the MAC

addresses in the system including local and remote MAC addresses.

Example format:

Router entries are available in the file
/cumulus/nl2docad/run/software-tables/18​. It includes all the IP prefixes

known to the system.

Example format for Entry with ECMP:

supervisorctl stop nl2doca​

- flow-entry: 0xaaab0cef4190​
 flow-pattern:​
 fid: 112​
 dst mac: 00:00:5e:00:01:01​
 flow-actions:​
 SET VRF: 2​
 OUTPUT-PD-PORT: 20(TO_RTR_INTF)
 STATS:​
 pkts: 1719​
 bytes: 191286​

Entry with ECMP:
- flow-entry: 0xaaaada723700

DOCA Services 162

ECMP entries are available in the file
/cumulus/nl2docad/run/software-tables/19​. It includes all the next hops in

the system.

Example format:

 flow-pattern:
 IPV6: LPM
 VRF: 0
 destination-ip: ::/0
 flow-actions :
 ECMP: 2
 STATS:
 pkts: 0
 bytes: 0​

Entry without ECMP: - flow-entry: 0xaaaada7e1400
 flow-pattern:
 IPV4: LPM
 VRF: 0
 destination-ip: 60.1.0.93/32
 flow-actions :
 SET FID: 200
 SMAC: 00:04:4b:a7:88:00
 DMAC: 00:03:00:08:00:12
 OUTPUT-PD-PORT: 19(TO_BR_INTF)
 STATS:
 pkts: 0
 bytes: 0

- ECMP: 2
 ref-count: 2
 num-next-hops: 2
 entries:

DOCA Services 163

To check counters for packets going to the kernel, run:

For a specific type of packet flow, programming can be referenced in block specific files.
The typical flow is as follows:

For example, to check L2 EVPN ENCAP flows for remote MAC 8a:88:d0:b1:92:b1 on

port pf0vf0_sf , the basic offload flow should look as follows: RxPort (pf0vf0_sf) ->

BR (Overlay) -> RTR (Underlay) -> BR (Underlay) -> TxPort​ (one of the uplink p0_sf or

p1_sf based on ECMP hash).

Step-by-step procedure:

1. Navigate to the interface file /cumulus/nl2docad/run/software-tables/20 .

2. Check for the RxPort (pf0vf0_sf):

 - { index: 0, fid: 4100, src mac: 'b8:ce:f6:99:49:6a', dst
mac: '00:02:00:00:00:0a' }
 - { index: 1, fid: 4101, src mac: 'b8:ce:f6:99:49:6b', dst
mac: '00:02:00:00:00:0e' }

cat /cumulus/nl2docad/run/stats/punt
​PUNT miss pkts:3154 bytes:312326
PUNT miss drop pkts:0 bytes:0
PUNT control pkts:31493 bytes:2853186
PUNT control drop pkts:0 bytes:0
ACL PUNT pkts:68 bytes:7364
ACL drop pkts:0 bytes:0

Interface: pf0vf0_sf​
 PD PORT: 6​
 HW PORT: 16
 NETDEV PORT: 11
 Bridge-id: 61​

DOCA Services 164

FID 112 is given to the receive port​.

3. Check the bridge table file /cumulus/nl2docad/run/software-tables/17
with destination MAC 8a:88:d0:b1:92:b1 and FID 112:

4. Check the router table file /cumulus/nl2docad/run/software-tables/18
with destination IP 6.0.0.26 and VRF 0:

 Untagged FID: 112​

flow-pattern:​
 fid: 112​
 dst mac: 8a:88:d0:b1:92:b1​
 flow-actions:​
 VXLAN ENCAP:​
 ENCAP dst ip: 6.0.0.26​
 ENCAP vni id: 1000112​
 SET VRF: 0​
 OUTPUT-PD-PORT: 20(TO_RTR_INTF)​
 STATS:​
 pkts: 100​
 bytes: 10200​

flow-pattern:​
 IPV4: LPM​
 VRF: 0​
 ip dst: 6.0.0.26/32​
 flow-actions :​
 ECMP: 1​
 OUTPUT PD PORT: 2(TO_BR_INTF)​
 STATS:​
 pkts: 300​

DOCA Services 165

5. Check the ECMP table file /cumulus/nl2docad/run/software-tables/19 with
ECMP 1:

6. The ECMP hash calculation picks one of these paths for next-hop rewrite. Check
bridge table file for them (fid=4100, dst mac: 00:02:00:00:00:2f or

fid=4115, dst mac: 00:02:00:00:00:33):

This will show the packet going out on the uplink.

NVUE Troubleshooting

 bytes: 44400​

- ECMP: 1​
 ref-count: 7​
 num-next-hops: 2
 entries:​
 - { index: 0, fid: 4100, src mac:
'b8:ce:f6:99:49:6a', dst mac: '00:02:00:00:00:2f' }​
 - { index: 1, fid: 4115, src mac:
'b8:ce:f6:99:49:6b', dst mac: '00:02:00:00:00:33' }​

flow-pattern:​
 fid: 4100​
 dst mac: 00:02:00:00:00:2f​
flow-actions:​
 OUTPUT-PD-PORT: 36(p0_sf)​
 STATS:​
 pkts: 1099​
 bytes: 162652​

DOCA Services 166

To check the status of the NVUE daemon, run:

To restart the NVUE daemon, run:

HBN Service Release Notes
The following subsections provide information on HBN service new features,
interoperability, known issues, and bug fixes.

Changes and New Features

HBN 2.0.0 offers the following new features and updates:

New hardware-accelerated dataplane based on OVS-DOCA

Added support for HBN interoperating with SNAP storage service for NVMe-oF and
NVMe block device emulation scenario (for NVIDIA® BlueField®-2 only)

Supported Platforms and Interoperability

Supported BlueField Networking Platforms

HBN 2.0.0 has been validated on the following NVIDIA BlueField Networking Platforms:

BlueField-2 DPU platforms:

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; PCIe Gen4 x8; Crypto
Enabled; 16GB on-board DDR; 1GbE OOB management; HHHL

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; integrated BMC; PCIe Gen4
x8; Secure Boot Enabled; Crypto Enabled; 16GB on-board DDR; 1GbE OOB

supervisorctl status nvued

supervisorctl restart nvued

DOCA Services 167

management; FHHL

BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; integrated BMC; PCIe Gen4
x8; Secure Boot Enabled; Crypto Enabled; 32GB on-board DDR; 1GbE OOB
management; FHHL

BlueField-2 P-Series DPU 100GbE Dual-Port QSFP56; integrated BMC; PCIe
Gen4 x16; Secure Boot Enabled; Crypto Enabled; 32GB on-board DDR; 1GbE
OOB management; FHHL

BlueField-3 DPU platforms:

BlueField-3 B3210 P-Series FHHL DPU; 100GbE (default mode) / HDR100 IB;
Dual-port QSFP112; PCIe Gen5.0 x16 with x16 PCIe extension option; 16 Arm
cores; 32GB on-board DDR; integrated BMC; Crypto Enabled

BlueField-3 B3220 P-Series FHHL DPU; 200GbE (default mode) / NDR200 IB;
Dual-port QSFP112; PCIe Gen5.0 x16 with x16 PCIe extension option; 16 Arm
cores; 32GB on-board DDR; integrated BMC; Crypto Enabled

BlueField-3 B3240 P-Series Dual-slot FHHL DPU; 400GbE / NDR IB (default
mode); Dual-port QSFP112; PCIe Gen5.0 x16 with x16 PCIe extension option;
16 Arm cores; 32GB on-board DDR; integrated BMC; Crypto Enabled

Supported BlueField OS

HBN 2.0.0 supports DOCA 2.5.0 (BSP 4.5.0) on Ubuntu 22.04 OS.

Verified Scalability Limits

HBN 2.0.0 has been tested to sustain the following maximum scalability limits:

Note

Single-port BlueField platforms are currently not supported with HBN.

DOCA Services 168

Limit
Blue
Field-
2

Blue
Field-
3

Comments

VTEP peers (DPUs
per control plane) in
the fabric

2k 2k
Number of DPUs (VTEPs) within a single overlay
fabric (reachable in the underlay)

VNIs/overlay
networks in the
fabric

18 18
Total number of L2 VNIs in the fabric (max VNIs =
max VF + max PF)

DPUs per VNI/overlay
network

3,
2000

3,
2000

Total number of DPUs configured with the same
VNI (3 real DPUs, 2000 emulated VTEPs)

Tenants (L3 VNIs) per
server

8 8
Maximum number of tenants on the same host
server

VM/pods per server 16 16
Maximum number of IP addresses advertised by
EVPN in DPU

Maximum number of
L3 LPM routes
(underlay)

256 256 IPv4 or IPv6 underlay LPM routes per DPU

Maximum number of
EVPN type-2 entries

4K 4k
Remote overlay MAC/IP entries for compute peers
stored on a single DPU (L2 EVPN use case)

Maximum number of
EVPN type-5 entries

16K 16K

Remote overlay L3 LPM entries for compute peers
stored on a single DPU (L3 EVPN use case)

Maximum number of
PFs

2 2 Total number of PFs visible to the host

Maximum number of
VFs

16 16 Total number of VFs created on the host

Known Issues

Info
Supported at beta level.

DOCA Services 169

The following table lists the known issues and limitations for this release of HBN.

DOCA Services 170

Re
fer
en
ce

Description

37
05
89
4

Description: In an EVPN Symmetric Routing scenario, IPv6 traffic is not hardware
offloaded. It is only IPv6 traffic that is routed using L3VNIs to remote hosts that is
affected.

Workaround: N/A

Keyword: EVPN; IPv6

Reported in HBN version: 2.0.0

33
78
92
8

Description: When an interface is brought down or deleted (e.g., an SVI deletion), the
routes learned over that interface, though removed from kernel, are not notified to
netlink. Hence, these routes are still present in nl2doca and consequently in the
FDB. If upon raising an interface these older routes are not newly installed, then
those stale routes in nl2doca remain until nl2doca is restarted or a suggested
workaround is applied.

Workaround: Resync netlink cache with kernel.

Keyword: Container

Reported in HBN version: 2.0.0

35
19
32
4

Description: The DOCA HBN container takes about 1 minute longer to spawn, as
compared to previous HBN release (1.4.0).

Workaround: N/A

Keyword: Container

Reported in HBN version: 1.5.0

36
05
48
6

Description: When the DPU boots up after issuing a "reboot" command from the
DPU itself, some host-side interfaces may remain down.

Workaround: N/A

Keyword: Reboot

Reported in HBN version: 1.5.0

35
47

Description: IPv6 stateless ACLs are not supported.

echo 1 > /cumulus/nl2docad/ctrl/netlink/resync

DOCA Services 171

10
3

Workaround: N/A

Keyword: IPv6 ACL

Reported in HBN version: 1.5.0

33
39
30
4

Description: Statistics for hardware-offloaded traffic are not reflected on SFs inside
an HBN container.

Workaround: Look up the stats using ip -s link show on PFs outside of the
HBN container. PFs would show Tx/Rx stats for traffic that is hardware-accelerated
in the HBN container.

Keyword: Statistics; container

Reported in HBN version: 1.4.0

33
52
00
3

Description: NVUE show, config, and apply commands malfunction if the nvued
and nvued-startup services are not in the RUNNING and EXITED states
respectively.

Workaround: N/A

Keyword: NVUE commands

Reported in HBN version: 1.3.0

31
68
68
3

Description: If many interfaces are participating in EVPN/routing, it is possible for
the routing process to run out of memory.

Workaround: Have a maximum of 8 VF interfaces participating in routing/VXLAN.

Keyword: R outing; memory

Reported in HBN version: 1.2.0

32
19
53
9

Description: TC rules are programmed by OVS to map uplink and host representor
ports to HBN service. These rules are ageable and can result in packets needing to
get software forwarded periodically to refresh the rules.

Workaround: The timeout value can be adjusted by changing the OVS parameter
other_config : max-idle as documented here. The shipped default value is

10000ms (10s).

Keyword: SFC; aging

Reported in HBN version: 1.2.0

31
84
74
5

Description: The command nv show interface <intf> acl does not show
correct information if there are multiple ACLs bound to the interface.

https://www.openvswitch.org/support/dist-docs/ovs-vswitchd.conf.db.5.html

DOCA Services 172

Workaround: Use the command nv show interface <intf> to view the ACLs
bound to an interface.

Keyword: ACLs

Reported in HBN version: 1.2.0

31
58
93
4

Description: Deleting an NVUE user by removing their password file and restarting
the decrypt-user-add service on the HBN container does not work.

Workaround: Either respawn the container after deleting the file, or delete the
password file corresponding to the user by running userdel -r username .

Keyword: User deletion

Reported in HBN version: 1.2.0

31
85
00
3

Description: When a packet is encapsulated with a VXLAN header, it adds extra
bytes which may cause the packet to exceed the MTU of link. Typically, the packet
would be fragmented but its silently dropped and no fragmentation happens.

Workaround: Make sure that the MTU on the uplink port is always 50 bytes more
than host ports so that even after adding VXLAN headers, ingress packets do not
exceed the MTU.

Keyword: MTU; VXLAN

Reported in HBN version: 1.2.0

31
84
90
5

Description: On VXLAN encapsulation, the DF flag is not propagated to the outer
header. Such a packet may be truncated when forwarded in the kernel, and it may
be dropped when hardware offloaded.

Workaround: Make sure that the MTU on the uplink port is always 50 bytes more
than host ports so that even after adding VXLAN headers, ingress packets do not
exceed the MTU.

Keyword: VXLAN

Reported in HBN version: 1.2.0

31
88
68
8

Description: When stopping the container using the command crictl stop an
error may be reported because the command uses a timeout of 0 which is not
enough to stop all the processes in the HBN container.

Workaround: Pass a timeout value when stopping the HBN container by running:

crictl stop --timeout 60 <hbn-container>

DOCA Services 173

Keyword: Timeout

Reported in HBN version: 1.2.0

31
29
74
9

Description: The same ACL rule cannot be applied in both the inbound and
outbound direction on a port.

Workaround: N/A

Keyword: ACLs

Reported in HBN version: 1.2.0

31
26
56
0

Description: The system's time zone cannot be modified using NVUE in the HBN
container.

Workaround: The timezone can be manually changed by symlinking the
/etc/localtime file to a binary time zone's identifier in the

/usr/share/zoneinfo directory. For example:

Keyword: Time zone; NVUE

Reported in HBN version: 1.2.0

31
18
20
4

Description: Auto-BGP functionality (where the ASN does not need to be configured
but is dynamically inferred by the system based on the system's role as a leaf or
spine device) is not supported on HBN.

Workaround: If BGP is configured and used on HBN, the BGP ASN must be manually
configured.

Keyword: BGP

Reported in HBN version: 1.2.0

32
33
08
8

Description: Since checksum calculation is offloaded to the hardware (not done by
the kernel), it is expected to see an incorrect checksum in the tcpdump for locally
generated, outgoing packets. BGP keepalives and updates are some of the packets
that show such incorrect checksum in tcpdump.

Workaround: N/A

Keyword: BGP

Reported in HBN version: 1.2.0

28
21

Description: MAC addresses are not learned in the hardware but only in software.
This may affect performance in pure L2 unicast traffic.

sudo ln -sf /usr/share/zoneinfo/GMT /etc/localtime

DOCA Services 174

78
5

Workaround: N/A

Keyword: MAC; L2

Reported in HBN version: 1.3.0

30
17
20
2

Description: Due to disabled backend foundation units, some NVUE commands
return 500 INTERNAL SERVER ERROR / 404 NOT FOUND . These commands are
related to features or subsystems which are not supported on HBN.

Workaround: N/A

Keyword: Unsupported NVUE commands

Reported in HBN version: 1.3.0

28
28
83
8

Description: NetworkManager and other services not directly related to HBN may
display the following message in syslog:

The message has no functional impact and may be ignored.

Workaround: N/A

Keyword: Error

Reported in HBN version: 1.3.0

Bug Fixes

The following table lists the known issues which have been fixed for this release of HBN.

"netlink: read: too many netlink events. Need to resynchronize platform cache"

DOCA Services 175

Re
fer
en
ce

Description

36
10
97
1

Description: The output of the command nv show interface does not display
information about VRFs, VXLAN, and bridge.

Fixed in HBN version: 2.0.0

33
78
92
8

Description: Service functions (*_sf) inside the HBN container are UP at container

start irrespective of their presence/absence in the /etc/network/interfaces
file. But once any of them are added to /e/n/i and later taken off from /e/n/i, they
stay DOWN unless added back to /e/n/i.

Fixed in HBN version: 2.0.0

34
52
91
4

Description: IPv6 OOB connectivity from the HBN container stops working if the br-
mgmt interface on the DPU goes down. When going down, the br-mgmt interface
loses its IPv6 address, which is used as the gateway address for the HBN container.
If the br-mgmt interface comes back up, its IPv6 address is not added back and
IPv6 OOB connectivity from the HBN container will not work

Fixed in HBN version: 1.5.0

31
91
43
3

Description: ECMP selection for the underlay path uses the ingress port and
identifies uplink ports via round robin. This may not result in uniform spread of the
traffic.

Fixed in HBN version: 1.4.0

30
49
87
9

Description: When reloading (ifreload) an empty /etc/network/interfaces
file, the previously created interfaces are not deleted.

Fixed in HBN version: 1.4.0

32
84
60
7

Description: When an ACL is configured for IPv4 and L4 parameters (protocol
tcp/udp, source, and destination ports) match, the ACL also matches IPv6 traffic
with the specified L4 parameters.

Fixed in HBN version: 1.4.0

32
82
11
3

Description: Some DPUs experience an issue with the clock settings after installing
a BlueField OS in an HBN setting in which the date reverts back to "Thu Sep 8,
2022".

Fixed in HBN version: 1.4.0

33
54

Description: If interfaces on which BGP unnumbered peering is configured are not
defined in the /etc/network/interfaces configuration file, BGP peering does

DOCA Services 176

02
9

not get established on them.

Fixed in HBN version: 1.4.0

DOCA Services 177

NVIDIA DOCA Telemetry
Service Guide
This guide provides instructions on how to use the DOCA Telemetry Service (DTS)
container on top of NVIDIA® BlueField® DPU.

Introduction

DOCA Telemetry Service (DTS) collects data from built-in providers and from external
telemetry applications. The following providers are available:

Data providers:

sysfs

ethtool

tc (traffic control)

Aggregation providers:

fluent_aggr

prometheus_aggr

DTS stores collected data into binary files under the
/opt/mellanox/doca/services/telemetry/data directory. Data write is disabled

by default due to BlueField storage restrictions.

Note

Sysfs provider is enabled by default.

DOCA Services 178

DTS can export the data via Prometheus Endpoint (pull) or Fluent Bit (push).

DTS allows exporting NetFlow packets when data is collected from the DOCA Telemetry
NetFlow API client application. NetFlow exporter is enabled from dts_config.ini by
setting NetFlow collector IP/address and port.

Service Deployment

Available Images

Built-in DOCA Service Image

DOCA Telemetry Service is enabled by default on the DPU and is shipped as part of the
BlueField image. That is, every BlueField image contains a fixed service version so as to
provide out-of-the-box support for programs based on the 2024-10-09_07-10-18_DOCA
Telemetry library.

DOCA Service on NGC

In addition to the built-in image shipped with the BlueField boot image, DTS is also
available on NGC, NVIDIA's container catalog. This is useful in case a new version of the
service has been released and the user wants to upgrade from the built-in image. For
service-specific configuration steps and deployment instructions, refer to the service's
container page .

Info

https://docs.nvidia.compages/createpage.action?spaceKey=doca253&title=2024-10-09+07-10-18+DOCA+Telemetry&linkCreation=true&fromPageId=3483842019
https://docs.nvidia.compages/createpage.action?spaceKey=doca253&title=2024-10-09+07-10-18+DOCA+Telemetry&linkCreation=true&fromPageId=3483842019
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_telemetry
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_telemetry

DOCA Services 179

DPU Deployment

As mentioned above, DTS starts automatically on BlueField boot. This is done according to
the .yaml file located at /etc/kubelet.d/doca_telemetry_standalone.yaml .

Removing the .yaml file from this path stops the automatic DTS boot.

DTS files can be found under the directory
/opt/mellanox/doca/services/telemetry/ .

Container folder mounts:

config

data

ipc_sockets

Backup files:

doca_telemetry_service_${version}_arm64.tar.gz – DTS image

doca_telemetry_standalone.yaml – copy of the default boot .yaml file

Host Deployment

DTS supports x86_64 hosts. The providers and exporters all run from a single docker
container.

1. Initialize and configure host DTS with:

For more information about the deployment of DOCA containers on
top of the BlueField DPU, refer to NVIDIA DOCA Container
Deployment Guide.

DOCA Services 180

2. Run with:

export DTS_IMAGE=nvcr.io/nvidia/doca/doca_telemetry
docker run -v
"/opt/mellanox/doca/services/telemetry/config:/config" --rm -
-name doca-telemetry-init -it $DTS_IMAGE /bin/bash -c
"DTS_CONFIG_DIR=host /usr/bin/telemetry-init.sh"

docker run -d --net=host --uts=host --ipc=host
\
 --privileged
\
 --ulimit stack=67108864 --ulimit memlock=-1
\
 --device=/dev/mst/
\
 --device=/dev/infiniband/
\
 --gpus all
\
 -v
"/opt/mellanox/doca/services/telemetry/config:/config"
\
 -v
"/opt/mellanox/doca/services/telemetry/ipc_sockets:/tmp/ipc_soc
\
 -v
"/opt/mellanox/doca/services/telemetry/data:/data"
\
 -v "/usr/lib/mft:/usr/lib/mft"
\
 -v "/sys/kernel/debug:/sys/kernel/debug"
\

DOCA Services 181

Deployment with Grafana Monitoring

Refer to section "Deploying with Grafana Monitoring".

Configuration

The configuration of DTS is placed under
/opt/mellanox/doca/services/telemetry/config by DTS during initialization.

The user can interact with the dts_config.ini file and fluent_bit_configs folder.

 --rm --name doca-telemetry -it $DTS_IMAGE
/usr/bin/telemetry-run.sh

Note

The following mounts are required by specific services only:

hcaperf provider:

--device=/dev/mst/

-v "/usr/lib/mft:/usr/lib/mft"

-v "/sys/kernel/debug:/sys/kernel/debug"

UCX/RDMA export modes:

--device=/dev/infiniband/

GPU providers (nvidia-smi and dcgm):

--gpu all

DOCA Services 182

dts_config.ini contains the main configuration for the service and must be used to
enable/disable providers, exporters, data writing. More details are provided in the
corresponding sections. For every update in this file, DST must be restarted. Interaction
with fluent_bit_configs folder is described in section Fluent Bit.

Init Scripts

The InitContainers section of the .yaml file has 2 scripts for config initialization:

/usr/bin/telemetry-init.sh – generates the default configuration files if, and

only if, the /opt/mellanox/doca/services/telemetry/config folder is
empty.

/usr/bin/enable-fluent-forward.sh – configures the destination host and
port for Fluent Bit forwarding. The script requires that both the host and port are
present, and only in this case it would start. The script overwrites the
/opt/mellanox/doca/services/telemetry/config/fluent_bit_configs

folder and configures the .exp file.

Enabling Fluent Bit Forwarding

To enable Fluent Bit forward, add the destination host and port to the command line
found in the initContainers section of the .yaml file:

command: ["/bin/bash", "-c", "/usr/bin/telemetry-init.sh &&
/usr/bin/enable-fluent-forward.sh -i=127.0.0.1 -p=24224"]

Note

The host and port shown above are just an example. See section
Fluent Bit to learn about manual configuration.

DOCA Services 183

Generating Configuration

The configuration folder /opt/mellanox/doca/services/telemetry/config starts
empty by default. Once the service starts, the initial scripts run as a part of the initial
container and create configuration as described in section Enabling Fluent Bit Forwarding.

Resetting Configuration

Resetting the configuration can be done by deleting the content found in the
configuration folder and restarting the service to generate the default configuration.

Enabling Providers

Providers are enabled from the dts_config.ini configuration file. Uncomment the

enable-provider=$provider-name line to allow data collection for this provider. For

example, uncommenting the following line enables the ethtool provider:

Remote Collection

Certain providers or components are unable to execute properly within the container due
to various container limitations. Therefore, they would have to perform remote collection
or execution.

#enable-provider=ethtool

Note

More information about telemetry providers can be found under the
Providers section.

DOCA Services 184

The following steps enable remote collection:

1. Activate DOCA privileged executer (DPE), as DPE is the means by which remote
collection is achieved:

2. Add grpc before provider-name (i.e.,

enable-provider=grpc.$provider-name). For example, the following line

configures remote collection of the hcaperf provider:

3. If there are any configuration lines that are provider-specific, then add the grpc
prefix as well. Building upon the previous example:

Enabling Data Write

Uncomment the following line in dts_config.ini :

systemctl start dpe

enable-provider=grpc.hcaperf

grpc.hcaperf.mlx5_0=sample
grpc.hcaperf.mlx5_1=sample

#output=/data

Note

DOCA Services 185

Enabling IPC with Non-container Program

For information on enabling IPC between DTS and an application that runs outside of a
container, refer to section "Using IPC with Non-container Application" in the 2024-10-
09_07-10-18_DOCA Telemetry.

Description

Providers

DTS supports on-board data collection from sysf , ethtool , and tc providers.

Fluent and Prometheus aggregator providers can collect the data from other applications.

Sysfs Counters List

The sysfs provider has several components: ib_port , hw_port , mr_cache , eth ,

hwmon and bf_ptm . By default, all the components (except bf_ptm) are enabled
when the provider is enabled:

The components can be disabled separately. For instance, to disable eth :

Changes in dts_config.ini force the main DTS process to restart
in 60 seconds to apply the new settings.

#disable-provider=sysfs

enable-provider=sysfs
disable-provider=sysfs.eth

https://docs.nvidia.compages/createpage.action?spaceKey=doca253&title=2024-10-09+07-10-18+DOCA+Telemetry&linkCreation=true&fromPageId=3483842019
https://docs.nvidia.compages/createpage.action?spaceKey=doca253&title=2024-10-09+07-10-18+DOCA+Telemetry&linkCreation=true&fromPageId=3483842019
https://docs.nvidia.compages/createpage.action?spaceKey=doca253&title=2024-10-09+07-10-18+DOCA+Telemetry&linkCreation=true&fromPageId=3483842019

DOCA Services 186

ib_port counters:

ib_hw counters:

Note

ib_port and ib_hvw are state counters which are collected per
port. These counters are only collected for ports whose state is active.

{hca_name}:{port_num}:ib_port_state
{hca_name}:{port_num}:VL15_dropped
{hca_name}:{port_num}:excessive_buffer_overrun_errors
{hca_name}:{port_num}:link_downed
{hca_name}:{port_num}:link_error_recovery
{hca_name}:{port_num}:local_link_integrity_errors
{hca_name}:{port_num}:multicast_rcv_packets
{hca_name}:{port_num}:multicast_xmit_packets
{hca_name}:{port_num}:port_rcv_constraint_errors
{hca_name}:{port_num}:port_rcv_data
{hca_name}:{port_num}:port_rcv_errors
{hca_name}:{port_num}:port_rcv_packets
{hca_name}:{port_num}:port_rcv_remote_physical_errors
{hca_name}:{port_num}:port_rcv_switch_relay_errors
{hca_name}:{port_num}:port_xmit_constraint_errors
{hca_name}:{port_num}:port_xmit_data
{hca_name}:{port_num}:port_xmit_discards
{hca_name}:{port_num}:port_xmit_packets
{hca_name}:{port_num}:port_xmit_wait
{hca_name}:{port_num}:symbol_error
{hca_name}:{port_num}:unicast_rcv_packets
{hca_name}:{port_num}:unicast_xmit_packets

DOCA Services 187

ib_mr_cache counters:

{hca_name}:{port_num}:hw_state
{hca_name}:{port_num}:hw_duplicate_request
{hca_name}:{port_num}:hw_implied_nak_seq_err
{hca_name}:{port_num}:hw_lifespan
{hca_name}:{port_num}:hw_local_ack_timeout_err
{hca_name}:{port_num}:hw_out_of_buffer
{hca_name}:{port_num}:hw_out_of_sequence
{hca_name}:{port_num}:hw_packet_seq_err
{hca_name}:{port_num}:hw_req_cqe_error
{hca_name}:{port_num}:hw_req_cqe_flush_error
{hca_name}:{port_num}:hw_req_remote_access_errors
{hca_name}:{port_num}:hw_req_remote_invalid_request
{hca_name}:{port_num}:hw_resp_cqe_error
{hca_name}:{port_num}:hw_resp_cqe_flush_error
{hca_name}:{port_num}:hw_resp_local_length_error
{hca_name}:{port_num}:hw_resp_remote_access_errors
{hca_name}:{port_num}:hw_rnr_nak_retry_err
{hca_name}:{port_num}:hw_rx_atomic_requests
{hca_name}:{port_num}:hw_rx_dct_connect
{hca_name}:{port_num}:hw_rx_icrc_encapsulated
{hca_name}:{port_num}:hw_rx_read_requests
{hca_name}:{port_num}:hw_rx_write_requests

{hca_name}:mr_cache:size_{n}:cur
{hca_name}:mr_cache:size_{n}:limit
{hca_name}:mr_cache:size_{n}:miss
{hca_name}:mr_cache:size_{n}:size

Note

DOCA Services 188

eth counters:

BlueField-2 hwmon counters:

Where n ranges from 0 to 24.

{hca_name}:{device_name}:eth_collisions
{hca_name}:{device_name}:eth_multicast
{hca_name}:{device_name}:eth_rx_bytes
{hca_name}:{device_name}:eth_rx_compressed
{hca_name}:{device_name}:eth_rx_crc_errors
{hca_name}:{device_name}:eth_rx_dropped
{hca_name}:{device_name}:eth_rx_errors
{hca_name}:{device_name}:eth_rx_fifo_errors
{hca_name}:{device_name}:eth_rx_frame_errors
{hca_name}:{device_name}:eth_rx_length_errors
{hca_name}:{device_name}:eth_rx_missed_errors
{hca_name}:{device_name}:eth_rx_nohandler
{hca_name}:{device_name}:eth_rx_over_errors
{hca_name}:{device_name}:eth_rx_packets
{hca_name}:{device_name}:eth_tx_aborted_errors
{hca_name}:{device_name}:eth_tx_bytes
{hca_name}:{device_name}:eth_tx_carrier_errors
{hca_name}:{device_name}:eth_tx_compressed
{hca_name}:{device_name}:eth_tx_dropped
{hca_name}:{device_name}:eth_tx_errors
{hca_name}:{device_name}:eth_tx_fifo_errors
{hca_name}:{device_name}:eth_tx_heartbeat_errors
{hca_name}:{device_name}:eth_tx_packets
{hca_name}:{device_name}:eth_tx_window_errors

DOCA Services 189

BlueField-3 hwmon counters:

{hwmon_name}:{l3cache}:CYCLES
{hwmon_name}:{l3cache}:HITS_BANK0
{hwmon_name}:{l3cache}:HITS_BANK1
{hwmon_name}:{l3cache}:MISSES_BANK0
{hwmon_name}:{l3cache}:MISSES_BANK1
{hwmon_name}:{pcie}:IN_C_BYTE_CNT
{hwmon_name}:{pcie}:IN_C_PKT_CNT
{hwmon_name}:{pcie}:IN_NP_BYTE_CNT
{hwmon_name}:{pcie}:IN_NP_PKT_CNT
{hwmon_name}:{pcie}:IN_P_BYTE_CNT
{hwmon_name}:{pcie}:IN_P_PKT_CNT
{hwmon_name}:{pcie}:OUT_C_BYTE_CNT
{hwmon_name}:{pcie}:OUT_C_PKT_CNT
{hwmon_name}:{pcie}:OUT_NP_BYTE_CNT
{hwmon_name}:{pcie}:OUT_NP_PKT_CNT
{hwmon_name}:{pcie}:OUT_P_PKT_CNT
{hwmon_name}:{tile}:MEMORY_READS
{hwmon_name}:{tile}:MEMORY_WRITES
{hwmon_name}:{tile}:MSS_NO_CREDIT
{hwmon_name}:{tile}:VICTIM_WRITE
{hwmon_name}:{tilenet}:CDN_DIAG_C_OUT_OF_CRED
{hwmon_name}:{tilenet}:CDN_REQ
{hwmon_name}:{tilenet}:DDN_REQ
{hwmon_name}:{tilenet}:NDN_REQ
{hwmon_name}:{trio}:TDMA_DATA_BEAT
{hwmon_name}:{trio}:TDMA_PBUF_MAC_AF
{hwmon_name}:{trio}:TDMA_RT_AF
{hwmon_name}:{trio}:TPIO_DATA_BEAT
{hwmon_name}:{triogen}:TX_DAT_AF
{hwmon_name}:{triogen}:TX_DAT_AF

DOCA Services 190

BlueField-3 bf_ptm counters:

Power Thermal Counters

The bf_ptm component collects BlueField-3 power thermal counters using remote
collection. It is disabled by default and can be enabled as follows:

{hwmon_name}:{llt}:GDC_BANK0_RD_REQ
{hwmon_name}:{llt}:GDC_BANK1_RD_REQ
{hwmon_name}:{llt}:GDC_BANK0_WR_REQ
{hwmon_name}:{llt}:GDC_BANK1_WR_REQ
{hwmon_name}:{llt_miss}:GDC_MISS_MACHINE_RD_REQ
{hwmon_name}:{llt_miss}:GDC_MISS_MACHINE_WR_REQ
{hwmon_name}:{mss}:SKYLIB_DDN_TX_FLITS
{hwmon_name}:{mss}:SKYLIB_DDN_RX_FLITS

bf:ptm:active_power_profile
bf:ptm:atx_power_available
bf:ptm:core_temp
bf:ptm:ddr_temp
bf:ptm:error_state
bf:ptm:power_envelope
bf:ptm:power_throttling_event_count
bf:ptm:power_throttling_state
bf:ptm:thermal_throttling_event_count
bf:ptm:thermal_throttling_state
bf:ptm:throttling_state
bf:ptm:total_power
bf:ptm:vr0_power
bf:ptm:vr1_power

DOCA Services 191

1. Load kernel module mlxbf-ptm :

2. Enable component using remote collection:

Ethtool Counters

Ethtool counters is the generated list of counters which corresponds to Ethtool utility.
Counters are generated on a per-device basis. See this community post for more
information on mlx5 ethtool counters.

Traffic Control Info

The following TC objects are supported and reported regarding the ingress filters:

Filters

flower

Actions

modprobe -v mlxbf-ptm

enable-provider=grpc.sysfs.bf_ptm

Note

DPE server should be active before changing the
dts_config.ini file. See section "Remote Collection" for

details.

https://linux.die.net/man/8/ethtool
https://support.mellanox.com/s/article/understanding-mlx5-ethtool-counters
https://www.man7.org/linux/man-pages/man8/tc-flower.8.html

DOCA Services 192

mirred

tunnel_key

The info is provided as one of the following events:

Basic filter event

Flower/IPv4 filter event

Flower/IPv6 filter event

Basic action event

Mirred action event

Tunnel_key/IPv4 action event

Tunnel_key/IPv6 action event

General notes:

Actions always belong to a filter, so action events share the filter event's ID via the
event_id data member

Basic filter event only contains textual kind (so users can see which real life objects'
support they are lacking)

Basic action event only contains textual kind and some basic common statistics if
available

Fluent Aggregator

fluent_aggr listens on a port for Fluent Bit Forward protocol input connections.
Received data can be streamed via a Fluent Bit exporter.

The default port is 42442. This can be changed by updating the following option:

fluent-aggr-port=42442

https://man7.org/linux/man-pages/man8/tc-mirred.8.html
https://www.man7.org/linux/man-pages/man8/tc-tunnel_key.8.html
https://docs.fluentbit.io/manual/pipeline/outputs/forward

DOCA Services 193

Prometheus Aggregator

prometheus_aggr polls data from a list of Prometheus endpoints.

Each endpoint is listed in the following format:

Where N starts from 0.

Aggregated data can be exported via a Prometheus Aggr Exporter endpoint.

Network Interfaces

ifconfig collects network interface data. To enable, set:

If the Prometheus endpoint is enabled, add the following configuration to cache every
collected network interface and arrange the index according to their names:

Metrices are collected for each network interface as follows:

prometheus_aggr_endpoint.{N}={host_name},{host_port_url},
{poll_inteval_msec}

enable-provider=ifconfig

prometheus-fset-indexes=name

name
rx_packets
tx_packets

DOCA Services 194

HCA Performance

hcaperf collects HCA performance data. Since it requires access to an RDMA device, it
must use remote collection on the DPU. On the host, the user runs the container in
privileged mode and RDMA device mount.

The counter list is device dependent.

hcaperf DPU Configuration

To enable hcaperf in remote collection mode, set:

rx_bytes
tx_bytes
rx_errors
tx_errors
rx_dropped
tx_dropped
multicast
collisions
rx_length_errors
rx_over_errors
rx_crc_errors
rx_frame_errors
rx_fifo_errors
rx_missed_errors
tx_aborted_errors
tx_carrier_errors
tx_fifo_errors
tx_heartbeat_errors
tx_window_errors
rx_compressed
tx_compressed
rx_nohandler

DOCA Services 195

hcaperf Host Configuration

To enable hcaperf in regular mode, set:

NVIDIA System Management Interface

The nvidia-smi provider collects GPU and GPU process information provided by the
NVIDIA system management interface.

enable-provider=grpc.hcaperf

specify HCAs to sample
grpc.hcaperf.mlx5_0=sample
grpc.hcaperf.mlx5_1=sample

Note

DPE server should be active before changing the dts_config.ini
file. See section "Remote Collection" for details.

enable-provider=hcaperf

specify HCAs to sample
hcaperf.mlx5_0=sample
hcaperf.mlx5_1=sample

DOCA Services 196

This provider is supported only on x86_64 hosts with installed GPUs. All GPU cards
supported by nvidia-smi are supported by this provider.

The counter list is GPU dependent. Additionally, per-process information is collected for
the first 20 (by default) nvidia_smi_max_processes processes.

Counters can be either collected as string data "as is" in nvidia-smi or converted to

numbers when nvsmi_with_numeric_fields is set.

To enable nvidia-smi provider and change parameters, set:

NVIDIA Data Center GPU Manager

The dcgm provider collects GPU information provided by the NVIDIA data center GPU
manager (DCGM) API.

This provider is supported only on x86_64 hosts with installed GPUs, and requires running
the nv-hostengine service (refer to DCGM documentation for details).

DCGM counters are split into several groups by context:

GPU – basic GPU information (always)

COMMON – common fields that can be collected from all devices

PROF – profiling fields

ECC – ECC errors

NVLINK / NVSWITCH / VGPU – fields depending on the device type

To enable DCGM provider and counter groups, set:

enable-provider=nvidia-smi

Optional parameters:
#nvidia_smi_max_processes=20
#nvsmi_with_numeric_fields=1

https://docs.nvidia.com/datacenter/dcgm/latest/index.html

DOCA Services 197

Data Outputs

DTS can send the collected data to the following outputs:

Data writer (saves binary data to disk)

Fluent Bit (push-model streaming)

Prometheus endpoint (keeps the most recent data to be pulled)

Data Writer

The data writer is disabled by default to save space on BlueField. Steps for activating data
write during debug can be found under section Enabling Data Write.

The schema folder contains JSON-formatted metadata files which allow reading the
binary files containing the actual data. The binary files are written according to the
naming convention shown in the following example (apt install tree):

enable-provider=dcgm

dcgm_events_enable_common_fields=1
#dcgm_events_enable_prof_fields=0
#dcgm_events_enable_ecc_fields=0
#dcgm_events_enable_nvlink_fields=0
#dcgm_events_enable_nvswitch_fields=0
#dcgm_events_enable_vgpu_fields=0

tree /opt/mellanox/doca/services/telemetry/data/
/opt/mellanox/doca/services/telemetry/data/
├── {year}
│ └── {mmdd}
│ └── {hash}
│ ├── {source_id}

DOCA Services 198

New binary files appears when the service starts or when binary file age/size restriction is
reached. If no schema or no data folders are present, refer to the Troubleshooting section.

Reading the binary data can be done from within the DTS container using the following
command:

Example output:

│ │ └── {source_tag}{timestamp}.bin
│ └── {another_source_id}
│ └── {another_source_tag}{timestamp}.bin
└── schema
 └── schema_{MD5_digest}.json

Note

source_id is usually set to the machine hostname. source_tag is
a line describing the collected counters, and it is often set as the
provider's name or name of user-counters.

crictl exec -it <Container ID>
/opt/mellanox/collectx/bin/clx_read -s /data/schema
/data/path/to/datafile.bin

Note

The path to the data file must be an absolute path.

DOCA Services 199

Prometheus

The Prometheus endpoint keeps the most recent data to be pulled by the Prometheus
server and is enabled by default.

To check that data is available, run the following command on BlueField:

The command dumps every counter in the following format:

Additionally, endpoint supports JSON and CSV formats:

{
 "timestamp": 1634815738799728,
 "event_number": 0,
 "iter_num": 0,
 "string_number": 0,
 "example_string": "example_str_1"
}
{
 "timestamp": 1634815738799768,
 "event_number": 1,
 "iter_num": 0,
 "string_number": 1,
 "example_string": "example_str_2"
}
…

curl -s http://0.0.0.0:9100/metrics

counter_name {list of meta fields} counter_value timestamp

DOCA Services 200

Configuration Details

Prometheus is configured as a part of dts_config.ini .

By default, the Prometheus HTTP endpoint is set to port 9100. Comment this line out to
disable Prometheus export.

Prometheus can use the data field as an index to keep several data records with different
index values. Index fields are added to Prometheus labels.

curl -s http://0.0.0.0:9100/json/metrics
curl -s http://0.0.0.0:9100/csv/metrics

Note

The default port for Prometheus can be changed in
dts_config.ini .

prometheus=http://0.0.0.0:9100

Comma-separated counter set description for Prometheus
indexing:
#prometheus-indexes=idx1,idx2

Comma-separated fieldset description for prometheus indexing
#prometheus-fset-indexes=idx1,idx2

DOCA Services 201

The default fset index is device_name . It allows Prometheus to keep ethtool data up

for both the p0 and p1 devices.

If fset index is not set, the data from p1 overwrites p0 's data.

For quick name filtering, the Prometheus exporter supports being provided with a
comma-separated list of counter names to be ignored:

For quick filtering of data by tag, the Prometheus exporter supports being provided with a
comma-separated list of data source tags to be ignored.

Users should add tags for all streaming data since the Prometheus exporter cannot be
used for streaming. By default, FI_metrics are disabled.

Prometheus Aggregator Exporter

Prometheus aggregator exporter is an endpoint that keeps the latest aggregated data
using prometheus_aggr .

This exporter labels data according to its source.

To enable this provider, users must set 2 parameters in dts_config.ini :

prometheus-fset-indexes=device_name

#prometheus-ignore-names=counter_name1,counter_name_2

prometheus-ignore-tags=FI_metrics

prometheus-aggr-exporter-host=0.0.0.0

DOCA Services 202

Fluent Bit

Fluent Bit allows streaming to multiple destinations. Destinations are configured in .exp
files that are documented in-place and can be found under:

Fluent Bit allows exporting data via "Forward" protocol which connects to the Fluent
Bit/FluentD instance on customer side.

Export can be enabled manually:

1. Uncomment the line with fluent_bit_configs=… in dts_config.ini .

2. Set enable=1 in required .exp files for the desired plugins.

3. Additional configurations can be set according to instructions in the .exp file if
needed.

4. Restart the DTS.

5. Set up receiving instance of Fluent Bit/FluentD if needed.

6. See the data on the receiving side.

Export file destinations are set by configuring .exp files or creating new ones. It is
recommended to start by going over documented example files. Documented examples
exist for the following supported plugins:

forward

file

stdout

kafka

prometheus-aggr-exporter-port=33333

/opt/mellanox/doca/services/telemetry/config/fluent_bit_configs

DOCA Services 203

es (elastic search)

influx

Export File Configuration Details

Each export destination has the following fields:

name – configuration name

plugin_name – Fluent Bit plugin name

enable – 1 or 0 values to enable/disable this destination

host – the host for Fluent Bit plugin

port – port for Fluent Bit plugin

msgpack_data_layout – the msgpacked data format. Default is flb_std . The
other option is custom. See section Msgpack Data Layout for details.

plugin_key=val – key-value pairs of Fluent Bit plugin parameter (optional)

Note

All .exp files are disabled by default if not configured by

initContainer entry point through .yaml file.

Note

To forward the data to several destinations, create several
forward_{num}.exp files. Each of these files must have their own

destination host and port.

DOCA Services 204

counterset / fieldset – file paths (optional). See details in section Cset/Fset
Filtering.

source_tag=source_tag1,source_tag2 – comma-separated list of data page
source tags for filtering. The rest tags are filtered out during export. Event tags are
event provider names. All counters can be enabled/disabled only simultaneously with
a counters keyword.

Msgpack Data Layout

Data layout can be configured using .exp files by setting

msgpack_data_layout=layout . There are two available layouts: Standard and Custom.

The standard flb_std data layout is an array of 2 fields:

timestamp double value

a plain dictionary (key-value pairs)

The standard layout is appropriate for all Fluent Bit plugins. For example:

The custom data layout is a dictionary of meta-fields and counter fields. Values are placed
into a separate plain dictionary. Custom data format can be dumped with stdout_raw
output plugin of Fluent-Bit installed or can be forwarded with forward output plugin.

Counters example:

Note

Use # to comment a configuration line.

[timestamp_val, {"timestamp"->ts_val, type=>"counters/events",
"source"=>"source_val", "key_1"=>val_1, "key_2"=>val_2,...}]

DOCA Services 205

Events example:

Cset/Fset Filtering

Each export file can optionally use one cset and one fset file to filter UFM telemetry
counters and events data.

cset contains tokens per line to filter data with "type"="counters" .

fset contains several blocks started with the header line [event_type_name]
and tokens under that header. An Fset file is used to filter data with
"type"="events" .

If several tokens must be matched simultaneously, use <tok1>+<tok2>+<tok3> .
Exclusive tokens are available as well. For example, the line

{"timestamp"=>timestamp_val, "type"=>"counters",
"source"=>"source_val", "values"=> {"key_1"=>val_1,
"key_2"=>val_2,...}}

{"timestamp"=>timestamp_val, "type"=>"events",
"type_name"=>"type_name_val", "source"=>" source_val", "values"=>
{"key_1"=>val_1, "key_2"=>val_2,...}}

Note

Event type names could be prefixed to apply the same tokens to
all fitting types. For example, to filter all ethtool events, use
[ethtool_event_*] .

DOCA Services 206

<tok1>+<tok2>-<tok3>-<tok4> filters names that match both tok1 and tok2 and do
not match tok3 or tok4.

The following are the details of writing cset files:

The following are the details of writing fset files:

Put tokens on separate lines
Tokens are the actual name 'fragments' to be matched
port$ # match names ending with token "port"
^port # match names starting with token "port"
^port$ # include name that is exact token "port
port+xmit # match names that contain both tokens "port" and
"xmit"
port-support # match names that contain the token "port" and do
not match the "-" token "support"
#
Tip: To disable counter export put a single token line that
fits nothing

Put your events here
Usage:
#
[type_name_1]
tokens
[type_name_2]
tokens
[type_name_3]
tokens
...
Tokens are the actual name 'fragments' to be matched
port$ # match names ending with token "port"
^port # match names starting with token "port"

DOCA Services 207

NetFlow Exporter

NetFlow exporter must be used when data is collected as NetFlow packets from the
telemetry client applications. In this case, DOCA Telemetry NetFlow API sends NetFlow
data packages to DTS via IPC. DTS uses NetFlow exporter to send data to the NetFlow
collector (3rd party service).

To enable NetFlow exporter, set netflow-collector-ip and

netflow-collector-port in dts_config.ini . netflow-collector-ip could be
set either to IP or an address.

For additional information, refer to the dts_config.ini file.

^port$ # include name that is exact token "port
port+xmit # match names that contain both tokens "port" and
"xmit"
port-support # match names that contain the token "port" and do
not match the "-" token "support"

The next example will export all the "tc" events and all events
with type prefix "ethtool_" "ethtool" are filtered with token
"port":
[tc]
#
[ethtool_*]
packet

To know which event type names are available check export and
find field "type_name"=>"ethtool_event_p0"
...
Corner cases:
1. Empty fset file will export all events.
2. Tokens written above/without [event_type] will be ignored.
3. If cannot open fset file, warning will be printed, all event
types will be exported.

DOCA Services 208

DOCA Privileged Executer

DOCA Privileged Executer (DPE) is a daemon that allows specific DOCA services (DTS
included) to access BlueField information that is otherwise inaccessible from a container
due to technology limitations or permission granularity issues.

When enabled, DPE enriches the information collected by DTS. However, DTS can still be
used if DPE is disabled (default).

DPE Usage

DPE is controlled by systemd, and can be used as follows:

To check DPE status:

To start DPE:

To stop DPE:

DPE logs can be found in /var/log/doca/telemetry/dpe.log .

DPE Configuration File

sudo systemctl status dpe

sudo systemctl start dpe

sudo systemctl stop dpe

DOCA Services 209

DPE can be configured by the user. This section covers the syntax and implications of its
configuration file.

The DPE configuration file allows users to define the set of commands that DPE should
support. This may be done by passing the -f option in the following line of

/etc/systemd/system/dpe.service :

To use the configuration file:

The configuration file supports the following sections:

[server] - list of key=value lines for general server configuration. Allowed keys:

socket .

[commands] - list of bash command lines that are not using custom RegEx

[commands_regex] - list of bash command lines that are using custom RegEx

[regex_macros] - custom RegEx definitions used in the commands_regex
section

Note

The DPU telemetry collected by DTS does not require for this
configuration file to be used.

ExecStart=/opt/mellanox/doca/services/telemetry/dpe/bin/dpeserver
-vvv

ExecStart=/opt/mellanox/doca/services/telemetry/dpe/bin/dpeserver
-vvv -f /path/to/dpe_config.ini

DOCA Services 210

Consider the following example configuration file:

[server]
socket=/tmp/dpe.sock

[commands]
hostname
cat /etc/os-release

[commands_regex]
crictl inspect $HEXA # resolved as "crictl inspect [a-f0-
9]+"
lspci $BDF # resolved as "lspci ([0-9a-f]{4}\:|)
[0-9a-f]{2}\:[0-9a-f]{2}\.[0-9a-f]"

[regex_macros]
HEXA=[a-f0-9]+
BDF=([0-9a-f]{4}\:|)[0-9a-f]{2}\:[0-9a-f]{2}\.[0-9a-f]

Note

DPE is shipped with a preconfigured file that matches the commands
used by the standalone DTS version included in the same DOCA
installation. The file is located in
/opt/mellanox/doca/services/telemetry/dpe/etc/dpe_config.ini

.

Note

Using a DPE configuration file allows for a fine-grained control over
the interface exposed by it to the rest of the DOCA services. However,
even when using the pre-supplied configuration file mentioned above,

DOCA Services 211

Deploying with Grafana Monitoring

This chapter provides an overview and deployment configuration of DOCA Telemetry
Service with Grafana .

Grafana Deployment Prerequisites

BlueField DPU running DOCA Telemetry Service.

Optional remote server to host Grafana and Prometheus.

Prometheus installed on the host machine. Please refer to the Prometheus website
for more information.

Grafana installed on the host machine. Please refer to Grafana Labs website for
more information.

Grafana Deployment Configuration

DTS Configuration (DPU Side)

DTS will be configured to export the sysfs counter using the Prometheus plugin.

one should remember that it has been configured to match a fixed
DTS version. That is, replacing the standalone DTS version with a new
one downloaded from NGC means that the used configuration file
might not cover additional features added in the new DTS version.

https://grafana.com/
https://prometheus.io/
https://grafana.com/

DOCA Services 212

1. Make sure the sysfs counter is enabled.

2. Enable Prometheus exporter by setting the prometheus address and port.

Note

Sysfs is used as an example, other counters are available. Please refer
to the NVIDIA DOCA Telemetry Service Guide for more information.

vim
/opt/mellanox/doca/services/telemetry/config/dts_config.ini

enable-provider=sysfs

vim
/opt/mellanox/doca/services/telemetry/config/dts_config.ini

prometheus=http://0.0.0.0:9100

Note

In this example, the Prometheus plugin exports data on
localhost port 9100, this is an arbitrary value and can changed.

Note

DOCA Services 213

Prometheus Configuration (Remote Server)

Please download Prometheus for your platform.

Prometheus is configured via command-line flags and a configuration file,
prometheus.yml .

1. Open the prometheus.yml file and configure the DPU as the endpoint target.

Where:

<dpu-ip> is the DPU IP address. Prometheus reaches to this IP to pull data.

<prometheus-port> the exporter port that set in DTS configuration.

2. Run Prometheus server:

DTS must be restarted to apply changes.

vim prometheus.yml
metrics_path defaults to '/metrics'
scheme defaults to 'http'.

static_configs:
- targets: ["<dpu-ip>:<prometheus-port>"]

./prometheus --config.file="prometheus.yml"

Tip

DOCA Services 214

Grafana Configuration (Remote Server)

Please download and install Grafana for your platform.

1. Setup Grafana. Please refer to Install Grafana guide in Grafana documentation.

2. Log into the Grafana dashboard at http://localhost:3000.

3. Add Prometheus as data source by navigating to Settings → Data sources → Add

data source → Prometheus.

Prometheus services are available as Docker images. Please refer
to Using Docker in Prometheus' Installation guide.

Note

Port 3000 is the default port number set by Grafana. This can be
changed if needed. The default credentials are admin/admin.

https://grafana.com/docs/grafana/latest/setup-grafana/installation/
https://prometheus.io/docs/prometheus/latest/installation/#using-docker

DOCA Services 215

4. Configure the Prometheus data source. Under the HTTP section, set the
Prometheus server address.

5. Save and test.

Note

The Prometheus server's default listen port is 9090. Prometheus
and Grafana are both running on the same server, thus the
address is localhost.

DOCA Services 216

Exploring Telemetry Data

Go to the Explore page on the left-hand side, and choose a Prometheus provider.

Choose a metric to display and specify a label. The label can be used to filter out data
based on the source and HCA devices.

Graph display after selecting a metric and specifying a label to filter by:

Troubleshooting

On top of the Troubleshooting section in the NVIDIA DOCA Container Deployment Guide,
here are additional troubleshooting tips for DTS:

For general troubleshooting, refer to the NVIDIA DOCA Troubleshooting Guide.

If the pod's state fails to be marked as "Ready", refer to /var/log/syslog .

Check if the service is configured to write data to the disk as this may cause the
system to run out of disk space.

https://docs.nvidia.com/doca/archive/2-5-3/NVIDIA+DOCA+Troubleshooting+Guide/index.html

DOCA Services 217

If a PIC bus error occurs, configure the following files inside the container:

crictl exec -it <container-id> /bin/bash
Add to /config/clx.env the following line:
"
export UCX_TLS=tcp
"

DOCA Services 218

OpenvSwitch Offload
Open vSwitch (OVS) is a software-based network technology that enhances virtual
machine (VM) communication within internal and external networks. Typically deployed in
the hypervisor, OVS employs a software-based approach for packet switching, which can
strain CPU resources, impacting system performance and network bandwidth utilization.
Addressing this, NVIDIA's Accelerated Switching and Packet Processing (ASAP2)
technology offloads OVS data-plane tasks to specialized hardware, like the embedded
switch (eSwitch) within the NIC subsystem, while maintaining an unmodified OVS control-
plane. This results in notably improved OVS performance without burdening the CPU.

NVIDIA's OVS architecture extends the traditional OVS-DPDK and OVS-Kernel data-path
offload interfaces, introducing OVS-DOCA as an additional implementation. OVS-DOCA,
built upon NVIDIA's networking API, preserves the same interfaces as OVS-DPDK and
OVS-Kernel while utilizing the DOCA Flow library. Unlike the other modes, OVS-DOCA
exploits unique hardware offload mechanisms and application techniques, maximizing
performance and features for NVIDA NICs and DPUs. This mode is especially efficient due
to its architecture and DOCA library integration, enhancing e-switch configuration and
accelerating hardware offloads beyond what the other modes can achieve.

NVIDIA OVS installation contains all three OVS flavors. The following subsections describe
the three flavors (default is OVS-Kernel) and how to configure each of them.

OVS and Virtualized Devices

When OVS is combined with NICs and DPUs (such as NVIDIA® ConnectX®-6 Lx/Dx and
NVIDIA® BlueField®-2 and later), it utilizes the hardware data plane of ASAP2. This data
plane can establish connections to VMs using either SR-IOV virtual functions (VFs) or
virtual host data path acceleration (vDPA) with virtio.

DOCA Services 219

In both scenarios, an accelerator engine within the NIC accelerates forwarding and
offloads the OVS rules. This integrated solution accelerates both the infrastructure (via
VFs through SR-IOV or virtio) and the data plane. For DPUs (which include a NIC
subsystem), an alternate virtualization technology implements full virtio emulation within
the DPU, enabling the host server to communicate with the DPU as a software virtio
device.

When using ASAP2 data plane over SR-IOV virtual functions (VFs), the VF is directly
passed through to the VM, with the NVIDIA driver running within the VM.

When using vDPA, the vDPA driver allows VMs to establish their connections
through VirtIO. As a result, the data plane is established between the SR-IOV VF and
the standard virtio driver within the VM, while the control plane is managed on the
host by the vDPA application.

OVS Hardware Offloads Configuration

OVS-Kernel Hardware Offloads

OVS-Kernel is the default OVS flavor enabled on your NVIDIA device.

Switchdev Configuration

1. Unbind the VFs:

echo 0000:04:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:04:00.3 > /sys/bus/pci/drivers/mlx5_core/unbind

Note

DOCA Services 220

2. Change the eSwitch mode from legacy to switchdev on the PF device:

This also creates the VF representor netdevices in the host OS.

On OSes or kernels that do not support devlink, moving to switchdev mode can be
done using sysfs:

VMs with attached VFs must be powered off to be able to
unbind the VFs.

devlink dev eswitch set pci/0000:3b:00.0 mode switchdev

Note

Before changing the mode, make sure that all VFs are unbound.

Info

To return to SR-IOV legacy mode, run:

This also removes the VF representor netdevices.

devlink dev eswitch set pci/0000:3b:00.0 mode
legacy

DOCA Services 221

3. At this stage, VF representors have been created. To map a representor to its VF,
make sure to obtain the representor's switchid and portname by running:

Where:

switchid – used to map representor to device, both device PFs have the

same switchid

portname – used to map representor to PF and VF. Value returned is

pf<X>vf<Y> , where X is the PF number and Y is the number of VF.

4. Bind the VFs:

Switchdev Performance Tuning

Switchdev tuning improves its performance.

Steering Mode

echo switchdev > /sys/class/net/enp4s0f0/compat/devlink/mode

ip -d link show eth4
41: enp0s8f0_1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc mq state UP mode DEFAULT group default qlen 1000

 link/ether ba:e6:21:37:bc:d4 brd ff:ff:ff:ff:ff:ff
promiscuity 0 addrgenmode eui64 numtxqueues 10 numrxqueues 10
gso_max_size 65536 gso_max_segs 65535 portname pf0vf1 switchid
f4ab580003a1420c

echo 0000:04:00.2 > /sys/bus/pci/drivers/mlx5_core/bind
echo 0000:04:00.3 > /sys/bus/pci/drivers/mlx5_core/bind

DOCA Services 222

OVS-kernel supports two steering modes for rule insertion into hardware:

SMFS (software-managed flow steering) – default mode; rules are inserted directly
to the hardware by the software (driver). This mode is optimized for rule insertion.

DMFS (device-managed flow steering) – rule insertion is done using firmware
commands. This mode is optimized for throughput with a small amount of rules in
the system.

The steering mode can be configured via sysfs or devlink API in kernels that support it:

For sysfs:

For devlink:

Notes:

The mode should be set prior to moving to switchdev, by echoing to the sysfs or
invoking the devlink command.

Only when moving to switchdev will the driver use the mode configured.

Mode cannot be changed after moving to switchdev.

The steering mode is applicable for switchdev mode only (i.e., it does not affect
legacy SR-IOV or other configurations).

Troubleshooting SMFS

echo <smfs|dmfs> > /sys/class/net/<pf-
netdev>/compat/devlink/steering_mode

devlink dev param set pci/0000:00:08.0 name flow_steering_mode
value "<smfs|dmfs>" cmode runtime

DOCA Services 223

mlx5 debugfs supports presenting Software Steering resources. dr_domain including
its tables, matchers and rules. The interface is read-only.

The steering information is dumped in the CSV form in the following format:
<object_type>,<object_ID>, <object_info>,...,<object_info> .

This data can be read at the following path:
/sys/kernel/debug/mlx5/<BDF>/steering/fdb/<domain_handle> .

Example:

You can then use the steering dump parser to make the output more human-readable.

The parser can be found in this GitHub repository.

vPort Match Mode

OVS-kernel support two modes that define how the rules match on vport.

Mod
e

Description

Meta
data

Rules match on metadata instead of vport number (default mode).
This mode is needed to support SR-IOV live migration and dual-port RoCE.

Note

New steering rules cannot be inserted/deleted w hile the dump is
being created,

cat
/sys/kernel/debug/mlx5/0000:82:00.0/steering/fdb/dmn_000018644
3100,0x55caa4621c50,0xee802,4,65533

3101,0x55caa4621c50,0xe0100008

https://github.com/Mellanox/mlx_steering_dump

DOCA Services 224

Mod
e

Description

Lega
cy

Rules match on vport number.
In this mode, performance can be higher in comparison to Metadata. It can be
used only if SR-IOV live migration or dual port RoCE are enabled/used.

vPort match mode can be controlled via sysfs:

Set legacy:

Set metadata:

Flow Table Large Group Number

Note
Matching on Metadata can have a performance impact.

echo legacy > /sys/class/net/<PF
netdev>/compat/devlink/vport_match_mode

echo metadata > /sys/class/net/<PF
netdev>/compat/devlink/vport_match_mode

Note

This mode must be set prior to moving to switchdev.

DOCA Services 225

Offloaded flows, including connection tracking (CT), are added to the virtual switch
forwarding data base (FDB) flow tables. FDB tables have a set of flow groups, where each
flow group saves the same traffic pattern flows. For example, for CT offloaded flow, TCP
and UDP are different traffic patterns which end up in two different flow groups.

A flow group has a limited size to save flow entries. By default, the driver has 15 big FDB
flow groups. Each of these big flow groups can save 4M/(15+1)=256k different 5-tuple
flow entries at most. For scenarios with more than 15 traffic patterns, the driver provides
a module parameter (num_of_groups) to allow customization and performance tuning.

The mode can be controlled via module param or devlink API for kernels that support it:

Module param:

Devlink:

Open vSwitch Configuration

echo <num_of_groups> >
/sys/module/mlx5_core/parameters/num_of_groups

devlink dev param set pci/0000:82:00.0 name fdb_large_groups
cmode driverinit value 20

Note

The change takes effect immediately if no flows are inside the FDB
table (no traffic running and all offloaded flows are aged out). And it
can be dynamically changed without reloading the driver. If there are
still offloaded flows when changing this parameter, it takes effect
after all flows have aged out.

DOCA Services 226

OVS configuration is a simple OVS bridge configuration with switchdev.

1. Run the OVS service:

2. Create an OVS bridge (named ovs-sriov here):

3. Enable hardware offload (disabled by default):

4. Restart the OVS service:

This step is required for hardware offload changes to take effect.

5. Add the PF and the VF representor netdevices as OVS ports:

Make sure to bring up the PF and representor netdevices:

systemctl start openvswitch

ovs-vsctl add-br ovs-sriov

ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

systemctl restart openvswitch

ovs-vsctl add-port ovs-sriov enp4s0f0
ovs-vsctl add-port ovs-sriov enp4s0f0_0
ovs-vsctl add-port ovs-sriov enp4s0f0_1

DOCA Services 227

The PF represents the uplink (wire):

6. Run traffic from the VFs and observe the rules added to the OVS data-path:

In this example, the ping is initiated from VF0 (OVS port 3) to the outer node (OVS
port 2), where the VF MAC is e4:11:22:33:44:50 and the outer node MAC is

ip link set dev enp4s0f0 up
ip link set dev enp4s0f0_0 up
ip link set dev enp4s0f0_1 up

ovs-dpctl show
system@ovs-system:
 lookups: hit:0 missed:192 lost:1

 flows: 2

 masks: hit:384 total:2 hit/pkt:2.00

 port 0: ovs-system (internal)
 port 1: ovs-sriov (internal)
 port 2: enp4s0f0
 port 3: enp4s0f0_0
 port 4: enp4s0f0_1

ovs-dpctl dump-flows

recirc_id(0),in_port(3),eth(src=e4:11:22:33:44:50,dst=e4:1d:2d:a5
eth_type(0x0800),ipv4(frag=no), packets:33, bytes:3234,
used:1.196s, actions:2

recirc_id(0),in_port(2),eth(src=e4:1d:2d:a5:f3:9d,dst=e4:11:22:3

eth_type(0x0800),ipv4(frag=no), packets:34, bytes:3332,
used:1.196s, actions:3

DOCA Services 228

e4:1d:2d:a5:f3:9d . As previously shown, two OVS rules are added, one in each
direction.

OVS Performance Tuning

Flow Aging

The aging timeout of OVS is given in milliseconds and can be controlled by running:

TC Policy

Specifies the policy used with hardware offloading:

none – adds a TC rule to both the software and the hardware (default)

skip_sw – adds a TC rule only to the hardware

skip_hw – adds a TC rule only to the software

Example:

Note

Users can also verify offloaded packets by adding
type=offloaded to the command. For example:

ovs-appctl dpctl/dump-flows type=offloaded

ovs-vsctl set Open_vSwitch . other_config:max-idle=30000

DOCA Services 229

max-revalidator

Specifies the maximum time (in milliseconds) for the revalidator threads to wait for kernel
statistics before executing flow revalidation.

n-handler-threads

Specifies the number of threads for software datapaths to use to handle new flows.

The default value is the number of online CPU cores minus the number of revalidators.

n-revalidator-threads

Specifies the number of threads for software datapaths to use to revalidate flows in the
datapath.

ovs-vsctl set Open_vSwitch . other_config:tc-policy=skip_sw

Note

TC policy should only be used for debugging purposes.

ovs-vsctl set Open_vSwitch . other_config:max-revalidator=10000

ovs-vsctl set Open_vSwitch . other_config:n-handler-threads=4

DOCA Services 230

vlan-limit

Limits the number of VLAN headers that can be matched to the specified number.

Basic TC Rules Configuration

Offloading rules can also be added directly, and not only through OVS, using the tc
utility.

To create an offloading rule using TC:

1. Create an ingress qdisc (queueing discipline) for each interface that you wish to add
rules into:

2. Add TC rules using flower classifier in the following format:

ovs-vsctl set Open_vSwitch . other_config:n-revalidator-threads=4

ovs-vsctl set Open_vSwitch . other_config:vlan-limit=2

tc qdisc add dev enp4s0f0 ingress
tc qdisc add dev enp4s0f0_0 ingress
tc qdisc add dev enp4s0f0_1 ingress

tc filter add dev NETDEVICE ingress protocol PROTOCOL prio
PRIORITY [chain CHAIN] flower [MATCH_LIST] [action
ACTION_SPEC]

DOCA Services 231

3. Dump the existing tc rules using flower classifier in the following format:

SR-IOV VF LAG

SR-IOV VF LAG allows the NIC's physical functions (PFs) to get the rules that the OVS tries
to offload to the bond net-device, and to offload them to the hardware e-switch.

The supported bond modes are as follows:

Active-backup

XOR

LACP

SR-IOV VF LAG enables complete offload of the LAG functionality to the hardware. The
bonding creates a single bonded PF port. Packets from the up-link can arrive from any of
the physical ports and are forwarded to the bond device.

When hardware offload is used, packets from both ports can be forwarded to any of the
VFs. Traffic from the VF can be forwarded to both ports according to the bonding state.
This means that when in active-backup mode, only one PF is up, and traffic from any VF
goes through this PF. When in XOR or LACP mode, if both PFs are up, traffic from any VF is
split between these two PFs.

SR-IOV VF LAG Configuration on ASAP2

To enable SR-IOV VF LAG, both physical functions of the NIC must first be configured to
SR-IOV switchdev mode, and only afterwards bond the up-link representors.

Note

A list of supported matches (specifications) and actions can be
found in section "Classification Fields (Matches)".

tc [-s] filter show dev NETDEVICE ingress

DOCA Services 232

The following example shows the creation of a bond interface over two PFs:

1. Load the bonding device and subordinate the up-link representor (currently PF) net-
device devices:

2. Add the VF representor net-devices as OVS ports. If tunneling is not used, add the
bond device as well.

3. Bring up the PF and the representor netdevices:

modprobe bonding mode=802.3ad
Ifup bond0 (make sure ifcfg file is present with desired bond
configuration)
ip link set enp4s0f0 master bond0
ip link set enp4s0f1 master bond0

ovs-vsctl add-port ovs-sriov bond0
ovs-vsctl add-port ovs-sriov enp4s0f0_0
ovs-vsctl add-port ovs-sriov enp4s0f1_0

ip link set dev bond0 up
ip link set dev enp4s0f0_0 up
ip link set dev enp4s0f1_0 up

Note

Once the SR-IOV VF LAG is configured, all VFs of the two PFs become
part of the bond and behave as described above.

DOCA Services 233

Using TC with VF LAG

Both rules can be added either with or without shared block:

With shared block (supported from kernel 4.16 and RHEL/CentOS 7.7 and above):

1. Add drop rule:

2. Add redirect rule from bond to representor:

3. Add redirect rule from representor to bond:

tc qdisc add dev bond0 ingress_block 22 ingress
tc qdisc add dev ens4p0 ingress_block 22 ingress
tc qdisc add dev ens4p1 ingress_block 22 ingress

tc filter add block 22 protocol arp parent ffff: prio 3
\
 flower \
 dst_mac e4:11:22:11:4a:51 \
 action drop

tc filter add block 22 protocol arp parent ffff: prio 3
\
 flower \
 dst_mac e4:11:22:11:4a:50 \
 action mirred egress redirect dev ens4f0_0

DOCA Services 234

Without shared block (supported from kernel 4.15 and below):

1. Add redirect rule from bond to representor:

2. Add redirect rule from representor to bond:

Classification Fields (Matches)

OVS-Kernel supports multiple classification fields which packets can fully or partially
match.

Ethernet Layer 2

tc filter add dev ens4f0_0 protocol arp parent ffff:
prio 3 \
 flower \
 dst_mac ec:0d:9a:8a:28:42 \
 action mirred egress redirect dev bond0

tc filter add dev bond0 protocol arp parent ffff: prio
1 \
 flower \
 dst_mac e4:11:22:11:4a:50 \
 action mirred egress redirect dev ens4f0_0

tc filter add dev ens4f0_0 protocol arp parent ffff:
prio 3 \
 flower \
 dst_mac ec:0d:9a:8a:28:42 \
 action mirred egress redirect dev bond0

DOCA Services 235

Destination MAC

Source MAC

Ethertype

Supported on all kernels.

In OVS dump flows:

Using TC rules:

IPv4/IPv6

Source address

Destination address

Protocol

TCP/UDP/ICMP/ICMPv6

TOS

TTL (HLIMIT)

Supported on all kernels.

skb_priority(0/0),skb_mark(0/0),in_port(eth6),eth(src=00:02:10:40:10:0
packets:1981, bytes:206024, used:0.440s, dp:tc, actions:eth7

tc filter add dev $rep parent ffff: protocol arp pref 1 \
flower \
dst_mac e4:1d:2d:5d:25:35 \
src_mac e4:1d:2d:5d:25:34 \
action mirred egress redirect dev $NIC

DOCA Services 236

In OVS dump flows:

Using TC rules:

TCP/UDP Source and Destination Ports and TCP Flags

Ipv4:
ipv4(src=0.0.0.0/0.0.0.0,dst=0.0.0.0/0.0.0.0,proto=17,tos=0/0,ttl=0/0,frag=no
Ipv6:
ipv6(src=::/::,dst=1:1:1::3:1040:1008,label=0/0,proto=58,tclass=0/0x3,h

IPv4:
tc filter add dev $rep parent ffff: protocol ip pref 1 \
flower \
dst_ip 1.1.1.1 \
src_ip 1.1.1.2 \
ip_proto TCP \
ip_tos 0x3 \
ip_ttl 63 \
action mirred egress redirect dev $NIC

IPv6:
tc filter add dev $rep parent ffff: protocol ipv6 pref 1 \
flower \
dst_ip 1:1:1::3:1040:1009 \
src_ip 1:1:1::3:1040:1008 \
ip_proto TCP \
ip_tos 0x3 \
ip_ttl 63\
action mirred egress redirect dev $NIC

DOCA Services 237

TCP/UDP source and destinations ports

TCP flags

Supported on kernel >4.13 and RHEL >7.5.

In OVS dump flows:

Using TC rules:

VLAN

ID

Priority

Inner vlan ID and Priority

Supported kernels: All (QinQ: kernel 4.19 and higher, and RHEL 7.7 and higher).

In OVS dump flows:

TCP: tcp(src=0/0,dst=32768/0x8000),
UDP: udp(src=0/0,dst=32768/0x8000),
TCP flags: tcp_flags(0/0)

tc filter add dev $rep parent ffff: protocol ip pref 1 \
flower \
ip_proto TCP \
dst_port 100 \
src_port 500 \
tcp_flags 0x4/0x7 \
action mirred egress redirect dev $NIC

DOCA Services 238

Using TC rules:

Tunnel

ID (Key)

Source IP address

Destination IP address

Destination port

TOS (supported from kernel 4.19 and above & RHEL 7.7 and above)

TTL (support from kernel 4.19 and above & RHEL 7.7 and above)

eth_type(0x8100),vlan(vid=2347,pcp=0),

tc filter add dev $rep parent ffff: protocol 802.1Q pref 1 \
 flower \
 vlan_ethtype 0x800 \
 vlan_id 100 \
 vlan_prio 0 \
 action mirred egress redirect dev $NIC
QinQ:
tc filter add dev $rep parent ffff: protocol 802.1Q pref 1 \
 flower \
 vlan_ethtype 0x8100 \
 vlan_id 100 \
 vlan_prio 0 \
 cvlan_id 20 \
 cvlan_prio 0 \
 cvlan_ethtype 0x800 \
 action mirred egress redirect dev $NIC

DOCA Services 239

Tunnel options (Geneve)

Supported kernels:

VXLAN: All

GRE: Kernel >5.0, RHEL 7.7 and above

Geneve: Kernel >5.0, RHEL 7.7 and above

In OVS dump flows:

Using TC rules:

tunnel(tun_id=0x5,src=121.9.1.1,dst=131.10.1.1,ttl=0/0,tp_dst=4789,flags(+

tc filter add dev $rep protocol 802.1Q parent ffff: pref 1
flower \
vlan_ethtype 0x800 \
vlan_id 100 \
vlan_prio 0 \
action mirred egress redirect dev $NIC
QinQ:
tc filter add dev vxlan100 protocol ip parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4+:11:22:11:4a:50 \
 enc_src_ip 20.1.11.1 \
 enc_dst_ip 20.1.12.1 \
 enc_key_id 100 \
 enc_dst_port 4789 \
 action tunnel_key unset \

DOCA Services 240

Supported Actions

Forward

Forward action allows for packet redirection:

From VF to wire

Wire to VF

VF to VF

Supported on all kernels.

In OVS dump flows:

Using TC rules:

 action mirred egress redirect dev
ens4f0_0

skb_priority(0/0),skb_mark(0/0),in_port(eth6),eth(src=00:02:10:40:10:0
packets:1981, bytes:206024, used:0.440s, dp:tc, actions:eth7

tc filter add dev $rep parent ffff: protocol arp pref 1 \
flower \
dst_mac

e4:1d:2d:5d:25:35 \
src_mac

e4:1d:2d:5d:25:34 \
 action mirred egress

redirect dev $NIC

DOCA Services 241

Drop

Drop action allows to drop incoming packets.

Supported on all kernels.

In OVS dump flows:

Using TC rules:

Statistics

By default, each flow collects the following statistics:

Packets – number of packets which hit the flow

Bytes – total number of bytes which hit the flow

Last used – the amount of time passed since last packet hit the flow

Supported on all kernels.

In OVS dump flows:

skb_priority(0/0),skb_mark(0/0),in_port(eth6),eth(src=00:02:10:40:10:0
packets:1981, bytes:206024, used:0.440s, dp:tc, actions:drop

tc filter add dev $rep parent ffff: protocol arp pref 1 \
 flower \
 dst_mac e4:1d:2d:5d:25:35 \
 src_mac e4:1d:2d:5d:25:34 \
 action drop

skb_priority(0/0),skb_mark(0/0),in_port(eth6),eth(src=00:02:10:40:10:0

DOCA Services 242

Using TC rules:

Tunnels: Encapsulation/Decapsulation

OVS-kernel supports offload of tunnels using encapsulation and decapsulation actions.

Encapsulation – pushing of tunnel header is supported on Tx

Decapsulation – popping of tunnel header is supported on Rx

Supported Tunnels:

VXLAN (IPv4/IPv6) – supported on all Kernels

GRE (IPv4/IPv6) – supported on kernel 5.0 and above & RHEL 7.6 and above

packets:1981, bytes:206024, used:0.440s, dp:tc, actions:drop

#tc -s filter show dev $rep ingress

filter protocol ip pref 2 flower chain 0

filter protocol ip pref 2 flower chain 0 handle 0x2

eth_type ipv4
ip_proto tcp
src_ip 192.168.140.100

src_port 80

skip_sw
in_hw
 action order 1: mirred (Egress Redirect to device p0v11_r)
stolen
 index 34 ref 1 bind 1 installed 144 sec used 0 sec
 Action statistics:
 Sent 388344 bytes 2942 pkt (dropped 0, overlimits 0 requeues 0)
 backlog 0b 0p requeues 0

DOCA Services 243

Geneve (IPv4/IPv6) – supported on kernel 5.0 and above & RHEL 7.6 and above

OVS configuration:

In case of offloading tunnel, the PF/bond should not be added as a port in the OVS
datapath. It should rather be assigned with the IP address to be used for encapsulation.

The following example shows two hosts (PFs) with IPs 1.1.1.177 and 1.1.1.75, where the PF
device on both hosts is enp4s0f0, and the VXLAN tunnel is set with VNID 98:

On the first host:

On the second host:

ip addr add 1.1.1.177/24 dev enp4s0f1
ovs-vsctl add-port ovs-sriov vxlan0 -- set interface vxlan0
type=vxlan options:local_ip=1.1.1.177 options:remote_ip=1.1.1.75
options:key=98

ip addr add 1.1.1.75/24 dev enp4s0f1
ovs-vsctl add-port ovs-sriov vxlan0 -- set interface vxlan0
type=vxlan options:local_ip=1.1.1.75 options:remote_ip=1.1.1.177
options:key=98

Info

For a GRE IPv4 tunnel, use type=gre . For a GRE IPv6 tunnel,

use type=ip6gre . For a Geneve tunnel, use type=geneve .

Note

DOCA Services 244

Tunnel offload using TC rules:

When encapsulating guest traffic, the VF's device MTU must be
reduced to allow the host/hardware to add the encap headers without
fragmenting the resulted packet. As such, the VF's MTU must be
lowered by 50 bytes from the uplink MTU for IPv4 and 70 bytes for
IPv6.

Encapsulation:
tc filter add dev ens4f0_0 protocol 0x806 parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 action tunnel_key set \
 src_ip 20.1.12.1 \
 dst_ip 20.1.11.1 \
 id 100 \
 action mirred egress redirect dev vxlan100

Decapsulation:
tc filter add dev vxlan100 protocol 0x806 parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 enc_src_ip 20.1.11.1 \
 enc_dst_ip 20.1.12.1 \
 enc_key_id 100 \
 enc_dst_port 4789 \
 action tunnel_key unset \
 action mirred egress redirect dev ens4f0_0

DOCA Services 245

VLAN Push/Pop

OVS-kernel supports offload of VLAN header push/pop actions:

Push – pushing of VLAN header is supported on Tx

Pop – popping of tunnel header is supported on Rx

OVS Configuration

Add a tag=$TAG section for the OVS command line that adds the representor ports. For
example, VLAN ID 52 is being used here.

The PF port should not have a VLAN attached. This will cause OVS to add VLAN push/pop
actions when managing traffic for these VFs.

Dump Flow Example

VLAN Offload Using TC Rules Example

ovs-vsctl add-port ovs-sriov enp4s0f0
ovs-vsctl add-port ovs-sriov enp4s0f0_0 tag=52

ovs-vsctl add-port ovs-sriov enp4s0f0_1 tag=52

recirc_id(0),in_port(3),eth(src=e4:11:22:33:44:50,dst=00:02:c9:e9:bb:b
\
packets:0, bytes:0, used:never, actions:push_vlan(vid=52,pcp=0),2

recirc_id(0),in_port(2),eth(src=00:02:c9:e9:bb:b2,dst=e4:11:22:33:44:5

\
vlan(vid=52,pcp=0),encap(eth_type(0x0800),ipv4(frag=no)),
packets:0, bytes:0, used:never, actions:pop_vlan,3

DOCA Services 246

TC Configuration

Example of VLAN Offloading with popping header on Tx and pushing on Rx using TC rules:

tc filter add dev ens4f0_0 protocol ip parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 action vlan push id 100 \
 action mirred egress redirect dev ens4f0

tc filter add dev ens4f0 protocol 802.1Q parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 vlan_ethtype 0x800 \
 vlan_id 100 \
 vlan_prio 0 \
 action vlan pop \
 action mirred egress redirect dev ens4f0_0

tc filter add dev ens4f0_0 ingress protocol 802.1Q parent ffff:
\
 flower \
 vlan_id 100 \
 action vlan pop \
 action tunnel_key set \
 src_ip 4.4.4.1 \
 dst_ip 4.4.4.2 \
 dst_port 4789 \

DOCA Services 247

Header Rewrite

This action allows for modifying packet fields.

Ethernet Layer 2

Destination MAC

Source MAC

Supported kernels:

Kernel 4.14 and above

RHEL 7.5 and above

In OVS dump flows:

 id 42 \
 action mirred egress redirect dev vxlan0

tc filter add dev vxlan0 ingress protocol all parent ffff: \
 flower \
 enc_dst_ip 4.4.4.1 \
 enc_src_ip 4.4.4.2 \
 enc_dst_port 4789 \
 enc_key_id 42 \
 action tunnel_key unset \
 action vlan push id 100 \
 action mirred egress redirect dev ens4f0_0

skb_priority(0/0),skb_mark(0/0),in_port(eth6),eth(src=00:02:10:40:10:0
packets:1981, bytes:206024, used:0.440s, dp:tc, actions:

DOCA Services 248

Using TC rules:

IPv4/IPv6

Source address

Destination address

Protocol

TOS

TTL (HLIMIT)

Supported kernels:

Kernel 4.14 and above

RHEL 7.5 and above

set(eth(src=68:54:ed:00:f4:ab,dst=fa:16:3e:dd:69:c4)),eth7

tc filter add dev $rep parent ffff: protocol arp pref 1 \
flower \
dst_mac

e4:1d:2d:5d:25:35 \
src_mac

e4:1d:2d:5d:25:34 \
action pedit ex \
munge eth dst set

20:22:33:44:55:66 \
munge eth src set

aa:ba:cc:dd:ee:fe \
action mirred egress

redirect dev $NIC

DOCA Services 249

In OVS dump flows:

Using TC rules:

Ipv4:
 set(eth(src=de:e8:ef:27:5e:45,dst=00:00:01:01:01:01)),
 set(ipv4(src=10.10.0.111,dst=10.20.0.122,ttl=63))
Ipv6:
 set(ipv6(dst=2001:1:6::92eb:fcbe:f1c8,hlimit=63)),

IPv4:
tc filter add dev $rep parent ffff: protocol ip pref 1 \

flower \
dst_ip

1.1.1.1 \
src_ip

1.1.1.2 \
ip_proto

TCP \
ip_tos

0x3 \
ip_ttl 63

\
pedit ex \
munge ip src set 2.2.2.1 \
munge ip dst set 2.2.2.2 \
munge ip tos set 0 \
munge ip ttl dec \
action mirred egress

redirect dev $NIC

IPv6:

DOCA Services 250

TCP/UDP Source and Destination Ports

TCP/UDP source and destinations ports

Supported kernels:

Kernel 4.16 and above

tc filter add dev $rep parent ffff: protocol ipv6 pref 1 \
flower \
dst_ip

1:1:1::3:1040:1009 \
src_ip

1:1:1::3:1040:1008 \
ip_proto

tcp \
ip_tos

0x3 \
ip_ttl

63\
pedit ex \
munge ipv6 src set

2:2:2::3:1040:1009 \
munge ipv6 dst set

2:2:2::3:1040:1008 \
munge ipv6 hlimit dec \
action mirred egress

redirect dev $NIC

Note

IPv4 and IPv6 header rewrite is only supported with match on
UDP/TCP/ICMP protocols.

DOCA Services 251

RHEL 7.6 and above

In OVS dump flows:

Using TC rules:

TCP:

 set(tcp(src= 32768/0xffff,dst=32768/0xffff)),
UDP:

 set(udp(src= 32768/0xffff,dst=32768/0xffff)),

TCP:

 tc filter add dev $rep parent ffff: protocol ip pref 1 \
 flower \
 dst_ip 1.1.1.1 \
 src_ip 1.1.1.2 \
 ip_proto tcp \
 ip_tos 0x3 \
 ip_ttl 63 \
 pedit ex \
 pedit ex munge ip tcp sport set 200

 pedit ex munge ip tcp dport set 200

 action mirred egress redirect dev $NIC

UDP:
 tc filter add dev $rep parent ffff: protocol ip pref 1 \
 flower \
 dst_ip 1.1.1.1 \
 src_ip 1.1.1.2 \
 ip_proto udp \
 ip_tos 0x3 \

DOCA Services 252

VLAN

ID

Supported on all kernels.

In OVS dump flows:

Using TC rules:

Connection Tracking

The TC connection tracking (CT) action performs CT lookup by sending the packet to
netfilter conntrack module. Newly added connections may be associated, via the
ct commit action, with a 32 bit mark, 128 bit label, and source/destination NAT values.

 ip_ttl 63 \
 pedit ex \
 pedit ex munge ip udp sport set 200

 pedit ex munge ip udp dport set 200

 action mirred egress redirect dev $NIC

Set(vlan(vid=2347,pcp=0/0)),

tc filter add dev $rep parent ffff: protocol 802.1Q pref 1 \
 flower \
 vlan_ethtype 0x800 \
 vlan_id 100 \
 vlan_prio 0 \
 action vlan modify id 11 pipe
 action mirred egress redirect dev $NIC

DOCA Services 253

The following example allows ingress TCP traffic from the uplink representor to vf1_rep
, while assuring that egress traffic from vf1_rep is only allowed on established
connections. In addition, mark and source IP NAT is applied.

In OVS dump flows:

Using TC rules:

ct(zone=2,nat)
ct_state(+est+trk)
actions:ct(commit,zone=2,mark=0x4/0xffffffff,nat(src=5.5.5.5))

tc filter add dev $uplink_rep ingress chain 0 prio 1 proto ip \
 flower \
 ip_proto tcp \
 ct_state -trk \
 action ct zone 2 nat pipe
 action goto chain 2

tc filter add dev $uplink_rep ingress chain 2 prio 1 proto ip \
 flower \
 ct_state +trk+new \
 action ct zone 2 commit mark 0xbb nat src addr
5.5.5.7 pipe \
 action mirred egress redirect dev $vf1_rep
tc filter add dev $uplink_rep ingress chain 2 prio 1 proto ip \
 flower \
 ct_zone 2 \
 ct_mark 0xbb \
 ct_state +trk+est \
 action mirred egress redirect dev $vf1_rep

// Setup filters on $vf1_rep, allowing only established connections of zone 2 through, and reverse nat (dst
nat in this case)

DOCA Services 254

CT Performance Tuning

Max offloaded connections – specifies the limit on the number of offloaded
connections. Example:

Allow mixed NAT/non-NAT CT – allows offloading of the following scenario:

tc filter add dev $vf1_rep ingress chain 0 prio 1 proto ip \
 flower \
 ip_proto tcp \
 ct_state -trk \
 action ct zone 2 nat pipe \
 action goto chain 1

tc filter add dev $vf1_rep ingress chain 1 prio 1 proto ip \
 flower \
 ct_zone 2 \
 ct_mark 0xbb \
 ct_state +trk+est \
 action mirred egress redirect dev eth0

devlink dev param set pci/${pci_dev} name
ct_max_offloaded_conns value $max cmode runtime

• cookie=0x0, duration=21.843s, table=0,
n_packets=4838718, n_bytes=241958846, ct_state=-
trk,ip,in_port=enp8s0f0 actions=ct(table=1,zone=2)
• cookie=0x0, duration=21.823s, table=1, n_packets=15363,
n_bytes=773526, ct_state=+new+trk,ip,in_port=enp8s0f0
actions=ct(commit,zone=2,nat(dst=11.11.11.11)),output:"enp8s0f0_1" •
cookie=0x0, duration=21.806s, table=1, n_packets=4767594,
n_bytes=238401190, ct_state=+est+trk,ip,in_port=enp8s0f0
actions=ct(zone=2,nat),output:"enp8s0f0_1"

DOCA Services 255

Example:

Forward to Chain (TC Only)

TC interface supports adding flows on different chains. Only chain 0 is accessed by
default. Access to the other chains requires using the goto action.

In this example, a flow is created on chain 1 without any match and redirect to wire.

The second flow is created on chain 0 and match on source MAC and action goto chain
1.

This example simulates simple MAC spoofing:

Port Mirroring: Flow-based VF Traffic Mirroring for ASAP²

echo enable >
/sys/class/net/<device>/compat/devlink/ct_action_on_nat_conns

#tc filter add dev $rep parent ffff: protocol all chain 1 pref 1
\
 flower \
 action mirred egress redirect dev $NIC

#tc filter add dev $rep parent ffff: protocol all chain 1 pref 1
\
 flower \
 src_mac aa:bb:cc:aa:bb:cc \
 action goto chain 1

DOCA Services 256

Unlike para-virtual configurations, when the VM traffic is offloaded to hardware via SR-IOV
VF, the host-side admin cannot snoop the traffic (e.g., for monitoring).

ASAP² uses the existing mirroring support in OVS and TC along with the enhancement to
the offloading logic in the driver to allow mirroring the VF traffic to another VF.

The mirrored VF can be used to run traffic analyzer (e.g., tcpdump, wireshark, etc.) and
observe the traffic of the VF being mirrored.

The following example shows the creation of port mirror on the following configuration:

To set enp4s0f0_0 as the mirror port and mirror all the traffic:

ovs-vsctl show
 09d8a574-9c39-465c-9f16-47d81c12f88a
 Bridge br-vxlan
 Port "enp4s0f0_1"

 Interface "enp4s0f0_1"

 Port "vxlan0"

 Interface "vxlan0"

 type: vxlan
 options: {key="100",
remote_ip="192.168.1.14"}
 Port "enp4s0f0_0"

 Interface "enp4s0f0_0"

 Port "enp4s0f0_2"

 Interface "enp4s0f0_2"

 Port br-vxlan
 Interface br-vxlan
 type: internal
 ovs_version: "2.14.1"

ovs-vsctl -- --id=@p get port enp4s0f0_0 \
 -- --id=@m create mirror name=m0 select-all=true
output-port=@p \

DOCA Services 257

To set enp4s0f0_0 as the mirror port, only mirror the traffic, and set

enp4s0f0_1 as the destination port:

To set enp4s0f0_0 as the mirror port, only mirror the traffic, and set

enp4s0f0_1 as the source port:

To set enp4s0f0_0 as the mirror port and mirror all the traffic on enp4s0f0_1 :

To clear the mirror port:

 -- set bridge br-vxlan mirrors=@m

ovs-vsctl -- --id=@p1 get port enp4s0f0_0 \
 -- --id=@p2 get port enp4s0f0_1 \
 -- --id=@m create mirror name=m0 select-dst-
port=@p2 output-port=@p1 \
 -- set bridge br-vxlan mirrors=@m

ovs-vsctl -- --id=@p1 get port enp4s0f0_0 \
 -- --id=@p2 get port enp4s0f0_1 \
 -- --id=@m create mirror name=m0 select-src-
port=@p2 output-port=@p1 \
 -- set bridge br-vxlan mirrors=@m

ovs-vsctl -- --id=@p1 get port enp4s0f0_0 \
 -- --id=@p2 get port enp4s0f0_1 \
 -- --id=@m create mirror name=m0 select-dst-
port=@p2 select-src-port=@p2 output-port=@p1 \
 -- set bridge br-vxlan mirrors=@m

DOCA Services 258

Mirroring using TC:

Mirror to VF:

Mirror to tunnel:

ovs-vsctl clear bridge br-vxlan mirrors

tc filter add dev $rep parent ffff: protocol arp pref 1 \
flower \
dst_mac

e4:1d:2d:5d:25:35 \
src_mac

e4:1d:2d:5d:25:34 \
action mirred

egress mirror dev $mirror_rep pipe \
action mirred

egress redirect dev $NIC

tc filter add dev $rep parent ffff: protocol arp pref 1 \
flower \
dst_mac

e4:1d:2d:5d:25:35 \
src_mac

e4:1d:2d:5d:25:34 \
action tunnel_key set \
src_ip 1.1.1.1 \
dst_ip 1.1.1.2 \
dst_port 4789 \
id 768 \
pipe \

DOCA Services 259

Forward to Multiple Destinations

Forwarding to up 32 destinations (representors and tunnels) is supported using TC:

Example 1 – forwarding to 32 VFs:

Example 2 – forwarding to 16 tunnels:

action mirred egress mirror
dev vxlan100 pipe \

action mirred egress redirect
dev $NIC

tc filter add dev $NIC parent ffff: protocol arp pref 1 \
 flower \
 dst_mac e4:1d:2d:5d:25:35 \
 src_mac e4:1d:2d:5d:25:34 \
 action mirred egress mirror dev $rep0
pipe \
 action mirred egress mirror dev $rep1
pipe \
...
 action mirred egress mirror dev
$rep30 pipe \
 action mirred egress redirect dev
$rep31

tc filter add dev $rep parent ffff: protocol arp pref 1 \
 flower \
 dst_mac e4:1d:2d:5d:25:35 \
 src_mac e4:1d:2d:5d:25:34 \

DOCA Services 260

 action tunnel_key set src_ip $ip_src
dst_ip $ip_dst \
 dst_port 4789 id 0 nocsum \
 pipe action mirred egress mirror dev
vxlan0 pipe \
 action tunnel_key set src_ip $ip_src
dst_ip $ip_dst \
 dst_port 4789 id 1 nocsum \
 pipe action mirred egress mirror dev
vxlan0 pipe \
 ...
 action tunnel_key set src_ip $ip_src
dst_ip $ip_dst \
 dst_port 4789 id 15 nocsum \
 pipe action mirred egress redirect
dev vxlan0

Note

TC supports up to 32 actions.

Note

If header rewrite is used, then all destinations should have the same
header rewrite.

Note

DOCA Services 261

sFlow

sFlow allows for monitoring traffic sent between two VMs on the same host using an
sFlow collector.

The following example assumes the environment is configured as described later.

To sample all traffic over the OVS bridge:

If VLAN push/pop is used, then all destinations should have the same
VLAN ID and actions.

ovs-vsctl show
 09d8a574-9c39-465c-9f16-47d81c12f88a
 Bridge br-vxlan
 Port "enp4s0f0_1"

 Interface "enp4s0f0_1"

 Port "vxlan0"

 Interface "vxlan0"

 type: vxlan
 options: {key="100",
remote_ip="192.168.1.14"}
 Port "enp4s0f0_0"

 Interface "enp4s0f0_0"

 Port "enp4s0f0_2"

 Interface "enp4s0f0_2"

 Port br-vxlan
 Interface br-vxlan
 type: internal
 ovs_version: "2.14.1"

DOCA Services 262

Parameter Description

SFLOW_AGENT
Indicates that the sFlow agent should send traffic from
SFLOW_AGENT 's IP address

SFLOW_TARGE
T

Remote IP address of the sFlow collector

SFLOW_HEADE
R

Size of packet header to sample (in bytes)

SFLOW_SAMPL
ING

Sample rate

To clear the sFlow configuration:

To list the sFlow configuration:

sFlow using TC:

ovs-vsctl -- --id=@sflow create sflow agent=\"$SFLOW_AGENT\" \

target=\"$SFLOW_TARGET:$SFLOW_PORT\" \
 header=$SFLOW_HEADER \
 sampling=$SFLOW_SAMPLING
polling=10 \
 -- set bridge br-vxlan sflow=@sflow

ovs-vsctl clear bridge br-vxlan sflow

ovs-vsctl list sflow

Sample to VF

DOCA Services 263

Rate Limit

OVS-kernel supports offload of VF rate limit using OVS configuration and TC.

The following example sets the rate limit to the VF related to representor eth0 to
10Mb/s:

OVS:

TC:

tc filter add dev $rep parent ffff: protocol arp pref 1 \
flower \
dst_mac

e4:1d:2d:5d:25:35 \
src_mac

e4:1d:2d:5d:25:34 \
action sample

rate 10 group 5 trunc 96 \
action mirred

egress redirect dev $NIC

Note

A userspace application is needed to process the sampled packet
from the kernel. An example is available on Github.

ovs-vsctl set interface eth0 ingress_policing_rate=10000

https://github.com/Mellanox/libpsample

DOCA Services 264

Kernel Requirements

This kernel config should be enabled to support switchdev offload.

CONFIG_NET_ACT_CSUM – needed for action csum

CONFIG_NET_ACT_PEDIT – needed for header rewrite

CONFIG_NET_ACT_MIRRED – needed for basic forward

CONFIG_NET_ACT_CT – needed for CT (supported from kernel 5.6)

CONFIG_NET_ACT_VLAN – needed for action vlan push/pop

CONFIG_NET_ACT_GACT

CONFIG_NET_CLS_FLOWER

CONFIG_NET_CLS_ACT

CONFIG_NET_SWITCHDEV

CONFIG_NET_TC_SKB_EXT – needed for CT (supported from kernel 5.6)

CONFIG_NET_ACT_CT – needed for CT (supported from kernel 5.6)

CONFIG_NFT_FLOW_OFFLOAD

CONFIG_NET_ACT_TUNNEL_KEY

CONFIG_NF_FLOW_TABLE – needed for CT (supported from kernel 5.6)

CONFIG_SKB_EXTENSIONS – needed for CT (supported from kernel 5.6)

tc_filter add dev eth0 root prio 1 protocol ip matchall
skip_sw action police rate 10mbit burst 20k

DOCA Services 265

CONFIG_NET_CLS_MATCHALL

CONFIG_NET_ACT_POLICE

CONFIG_MLX5_ESWITCH

VF Metering

OVS-kernel supports offloading of VF metering (TX and RX) using sysfs. Metering of
number of packets per second (PPS) and bytes per second (BPS) is supported.

The following example sets Rx meter on VF 0 with value 10Mb/s BPS:

The following example sets Tx meter on VF 0 with value 1000 PPS:

echo 10000000 >
/sys/class/net/enp4s0f0/device/sriov/0/meters/rx/bps/rate
echo 65536 >
/sys/class/net/enp4s0f0/device/sriov/0/meters/rx/bps/burst

echo 1000 >
/sys/class/net/enp4s0f0/device/sriov/0/meters/tx/pps/rate
echo 100 >
/sys/class/net/enp4s0f0/device/sriov/0/meters/tx/pps/burst

Note

Both rate and burst must not be zero and burst may need to
be adjusted according to the requirements.

DOCA Services 266

The following counters can be used to query the number dropped packet/bytes:

Representor Metering

Traffic going to a representor device can be a result of a miss in the embedded switch
(eSwitch) FDB tables. This means that a packet which arrives from that representor into
the eSwitch has not matched against the existing rules in the hardware FDB tables and
must be forwarded to software to be handled there and is, therefore, forwarded to the
originating representor device driver.

cat
/sys/class/net/enp8s0f0/device/sriov/0/meters/rx/pps/packets_dropped
cat
/sys/class/net/enp8s0f0/device/sriov/0/meters/rx/pps/bytes_dropped
cat
/sys/class/net/enp8s0f0/device/sriov/0/meters/rx/bps/packets_dropped
cat
/sys/class/net/enp8s0f0/device/sriov/0/meters/rx/bps/bytes_dropped
cat
/sys/class/net/enp8s0f0/device/sriov/0/meters/tx/pps/packets_dropped
cat
/sys/class/net/enp8s0f0/device/sriov/0/meters/tx/pps/bytes_dropped
cat
/sys/class/net/enp8s0f0/device/sriov/0/meters/tx/bps/packets_dropped
cat
/sys/class/net/enp8s0f0/device/sriov/0/meters/tx/bps/bytes_dropped

Info

Metering for uplink and VF representors traffic is supported.

DOCA Services 267

The meter allows to configure the max rate [packets per second] and max burst [packets]
for traffic going to the representor driver. Any traffic exceeding values provided by the
user are dropped in hardware. There are statistics that show the number of dropped
packets.

The configuration of representor metering is done via miss_rl_cfg .

Full path of the miss_rl_cfg parameter:

/sys/class/net//rep_config/miss_rl_cfg

Usage:
echo "<rate> <burst>" > /sys/class/net//rep_config/miss_rl_cfg .

rate is the max rate of packets allowed for this representor (in packets/sec
units)

burst is the max burst size allowed for this representor (in packets units)

Both values must be specified. Both of their default values is 0, signifying
unlimited rate and burst.

To view the amount of packets and bytes dropped due to traffic exceeding the user-
provided rate and burst, two read-only sysfs for statistics are available:

/sys/class/net//rep_config/miss_rl_dropped_bytes – counts how many
FDB-miss bytes are dropped due to reaching the miss limits

/sys/class/net//rep_config/miss_rl_dropped_packets – counts how
many FDB-miss packets are dropped due to reaching the miss limits

OVS Metering

There are two types of meters, kpps (kilobits per second) and pktps (packets per second).
OVS-Kernel supports offloading both of them.

The following example is to offload a kpps meter.

1. Create OVS meter with a target rate:

DOCA Services 268

2. Delete the default rule:

3. Configure OpenFlow rules:

Here, the VF bandwidth on the receiving side is limited by the rate configured in step
1.

4. Run iperf server and be ready to receive UDP traffic. On the outer node, run iperf
client to send UDP traffic to this VF. After traffic starts, check the offloaded meter
rule:

To verify metering, iperf client should set the target bandwidth with a number which is
larger than the meter rate configured. Then it should apparent that packets are received
with the limited rate on the server side and the extra packets are dropped by hardware.

 ovs-ofctl -O OpenFlow13 add-meter ovs-sriov
meter=1,kbps,band=type=drop,rate=204800

 ovs-ofctl del-flows ovs-sriov

ovs-ofctl -O OpenFlow13 add-flow ovs-sriov
'ip,dl_dst=e4:11:22:33:44:50,actions= meter:1,output:enp4s0f0_0'

ovs-ofctl -O OpenFlow13 add-flow ovs-sriov
'ip,dl_src=e4:11:22:33:44:50,actions= output:enp4s0f0'

ovs-ofctl -O OpenFlow13 add-flow ovs-sriov 'arp,actions=normal'

ovs-appctl dpctl/dump-flows --names type=offloaded

recirc_id(0),in_port(enp4s0f0),eth(dst=e4:11:22:33:44:50),eth_typ
packets:11626587, bytes:17625889188, used:0.470s,
actions:meter(0),enp4s0f0_0

DOCA Services 269

Multiport eSwitch Mode

The multiport eswitch mode allows adding rules on a VF representor with an action
forwarding the packet to the physical port of the physical function. This can be used to
implement failover or forward packets based on external information such as the cost of
the route.

1. To configure multiport eswitch mode , the nvconig parameter
LAG_RESOURCE_ALLOCATION must be set.

2. After the driver loads, configure multiport eSwitch for each PF where enp8s0f0
and enp8s0f1 represent the netdevices for the PFs:

The mode becomes operational after entering switchdev mode on both PFs.

Rule example:

OVS-DPDK Hardware Offloads

echo multiport_esw >
/sys/class/net/enp8s0f0/compat/devlink/lag_port_select_mode
echo multiport_esw >
/sys/class/net/enp8s0f1/compat/devlink/lag_port_select_mode

tc filter add dev enp8s0f0_0 prot ip root flower dst_ip 7.7.7.7
action mirred egress redirect dev enp8s0f1

DOCA Services 270

OVS-DPDK Hardware Offloads Configuration

To configure OVS-DPDK HW offloads:

1. Unbind the VFs:

2. Change the e-switch mode from legacy to switchdev on the PF device (make sure all
VFs are unbound). This also creates the VF representor netdevices in the host OS.

To revert to SR-IOV legacy mode:

echo 0000:04:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:04:00.3 > /sys/bus/pci/drivers/mlx5_core/unbind

Note

VMs with attached VFs must be powered off to be able to
unbind the VFs.

echo switchdev > /sys/class/net/enp4s0f0/compat/devlink/mode

DOCA Services 271

3. Bind the VFs:

4. Run the OVS service:

5. Enable hardware offload (disabled by default):

6. Configure the DPDK whitelist:

echo legacy > /sys/class/net/enp4s0f0/compat/devlink/mode

Note

This command removes the VF representor netdevices.

echo 0000:04:00.2 > /sys/bus/pci/drivers/mlx5_core/bind
echo 0000:04:00.3 > /sys/bus/pci/drivers/mlx5_core/bind

systemctl start openvswitch

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-
init=true

ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-
extra="-a 0000:01:00.0,representor=[0],dv_flow_en=1,dv_esw_en=1,dv_xmeta_en=1"

DOCA Services 272

Where representor=[0-N] .

7. Restart the OVS service:

8. Create OVS-DPDK bridge:

9. Add PF to OVS:

10. Add representor to OVS:

systemctl restart openvswitch

Info

This step is required for the hardware offload changes to take
effect.

ovs-vsctl --no-wait add-br br0-ovs -- set bridge br0-ovs
datapath_type=netdev

ovs-vsctl add-port br0-ovs pf -- set Interface pf type=dpdk
options:dpdk-devargs=0000:88:00.0

ovs-vsctl add-port br0-ovs representor -- set Interface
representor type=dpdk options:dpdk-
devargs=0000:88:00.0,representor=[0]

DOCA Services 273

Where representor=[0-N] .

Offloading VXLAN Encapsulation/Decapsulation Actions

vSwitch in userspace requires an additional bridge. The purpose of this bridge is to allow
use of the kernel network stack for routing and ARP resolution.

The datapath must look up the routing table and ARP table to prepare the tunnel header
and transmit data to the output port.

Configuring VXLAN Encap/Decap Offloads

To configure OVS-DPDK VXLAN:

1. Create a br-phy bridge:

2. Attach PF interface to br-phy bridge:

Note

The configuration is done with:

PF on 0000:03:00.0 PCIe and MAC 98:03:9b:cc:21:e8

Local IP 56.56.67.1 – br-phy interface is configured to this IP

Remote IP 56.56.68.1

ovs-vsctl add-br br-phy -- set Bridge br-phy
datapath_type=netdev -- br-set-external-id br-phy bridge-id
br-phy -- set bridge br-phy fail-mode=standalone
other_config:hwaddr=98:03:9b:cc:21:e8

DOCA Services 274

3. Configure IP to the bridge:

4. Create a br-ovs bridge:

5. Attach representor to br-ovs:

6. Add a port for the VXLAN tunnel:

CT Offload

ovs-vsctl add-port br-phy p0 -- set Interface p0 type=dpdk
options:dpdk-devargs=0000:03:00.0

ip addr add 56.56.67.1/24 dev br-phy

ovs-vsctl add-br br-ovs -- set Bridge br-ovs
datapath_type=netdev -- br-set-external-id br-ovs bridge-id
br-ovs -- set bridge br-ovs fail-mode=standalone

ovs-vsctl add-port br-ovs pf0vf0 -- set Interface pf0vf0
type=dpdk options:dpdk-devargs=0000:03:00.0,representor=[0]

ovs-vsctl add-port ovs-sriov vxlan0 -- set interface vxlan0
type=vxlan options:local_ip=56.56.67.1
options:remote_ip=56.56.68.1 options:key=45 options:dst_port=4789

DOCA Services 275

CT enables stateful packet processing by keeping a record of currently open connections.
OVS flows using CT can be accelerated using advanced NICs by offloading established
connections.

To view offloaded connections, run:

SR-IOV VF LAG

To configure OVS-DPDK SR-IOV VF LAG:

1. Enable SR-IOV on the NICs:

2. Allocate the desired number of VFs per port:

3. Unbind all VFs:

4. Change both devices' mode to switchdev:

5. Create Linux bonding using kernel modules:

ovs-appctl dpctl/offload-stats-show

mlxconfig -d <PCI> set SRIOV_EN=1

echo $n > /sys/class/net/<net name>/device/sriov_numvfs

echo <VF PCI> >/sys/bus/pci/drivers/mlx5_core/unbind

devlink dev eswitch set pci/<PCI> mode switchdev

DOCA Services 276

6. Bring all PFs and VFs down:

7. Attach both PFs to the bond:

8. To use VF-LAG with OVS-DPDK, add the bond master (PF) to the bridge:

9. Add representor $N of PF0 or PF1 to a bridge:

modprobe bonding mode=<desired mode>

Info

Other bonding parameters can be added here. The supported
bond modes are: Active-backup, XOR and LACP.

ip link set <PF/VF> down

ip link set <PF> master bond0

ovs-vsctl add-port br-phy p0 -- set Interface p0 type=dpdk
options:dpdk-devargs=0000:03:00.0 options:dpdk-lsc-
interrupt=true

ovs-vsctl add-port br-phy rep$N -- set Interface rep$N
type=dpdk options:dpdk-devargs=<PF0 PCI>,representor=pf0vf$N

DOCA Services 277

Or:

VirtIO Acceleration Through VF Relay: Software and Hardware vDPA

In user space, there are two main approaches for communicating with a guest (VM), either
through SR-IOV or virtio.

PHY ports (SR-IOV) allow working with port representor, which is attached to the OVS and
a matching VF is given with pass-through to the guest. HW rules can process packets
from up-link and direct them to the VF without going through SW (OVS). Therefore, using
SR-IOV achieves the best performance.

However, SR-IOV architecture requires the guest to use a driver specific to the underlying
HW. Specific HW driver has two main drawbacks:

ovs-vsctl add-port br-phy rep$N -- set Interface rep$N
type=dpdk options:dpdk-devargs=<PF0 PCI>,representor=pf1vf$N

Note

Hardware vDPA is enabled by default. In case your hardware does not
support vDPA, the driver will fall back to Software vDPA.

To check which vDPA mode is activated on your driver, run:
ovs-ofctl -O OpenFlow14 dump-ports br0-ovs and look for

hw-mode flag.

Note

This feature has not been accepted to the OVS-DPDK upstream yet,
making its API subject to change.

DOCA Services 278

Breaks virtualization in some sense (guest is aware of the HW). It can also limit the
type of images supported.

Gives less natural support for live migration.

Using a virtio port solves both problems, however, it reduces performance and causes loss
of some functionalities, such as, for some HW offloads, working directly with virtio. The
netdev type dpdkvdpa solves this conflict as it is similar to the regular DPDK netdev yet
introduces several additional functionalities.

dpdkvdpa translates between the PHY port to the virtio port. It takes packets from the Rx
queue and sends them to the suitable Tx queue, and allows transfer of packets from the
virtio guest (VM) to a VF and vice-versa, benefitting from both SR-IOV and virtio.

To add a vDPA port:

vDPA Configuration in OVS-DPDK Mode

Prior to configuring vDPA in OVS-DPDK mode, perform the following:

1. Generate the VF:

ovs-vsctl add-port br0 vdpa0 -- set Interface vdpa0 type=dpdkvdpa
\
options:vdpa-socket-path=<sock path> \
options:vdpa-accelerator-devargs=<vf pci id> \
options:dpdk-devargs=<pf pci id>,representor=[id] \
options: vdpa-max-queues =<num queues> \
options: vdpa-sw=<true/false>

Note

vdpa-max-queues is an optional field. When the user wants to
configure 32 vDPA ports, the maximum queues number is limited to
8.

DOCA Services 279

2. Unbind each VF:

3. Switch to switchdev mode:

4. Bind each VF:

5. Initialize OVS:

To configure vDPA in OVS-DPDK mode:

1. OVS configuration:

echo 0 > /sys/class/net/enp175s0f0/device/sriov_numvfs
echo 4 > /sys/class/net/enp175s0f0/device/sriov_numvfs

echo <pci> > /sys/bus/pci/drivers/mlx5_core/unbind

echo switchdev >> /sys/class/net/enp175s0f0/compat/devlink/mode

echo <pci> > /sys/bus/pci/drivers/mlx5_core/bind

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-
init=true

ovs-vsctl --no-wait set Open_vSwitch . other_config:hw-
offload=true

DOCA Services 280

2. Create OVS-DPDK bridge:

3. Create vDPA port as part of the OVS-DPDK bridge:

To configure vDPA in OVS-DPDK mode on BlueField DPUs, set the bridge with the
software or hardware vDPA port:

To create the OVS-DPDK bridge on the Arm side:

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-
extra="-a 0000:01:00.0,representor=[0],dv_flow_en=1,dv_esw_en=1,dv_xmeta_en=1"
/usr/share/openvswitch/scripts/ovs-ctl restart

ovs-vsctl add-br br0-ovs -- set bridge br0-ovs
datapath_type=netdev
ovs-vsctl add-port br0-ovs pf -- set Interface pf type=dpdk
options:dpdk-devargs=0000:01:00.0

ovs-vsctl add-port br0-ovs vdpa0 -- set Interface vdpa0
type=dpdkvdpa options:vdpa-socket-path=/var/run/virtio-
forwarder/sock0 options:vdpa-accelerator-devargs=0000:01:00.2
options:dpdk-devargs=0000:01:00.0,representor=[0] options:
vdpa-max-queues=8

ovs-vsctl add-br br0-ovs -- set bridge br0-ovs
datapath_type=netdev
ovs-vsctl add-port br0-ovs pf -- set Interface pf type=dpdk
options:dpdk-devargs=0000:af:00.0

DOCA Services 281

To create the OVS-DPDK bridge on the host side:

Software vDPA Configuration in OVS-Kernel Mode

Software vDPA can also be used in configurations where hardware offload is done through
TC and not DPDK.

1. OVS configuration:

2. Create OVS-DPDK bridge:

ovs-vsctl add-port br0-ovs rep-- set Interface rep type=dpdk
options:dpdk-devargs=0000:af:00.0,representor=[0]

ovs-vsctl add-br br1-ovs -- set bridge br1-ovs
datapath_type=netdev protocols=OpenFlow14
ovs-vsctl add-port br0-ovs vdpa0 -- set Interface vdpa0
type=dpdkvdpa options:vdpa-socket-path=/var/run/virtio-
forwarder/sock0 options:vdpa-accelerator-devargs=0000:af:00.2

Note

To configure SW vDPA, add options:vdpa-sw=true to the
command.

ovs-vsctl set Open_vSwitch . other_config:dpdk-extra="-a
0000:01:00.0,representor=[0],dv_flow_en=1,dv_esw_en=0,idv_xmeta_en=0,isolated_mode=1"

/usr/share/openvswitch/scripts/ovs-ctl restart

DOCA Services 282

3. Create vDPA port as part of the OVS-DPDK bridge:

4. Create Kernel bridge:

5. Add representors to Kernel bridge:

Large MTU/Jumbo Frame Configuration

To configure MTU/jumbo frames:

1. Verify that the Kernel version on the VM is 4.14 or above:

ovs-vsctl add-br br0-ovs -- set bridge br0-ovs
datapath_type=netdev

ovs-vsctl add-port br0-ovs vdpa0 -- set Interface vdpa0
type=dpdkvdpa options:vdpa-socket-path=/var/run/virtio-
forwarder/sock0 options:vdpa-accelerator-devargs=0000:01:00.2
options:dpdk-devargs=0000:01:00.0,representor=[0] options:
vdpa-max-queues=8

ovs-vsctl add-br br-kernel

ovs-vsctl add-port br-kernel enp1s0f0_0
ovs-vsctl add-port br-kernel enp1s0f0

DOCA Services 283

2. Set the MTU on both physical interfaces in the host:

3. Send a large size packet and verify that it is sent and received correctly:

4. Enable host_mtu in XML and add the following values:

Example:

cat /etc/redhat-release

ifconfig ens4f0 mtu 9216

tcpdump -i ens4f0 -nev icmp &
ping 11.100.126.1 -s 9188 -M do -c 1

host_mtu=9216,csum=on,guest_csum=on,host_tso4=on,host_tso6=on

<qemu:commandline>
<qemu:arg value='-chardev'/>
<qemu:arg value='socket,id=charnet1,path=/tmp/sock0,server'/>
<qemu:arg value='-netdev'/>
<qemu:arg value='vhost-user,chardev=charnet1,queues=16,id=hostnet1'/>
<qemu:arg value='-device'/>
<qemu:arg value='virtio-net-
pci,mq=on,vectors=34,netdev=hostnet1,id=net1,mac=00:21:21:24:02:01,bus=pci.0,addr=0xC,page-
per-

vq=on,rx_queue_size=1024,tx_queue_size=1024,host_mtu=9216,csum=on,guest_csum=on,host_tso4=o

DOCA Services 284

5. Add the mtu_request=9216 option to the OVS ports inside the container and
restart the OVS:

Or:

6. Start the VM and configure the MTU on the VM:

E2E Cache

</qemu:commandline>

ovs-vsctl add-port br0-ovs pf -- set Interface pf type=dpdk
options:dpdk-devargs=0000:c4:00.0 mtu_request=9216

ovs-vsctl add-port br0-ovs vdpa0 -- set Interface vdpa0
type=dpdkvdpa options:vdpa-socket-path=/tmp/sock0
options:vdpa-accelerator-devargs=0000:c4:00.2 options:dpdk-
devargs=0000:c4:00.0,representor=[0] mtu_request=9216

/usr/share/openvswitch/scripts/ovs-ctl restart

ifconfig eth0 11.100.124.2/16 up
ifconfig eth0 mtu 9216

ping 11.100.126.1 -s 9188 -M do -c1

Note

DOCA Services 285

OVS offload rules are based on a multi-table architecture. E2E cache enables merging the
multi-table flow matches and actions into one joint flow.

This improves CT performance by using a single-table when an exact match is detected.

To set the E2E cache size (default is 4k):

To enable E2E cache (disabled by default):

To run E2E cache statistics:

To run E2E cache flows:

Geneve Encapsulation/Decapsulation

Geneve tunneling offload support includes matching on extension header.

This feature is supported at beta level.

ovs-vsctl set open_vswitch . other_config:e2e-size=<size>
systemctl restart openvswitch

ovs-vsctl set open_vswitch . other_config:e2e-enable=true

systemctl restart openvswitch

ovs-appctl dpctl/dump-e2e-stats

ovs-appctl dpctl/dump-e2e-flows

DOCA Services 286

To configure OVS-DPDK Geneve encap/decap:

1. Create a br-phy bridge:

2. Attach PF interface to br-phy bridge:

3. Configure IP to the bridge:

4. Create a br-int bridge:

5. Attach representor to br-int:

6. Add a port for the Geneve tunnel:

ovs-vsctl --may-exist add-br br-phy -- set Bridge br-phy
datapath_type=netdev -- br-set-external-id br-phy bridge-id
br-phy -- set bridge br-phy fail-mode=standalone

ovs-vsctl add-port br-phy pf -- set Interface pf type=dpdk
options:dpdk-devargs=<PF PCI>

ifconfig br-phy <$local_ip_1> up

ovs-vsctl --may-exist add-br br-int -- set Bridge br-int
datapath_type=netdev -- br-set-external-id br-int bridge-id
br-int -- set bridge br-int fail-mode=standalone

ovs-vsctl add-port br-int rep$x -- set Interface rep$x
type=dpdk options:dpdk-devargs=<PF PCI>,representor=[$x]

DOCA Services 287

Parallel Offloads

OVS-DPDK supports parallel insertion and deletion of offloads (flow and CT). While
multiple threads are supported (only one is used by default).

To configure multiple threads:

sFlow

sFlow allows monitoring traffic sent between two VMs on the same host using an sFlow
collector.

To sample all traffic over the OVS bridge, run the following:

ovs-vsctl add-port br-int geneve0 -- set interface geneve0
type=geneve options:key=<VNI> options:remote_ip=
<$remote_ip_1> options:local_ip=<$local_ip_1>

ovs-vsctl set Open_vSwitch . other_config:n-offload-threads=3

systemctl restart openvswitch

Note

Refer to the OVS user manual for more information.

ovs-vsctl -- --id=@sflow create sflow agent=\"$SFLOW_AGENT\" \

target=\"$SFLOW_TARGET:$SFLOW_HEADER\" \

https://docs.openvswitch.org/en/latest/faq/configuration/

DOCA Services 288

Parameter Description

SFLOW_AGENT
Indicates that the sFlow agent should send traffic from
SFLOW_AGENT 's IP address

SFLOW_TARGE
T

Remote IP address of the sFlow collector

SFLOW_PORT Remote IP destination port of the sFlow collector

SFLOW_HEADE
R

Size of packet header to sample (in bytes)

SFLOW_SAMPL
ING

Sample rate

To clear the sFlow configuration, run:

CT CT NAT

To enable ct-ct-nat offloads in OVS-DPDK (disabled by default), run:

 header=$SFLOW_HEADER \
 sampling=$SFLOW_SAMPLING
polling=10 \
 -- set bridge sflow=@sflow

ovs-vsctl clear bridge br-vxlan mirrors

Note

Currently sFlow for OVS-DPDK is supported without CT.

DOCA Services 289

If disabled, ct-ct-nat configurations are not fully offloaded, improving connection
offloading rate for other cases (ct and ct-nat).

If enabled, ct-ct-nat configurations are fully offloaded but ct and ct-nat offloading would
be slower to create.

OpenFlow Meters (OpenFlow13+)

OpenFlow meters in OVS are implemented according to RFC 2697 (Single Rate Three
Color Marker—srTCM).

The srTCM meters an IP packet stream and marks its packets either green, yellow, or
red. The color is decided on a Committed Information Rate (CIR) and two associated
burst sizes, Committed Burst Size (CBS), and Excess Burst Size (EBS).

A packet is marked green if it does not exceed the CBS, yellow if it exceeds the CBS
but not the EBS, and red otherwise.

The volume of green packets should never be smaller than the CIR.

To configure a meter in OVS:

1. Create a meter over a certain bridge, run:

Parameters:

ovs-vsctl set open_vswitch . other_config:ct-action-on-nat-
conns=true

ovs-ofctl -O openflow13 add-meter $bridge
meter=$id,$pktps/$kbps,band=type=drop,rate=$rate,
[burst,burst_size=$burst_size]

DOCA Services 290

Para
met
er

Description

br
id
ge

Name of the bridge on which the meter should be applied.

id Unique meter ID (32 bits) to be used as an identifier for the meter.

pk
tp
s

/
kb
ps

Indication if the meter should work according to packets or kilobits per
second.

ra
te Rate of pktps / kbps of allowed data transmission.

bu
rs
t

If set, enables burst support for meter bands through the burst_size
parameter.

bu
rs
t_
si
ze

If burst is specified for the meter entry, configures the maximum burst
allowed for the band in kilobits/packets, depending on whether kbps or

pktps has been specified. If unspecified, the switch is free to select some
reasonable value depending on its configuration. Currently, if burst is not
specified, the burst_size parameter is set the same as rate .

2. Add the meter to a certain OpenFlow rule. For example:

3. View the meter statistics:

ovs-ofctl -O openflow13 add-flow $bridge
"table=0,actions=meter:$id,normal"

ovs-ofctl -O openflow13 meter-stats $bridge meter=$id

DOCA Services 291

4. For more information, refer to official OVS documentation.

OVS-DOCA Hardware Offloads

OVS-DOCA is designed on top of NVIDIA's networking API to preserve the same
OpenFlow, CLI, and data interfaces (e.g., vdpa, VF passthrough), and northbound API as
OVS-DPDK and OVS-Kernel. While all OVS flavors make use of flow offloads for hardware
acceleration, due to its architecture and use of DOCA libraries, the OVS-DOCA mode
provides the most efficient performance and feature set among them, making the most
out of NVIDA NICs and DPUs.

The following subsections provide the necessary steps to launch/deploy OVS DOCA.

Configuring OVS-DOCA

To configure OVS DOCA HW offloads:

1. Unbind the VFs:

echo 0000:04:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:04:00.3 > /sys/bus/pci/drivers/mlx5_core/unbind

Note

http://www.openvswitch.org/support/dist-docs/ovs-ofctl.8.txt

DOCA Services 292

2. Change the e-switch mode from legacy to switchdev on the PF device (make
sure all VFs are unbound):

To revert to SR-IOV legacy mode:

3. Bind the VFs:

4. Configure huge pages:

VMs with attached VFs must be powered off to be able to
unbind the VFs.

echo switchdev > /sys/class/net/enp4s0f0/compat/devlink/mode

Note

This command also creates the VF representor netdevices in the
host OS.

echo legacy > /sys/class/net/enp4s0f0/compat/devlink/mode

echo 0000:04:00.2 > /sys/bus/pci/drivers/mlx5_core/bind
echo 0000:04:00.3 > /sys/bus/pci/drivers/mlx5_core/bind

mkdir -p /hugepages
mount -t hugetlbfs hugetlbfs /hugepages

DOCA Services 293

5. Run the Open vSwitch service:

6. Enable DOCA mode and hardware offload (disabled by default):

7. Restart the Open vSwitch service.

8. Create OVS-DOCA bridge:

echo 4096 >
/sys/devices/system/node/node0/hugepages/hugepages-
2048kB/nr_hugepages

systemctl start openvswitch

ovs-vsctl --no-wait set Open_vSwitch . other_config:doca-
init=true
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

systemctl restart openvswitch

Info

This step is required for HW offload changes to take effect.

ovs-vsctl --no-wait add-br br0-ovs -- set bridge br0-ovs
datapath_type=netdev

DOCA Services 294

9. Add PF to OVS:

10. Add representor to OVS:

11. Optional configuration:

1. To set port MTU, run:

ovs-vsctl add-port br0-ovs pf -- set Interface pf type=dpdk
options:dpdk-devargs=0000:88:00.0,dv_flow_en=2,dv_xmeta_en=4

Info

OVS-DOCA uses DPDK ports and configuration. Note the
different dpdk-devargs parameters.

ovs-vsctl add-port br0-ovs representor -- set Interface
representor type=dpdk options:dpdk-
devargs=0000:88:00.0,representor=[<vf-
number>],dv_flow_en=2,dv_xmeta_en=4

Note

Note that <vf-number> must be replaced by the number of
the VF.

DOCA Services 295

2. To set VF/SF MAC, run:

Notable Differences Between OVS-DPDK and OVS-DOCA

OVS-DOCA shares most of its structure with OVS-DPDK. To benefit from the DOCA
offload design, some of the behavior of userland datapath and ports are however
modified.

Eswitch Dependency

ovs-vsctl set interface pf mtu_request=9000

Note

OVS restart is required for changes to take effect.

ovs-vsctl add-port br0-ovs representor -- set Interface
representor type=dpdk options:dpdk-
devargs=0000:88:00.0,representor=[<vf-
number>],dv_flow_en=2,dv_xmeta_en=4 options:dpdk-vf-
mac=00:11:22:33:44:55

Note

Unbinding and rebinding the VFs/SFs is required for the
change to take effect.

DOCA Services 296

Configured in switchdev mode, the physical port and all supported functions share a

single general domain to execute the offloaded flows, the eswitch .

All ports on the same eswitch are dependent on its physical function. If this main physical
function is deactivated (e.g., removed from OVS or its link set down), dependent ports are
disabled as well.

Pre-allocated Offload Tables

To offer the highest insertion speed, DOCA offloads pre-allocate offload structures
(entries and containers).

When starting the vSwitch daemon, offloads are thus configured with sensible defaults. If
different numbers of offloads are required, configuration entries specific to OVS-DOCA
are available and are described in the next section.

Unsupported CT-CT-NAT

The special ct-ct-nat mode that can be configured in OVS-kernel and OVS-DPDK is not
supported by OVS-DOCA.

OVS-DOCA Specific vSwitch Configuration

The following configuration is particularly useful or specific to OVS-DOCA mode.

other_config

Info

The full list of OVS vSwitch configuration is documented in
man ovs-vswitchd.conf.db .

DOCA Services 297

The following table provides other_config configurations which are global to the
vSwitch (non-exhaustive list, check manpage for more):

Configuration Description

other_config
:doca-init

Optional string, either true or false
Set this value to true to enable DOCA Flow HW offload
The default value is false. Changing this value requires
restarting the daemon.
This is only relevant for userspace datapath

other_config
:hw-offload-
ct-size

Optional string, containing an integer, at least 0
Only for the DOCA offload provider on netdev datapath
Configure the usable amount of connection tracking (CT)
offload entries
The default value is 250000. Changing this value requires
restarting the daemon.
Setting a value of 0 disables CT offload
Changing this configuration affects the OVS memory usage as
CT tables are allocated on OVS start

other_config
:hw-offload-
ct-ipv6-
enabled

Optional string, either true or false
Only for the DOCA offload provider on netdev datapath
Set this value to true to enable IPv6 CT offload
The default value is false. Changing this value requires
restarting the daemon.
Changing this configuration affects the OVS memory usage as
CT tables are allocated on OVS start

other_config
:doca-
congestion-
threshold

Optional string, containing an integer, in range 30 to 90
The occupancy rate of DOCA offload structures that triggers a
resize, as a percentage
Default to 80, but only relevant if other_config:doca-init
is true. Changing this value requires restarting the daemon.

other_config
:ctl-pipe-
size

Optional string, containing an integer
The initial size of DOCA control pipes
Default to 0, which is DOCA's internal default value

other_config
:ctl-pipe-
infra-size

Optional string, containing an integer
The initial size of infrastructure DOCA control pipes: root, post-
hash, post-ct, post-meter, split, miss.

DOCA Services 298

Configuration Description

Default to 0, which fallbacks to
other_config:ctl-pipe-size

other_config
:pmd-quiet-
idle

Optional string, either true or false
Allow the PMD threads to go into quiescent mode when idling. If
no packets are received or waiting to be processed and sent,
enter a continuous quiescent period. End this period as soon as
a packet is received.
This option is disabled by default

other_config
:pmd-
maxsleep

Optional string, containing an integer, in range 0 to 10,000
Specifies the maximum sleep time in microseconds per iteration
for a PMD thread which has received zero or a small amount of
packets from the Rx queues it is polling.
The actual sleep time requested is based on the load of the Rx
queues that the PMD polls and may be less than the maximum
value
The default value is 0 microseconds, which means that the PMD
does not sleep regardless of the load from the Rx queues that it
polls
To avoid requesting very small sleeps (e.g., less than 10 µs) the
value is rounded up to the nearest 10 µs
The maximum value is 10000 microseconds.

other_config
:dpdk-max-
memzones

Optional string, containing an integer
Specifies the maximum number of memzones that can be
created in DPDK
The default is empty, keeping DPDK’s default. Changing this
value requires restarting the daemon.

netdev-dpdk

The following table provides netdev-dpdk configurations which only userland (DOCA or
DPDK) netdevs support (non-exhaustive list, check manpage for more):

DOCA Services 299

Configurati
on

Description

options:
iface-
name

Specifies the interface name of the port
Providing this option accelerates processing the port reconfiguration
by querying the sysfs to check if the interface exists before DPDK
attempts to probe the port

Offloading VXLAN Encapsulation/Decapsulation Actions

vSwitch in userspace rather than kernel-based Open vSwitch requires an additional
bridge. The purpose of this bridge is to allow use of the kernel network stack for routing
and ARP resolution.

The datapath must look up the routing table and ARP table to prepare the tunnel header
and transmit data to the output port.

VXLAN encapsulation/decapsulation offload configuration is done with:

PF on 0000:03:00.0 PCIe and MAC 98:03:9b:cc:21:e8

Local IP 56.56.67.1 – the br-phy interface is configured to this IP

Remote IP 56.56.68.1

To configure OVS DOCA VXLAN:

1. Create a br-phy bridge:

2. Attach PF interface to br-phy bridge:

ovs-vsctl add-br br-phy -- set Bridge br-phy
datapath_type=netdev -- br-set-external-id br-phy bridge-id
br-phy -- set bridge br-phy fail-mode=standalone
other_config:hwaddr=98:03:9b:cc:21:e8

DOCA Services 300

3. Configure IP to the bridge:

4. Create a br-ovs bridge:

5. Attach representor to br-ovs :

6. Add a port for the VXLAN tunnel:

ovs-vsctl add-port br-phy p0 -- set Interface p0 type=dpdk
options:dpdk-devargs=0000:03:00.0,dv_flow_en=2,dv_xmeta_en=4

ip addr add 56.56.67.1/24 dev br-phy

ovs-vsctl add-br br-ovs -- set Bridge br-ovs
datapath_type=netdev -- br-set-external-id br-ovs bridge-id
br-ovs -- set bridge br-ovs fail-mode=standalone

ovs-vsctl add-port br-ovs pf0vf0 -- set Interface pf0vf0
type=dpdk options:dpdk-devargs=0000:03:00.0,representor=
[0],dv_flow_en=2,dv_xmeta_en=4

ovs-vsctl add-port ovs-sriov vxlan0 -- set interface vxlan0
type=vxlan options:local_ip=56.56.67.1
options:remote_ip=56.56.68.1 options:key=45
options:dst_port=4789

DOCA Services 301

Offloading Connection Tracking

Connection tracking enables stateful packet processing by keeping a record of currently
open connections.

OVS flows utilizing connection tracking can be accelerated using advanced NICs by
offloading established connections.

To view offload statistics, run:

SR-IOV VF LAG

To configure OVS-DOCA SR-IOV VF LAG:

1. Enable SR-IOV on the NICs:

2. Allocate the desired number of VFs per port:

3. Unbind all VFs:

4. Change both NICs' mode to SwitchDev:

ovs-appctl dpctl/offload-stats-show

mlxconfig -d <PCI> set SRIOV_EN=1

echo $n > /sys/class/net/<net name>/device/sriov_numvfs

echo <VF PCI> >/sys/bus/pci/drivers/mlx5_core/unbind

DOCA Services 302

5. Create Linux bonding using kernel modules:

6. Bring all PFs and VFs down:

7. Attach both PFs to the bond:

8. Bring PFs and bond link up:

devlink dev eswitch set pci/<PCI> mode switchdev

modprobe bonding mode=<desired mode>

Note

Other bonding parameters can be added here. The supported
bond modes are Active-Backup, XOR, and LACP.

ip link set <PF/VF> down

ip link set <PF> master bond0

ip link set <PF0> up
ip link set <PF1> up
ip link set bond0 up

DOCA Services 303

9. To work with VF-LAG with OVS-DPDK, add the bond master (PF) to the bridge:

Add representor $N of PF0 or PF1 to a bridge:

Or:

Multiport eSwitch Mode

Multiport eswitch mode allows adding rules on a VF representor with an action,
forwarding the packet to the physical port of the physical function. This can be used to
implement failover or to forward packets based on external information such as the cost
of the route.

1. To configure multiport eswitch mode , the nvconig parameter
LAG_RESOURCE_ALLOCATION=1 must be set.

2. After the driver loads, and before moving to switchdev mode, configure multiport
eswitch for each PF where p0 and p1 represent the netdevices for the PFs:

ovs-vsctl add-port br-phy p0 -- set Interface p0 type=dpdk
options:dpdk-devargs=0000:03:00.0,dv_flow_en=2,dv_xmeta_en=4
options:dpdk-lsc-interrupt=true

ovs-vsctl add-port br-phy rep$N -- set Interface rep$N type=dpdk
options:dpdk-devargs=<PF0-
PCI>,representor=pf0vf$N,dv_flow_en=2,dv_xmeta_en=4

ovs-vsctl add-port br-phy rep$N -- set Interface rep$N type=dpdk
options:dpdk-devargs=<PF0-
PCI>,representor=pf1vf$N,dv_flow_en=2,dv_xmeta_en=4

DOCA Services 304

3. This mode can be activated by default in BlueField by adding the following line into
/etc/mellanox/mlnx-bf.conf :

While in this mode, the second port is not an eswitch manager, and should be add to OVS
using this command:

VFs for the second port can be added using this command:

devlink dev param set pci/0000:03:00.0 name esw_multiport value
1 cmode runtime
devlink dev param set pci/0000:03:00.1 name esw_multiport value
1 cmode runtime

Info

The mode becomes operational after entering switchdev mode
on both PFs.

ENABLE_ESWITCH_MULTIPORT="yes"

ovs-vsctl add-port br-phy p1 -- set interface p1 type=dpdk
options:dpdk-
devargs="0000:08:00.0,dv_xmeta_en=4,dv_flow_en=2,representor=pf1

ovs-vsctl add-port br-phy p1vf0 -- set interface p1 type=dpdk
options:dpdk-
devargs="0000:08:00.0,dv_xmeta_en=4,dv_flow_en=2,representor=pf1vf0

DOCA Services 305

Offloading Geneve Encapsulation/Decapsulation

Geneve tunneling offload support includes matching on extension header.

To configure OVS-DOCA Geneve encapsulation/decapsulation:

1. Create a br-phy bridge:

Note

OVS-DOCA Geneve option limitations:

Only 1 Geneve option is supported

Max option len is 7

To change the Geneve option currently being matched and
encapsulated, users must remove all ports or restart OVS and
configure the new option

Users must change firmware configuration to enable the flex
parser by running the following commands:

mst start
mlxconfig -d <mst device> s
FLEX_PARSER_PROFILE_ENABLE=8
mlxfwreset -d <mst device> r -y

ovs-vsctl --may-exist add-br br-phy -- set Bridge br-phy
datapath_type=netdev -- br-set-external-id br-phy bridge-id
br-phy -- set bridge br-phy fail-mode=standalone

DOCA Services 306

2. Attach a PF interface to br-phy bridge:

3. Configure an IP to the bridge:

4. Create a br-int bridge:

5. Attach a representor to br-int :

6. Add a port for the Geneve tunnel:

ovs-vsctl add-port br-phy pf -- set Interface pf type=dpdk
options:dpdk-devargs=<PF PCI>,dv_flow_en=2,dv_xmeta_en=4

ifconfig br-phy <$local_ip_1> up

ovs-vsctl --may-exist add-br br-int -- set Bridge br-int
datapath_type=netdev -- br-set-external-id br-int bridge-id
br-int -- set bridge br-int fail-mode=standalone

ovs-vsctl add-port br-int rep$x -- set Interface rep$x
type=dpdk options:dpdk-devargs=<PF PCI>,representor=
[$x],dv_flow_en=2,dv_xmeta_en=4

ovs-vsctl add-port br-int geneve0 -- set interface geneve0
type=geneve options:key=<VNI> options:remote_ip=
<$remote_ip_1> options:local_ip=<$local_ip_1>

DOCA Services 307

GRE Tunnel Offloads

To configure OVS-DOCA GRE encapsulation/decapsulation:

1. Create a br-phy bridge:

2. Attach a PF interface to br-phy bridge:

3. Configure an IP to the bridge:

4. Create a br-int bridge:

5. Attach a representor to br-int :

ovs-vsctl --may-exist add-br br-phy -- set Bridge br-phy
datapath_type=netdev -- br-set-external-id br-phy bridge-id
br-phy -- set bridge br-phy fail-mode=standalone

ovs-vsctl add-port br-phy pf -- set Interface pf type=dpdk
options:dpdk-devargs=<PF PCI>,dv_flow_en=2,dv_xmeta_en=4

ifconfig br-phy <$local_ip_1> up

ovs-vsctl --may-exist add-br br-int -- set Bridge br-int
datapath_type=netdev -- br-set-external-id br-int bridge-id
br-int -- set bridge br-int fail-mode=standalone

ovs-vsctl add-port br-int rep$x -- set Interface rep$x
type=dpdk options:dpdk-devargs=<PF PCI>,representor=

DOCA Services 308

6. Add a port for the Geneve tunnel:

DP-HASH Offloads

OVS supports group configuration. The "select" type executes one bucket in the group,
balancing across the buckets according to their weights. To select a bucket, for each live
bucket, OVS hashes flow data with the bucket ID and multiplies that by the bucket weight
to obtain a "score". The bucket with the highest score is selected.

For example:

ovs-ofctl add-group br-int 'group_id=1,type=select,bucket=
<port1>'

ovs-ofctl add-flow br-int in_port=<port0>,actions=group=1

Limitations:

Offloads are supported on IP traffic only (IPv4 or IPv6)

The hash calculation may be different for packets going into software vs. ones that
are offloaded

[$x],dv_flow_en=2,dv_xmeta_en=4

ovs-vsctl add-port br-int gre0 -- set interface gre0 type=gre
options:key=<VNI> options:remote_ip=<$remote_ip_1>
options:local_ip=<$local_ip_1>

Info

For more details, refer to the ovs-ofctl man.

https://www.man7.org/linux/man-pages/man8/ovs-ofctl.8.html

DOCA Services 309

Does not work concurrently with CT (i.e., configure hw-offload-ct-size="0"
beforehand)

OVS-DOCA Known Limitations

Only one insertion thread is supported (n-offload-threads=1)

Only 250K connection are offloadable by default (can be configured)

Only 8 CT zones are supported by CT offload

Offload of IPv6 tunnels are not supported

OVS-DOCA Debugging

Additional debugging information can be enabled in the vSwitch log file using the dbg
log level:

The listed topics are relevant to DOCA offload operations.

Coverage counters specific to the DOCA offload provider have been added. The following
command should be used to check them:

 (
 topics='netdev|ofproto|ofp|odp|doca'

 IFS=$'\n'; for topic in $(ovs-appctl vlog/list | grep -E "$topics"
| cut -d' ' -f1)
 do

 printf "$topic:file:dbg "

 done

) | xargs ovs-appctl vlog/set

ovs-appctl coverage/show # Print the current non-zero coverage

DOCA Services 310

The following table provides the meaning behind these DOCA-specific counters:

Counter Description

doca_async_qu
eue_full

The asynchronous offload insertion queue was full while the
daemon attempted to insert a new offload.
The queue will have been flushed and insertion attempted again.
This is not a fatal error but is the sign of a slowed down hardware.

doca_async_qu
eue_blocked

The asynchronous offload insertion queue has remained full even
after several attempts to flush its currently enqueued requests.
While not a fatal error, it should never happen during normal offload
operations and should be considered a bug.

doca_async_ad
d_failed

An asynchronous insertion failed specifically due to its
asynchronous nature. This is not expected to happen and should be
considered a bug.

doca_pipe_res
ize

The number of time a DOCA pipe has been resized. This is normal
and expected as DOCA pipes receives more entries.

doca_pipe_res
ize_over_10_m
s

A DOCA pipe resize took longer than 10ms to complete. It can
happen infrequently.
If a sudden drop in insertion rate is measured, this counter could
help identify the root cause.

OVS Metrics

OVS exposes Prometheus metrics through its control socket (experimental feature).
These metrics can be accessed using the command:

A terminal dashboard is also installed with OVS, ovs-metrics . This script is dependent

on the OVS Python API (package python3-openvswitch). Its default mode currently
watches over a set of offload-related metrics.

counters

ovs-appctl metrics/show

DOCA Services 311

OVS Inside the DPU

Verifying Host Connection on Linux

When the DPU is connected to another DPU on another machine, manually assign IP
addresses with the same subnet to both ends of the connection.

1. Assuming the link is connected to p3p1 on the other host, run:

2. On the host which the DPU is connected to, run:

3. Have one ping the other. This is an example of the DPU pinging the host:

Verifying Connection from Host to BlueField

There are two SFs configured on the BlueFIeld-2 device, enp3s0f0s0 and enp3s0f1s0 ,
and their representors are part of the built-in bridge. These interfaces will get IP
addresses from the DHCP server if it is present. Otherwise it is possible to configure IP
address from the host. It is possible to access BlueField via the SF netdev interfaces.

For example:

1. Verify the default OVS configuration. Run:

$ ifconfig p3p1 192.168.200.1/24 up

$ ifconfig p4p2 192.168.200.2/24 up

$ ping 192.168.200.1

DOCA Services 312

2. Verify whether the SF netdev received an IP address from the DHCP server. If not,
assign a static IP. Run:

ovs-vsctl show
5668f9a6-6b93-49cf-a72a-14fd64b4c82b
 Bridge ovsbr1
 Port pf0hpf
 Interface pf0hpf
 Port ovsbr1
 Interface ovsbr1
 type: internal
 Port p0
 Interface p0
 Port en3f0pf0sf0
 Interface en3f0pf0sf0
 Bridge ovsbr2
 Port en3f1pf1sf0
 Interface en3f1pf1sf0
 Port ovsbr2
 Interface ovsbr2
 type: internal
 Port pf1hpf
 Interface pf1hpf
 Port p1
 Interface p1
 ovs_version: "2.14.1"

ifconfig enp3s0f0s0
enp3s0f0s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu
1500
 inet 192.168.200.125 netmask 255.255.255.0
broadcast 192.168.200.255

DOCA Services 313

3. Verify the connection of the configured IP address. Run:

Verifying Host Connection on Windows

Set IP address on the Windows side for the RShim or Physical network adapter, please run
the following command in Command Prompt:

 inet6 fe80::8e:bcff:fe36:19bc prefixlen 64 scopeid
0x20<link>
 ether 02:8e:bc:36:19:bc txqueuelen 1000 (Ethernet)
 RX packets 3730 bytes 1217558 (1.1 MiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 22 bytes 2220 (2.1 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0
collisions 0

ping 192.168.200.25 -c 5
PING 192.168.200.25 (192.168.200.25) 56(84) bytes of data.
64 bytes from 192.168.200.25: icmp_seq=1 ttl=64 time=0.228 ms
64 bytes from 192.168.200.25: icmp_seq=2 ttl=64 time=0.175 ms
64 bytes from 192.168.200.25: icmp_seq=3 ttl=64 time=0.232 ms
64 bytes from 192.168.200.25: icmp_seq=4 ttl=64 time=0.174 ms
64 bytes from 192.168.200.25: icmp_seq=5 ttl=64 time=0.168 ms

--- 192.168.200.25 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 91ms
rtt min/avg/max/mdev = 0.168/0.195/0.232/0.031 ms

PS C:\Users\Administrator> New-NetIPAddress -InterfaceAlias
"Ethernet 16" -IPAddress "192.168.100.1" -PrefixLength 22

DOCA Services 314

To get the interface name, please run the following command in Command Prompt:

Output should give us the interface name that matches the description (e.g. NVIDIA
BlueField Management Network Adapter).

Once IP address is set, Have one ping the other.

Notice

This document is provided for information purposes only and shall not be regarded as a
warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no
representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in
this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code,
or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements,
and any other changes to this document, at any time without notice.

Customer should obtain the latest
relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of

PS C:\Users\Administrator> Get-NetAdapter

Ethernet 2 NVIDIA ConnectX-4 Lx Ethernet
Adapter 6 Not Present 24-8A-07-0D-E8-1D
Ethernet 6 NVIDIA ConnectX-4 Lx Ethernet
Ad...#2 23 Not Present 24-8A-07-0D-E8-1C
Ethernet 16 NVIDIA BlueField Management
Netw...#2 15 Up CA-FE-01-CA-FE-02

C:\Windows\system32>ping 192.168.100.2

Pinging 192.168.100.2 with 32 bytes of data:
Reply from 192.168.100.2: bytes=32 time=148ms TTL=64
Reply from 192.168.100.2: bytes=32 time=152ms TTL=64
Reply from 192.168.100.2: bytes=32 time=158ms TTL=64
Reply from 192.168.100.2: bytes=32 time=158ms TTL=64

DOCA Services 315

order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives
of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or
warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where
failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property
or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no
representation or warranty that products based on this document will be suitable for any specified use. Testing of all
parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and
determine the applicability of any information contained in this document, ensure the product is suitable and fit for the
application planned by customer, and perform the necessary testing for the application in order to avoid a default of the
application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this
document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or
attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer
product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright,
or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property
rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in
advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS
DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of
Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are
trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

© Copyright 2024, NVIDIA. PDF Generated on 01/15/2025

	NVIDIA BlueField DPU Container Deployment Guide
	NVIDIA DOCA BlueMan Service Guide
	NVIDIA DOCA Firefly Service Guide
	NVIDIA DOCA Flow Inspector Service Guide
	NVIDIA DOCA HBN Service Guide
	HBN Service Release Notes

	NVIDIA DOCA Telemetry Service Guide
	OpenvSwitch Offload

