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DOCA provides libraries for networking and data processing programmability that
leverage NVIDIA® BlueField® DPU and NVIDIA® ConnectX® NIC hardware accelerators.

DOCA software framework is built on top of DOCA Core, which provides a uni�ed software
framework for DOCA libraries, to form a processing pipeline or work�ow build of one or
many DOCA libraries.

Device Subsystem

The DOCA SDK allows applications to o�oad resource intensive tasks to HW, such as
encryption, and compression.

The SDK also allows applications to o�oad network related tasks, such as packet
acquisition, and RDMA send.

As such DPUs/NICs provide dedicated HW processing units for executing such tasks.

The DOCA device subsystem provides an abstraction of the HW processing units referred
to as device.

DOCA Device subsystem provides means to:

Discover available hardware acceleration units provided by DPUs/NICs

Query capabilities and properties of available hardware acceleration units

Open device to enable libraries to allocate and share resources necessary for HW
acceleration

On a given system there can be multiple available devices. An application can choose a
device based on the following characteristics:

Topology - E.g., PCIe address

Capabilities - E.g., Encryption support

DOCA Core supports two DOCA Device types:

Local device – this is an actual device exposed in the local system (DPU or host) and
can perform DOCA library processing jobs. This can be a PCI physical function (PF)
virtual function (VF) or scalable function (SF)
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Representor device – this is a representation of a local device. The represented local
device is usually on the host (except for SFs) and the representor is always on the
DPU side (a proxy on the DPU for the host-side device).

The following �gure provides an example of host local devices with representors on DPU:

The diagram shows a DPU (on the right side of the �gure) connected to a host (on the
left). The host has physical function PF0 with a child virtual function VF0.

The DPU side has a representor-device per each host function in a 1-to-1 relation (e.g.,
hpf0  is the representor device for the host's PF0 device and so on) as well as a

representor for each SF function, such that both the SF and its representor reside in the
DPU.

For more details about DOCA Device subsystem, see section "DOCA Device".

Memory Management Subsystem

Note

The diagram shows typical topology when using a DPU in DPU mode
as described in NVIDIA BlueField DPU Modes of Operation .

https://docs.nvidia.compages/createpage.action?spaceKey=doca253&title=DOCA+Core&linkCreation=true&fromPageId=3483841423
https://confluence.nvidia.com/display/doca250/NVIDIA+BlueField+DPU+Modes+of+Operation
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HW processing tasks require data bu�ers as inputs and/or outputs to processing
operations. The application is responsible to provide the input data and/or read the output
data.

In order to achieve maximum performance, the SDK uses zero-copy technology to pass
data to the HW. To allow zero-copy, the application must register the memory that will
hold data bu�ers beforehand.

The memory management subsystem provides a means to register memory and manage
allocation of data bu�ers on registered memory.

Memory registration:

De�nes user application memory range that will be used to hold data bu�ers.

Allows one or more devices to access the memory range.

De�nes the access permission (E.g., read only).

Data bu�er allocation management:

Allows allocating data bu�ers that cover subranges within the registered memory.

Allows memory pool semantics over registered memory.

DOCA memory has the following main components:

doca_buf  – Describes a data bu�er, and is used as input/output to various HW
processing tasks within DOCA libraries.

doca_mmap  – Describes registered memory, that is accessible by devices, with a set

of permissions. doca_buf  is a segment in the memory range represented by

doca_mmap .

doca_buf_inventory  – pool of doca_buf  with the same characteristics (see
more in sections "DOCA Core Bu�ers" and "DOCA Core Inventories")

The following diagram shows the various modules within the DOCA memory subsystem:

https://docs.nvidia.compages/createpage.action?spaceKey=doca253&title=DOCA+Core&linkCreation=true&fromPageId=3483841423
https://docs.nvidia.compages/createpage.action?spaceKey=doca253&title=DOCA+Core&linkCreation=true&fromPageId=3483841423
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The diagram shows a doca_buf_inventory  containing 2 doca_buf s. Each

doca_buf  points to a portion of the memory bu�er which is part of a doca_mmap . The
mmap is populated with one continuous memory range and is registered with Two DOCA
Devices, dev1 and dev2.

For more details about DOCA Memory management subsystem, see section "DOCA
Memory Subsystem".

Execution Model

DOCA SDK introduces libraries that utilize HW processing units. Each library de�nes
dedicated APIs for achieving a speci�c processing task (E.g., Encryption). The library
abstracts all the low level details related to operation of the HW, and instead lets the
application focus on what matters. This type of library is referred to as a context.

Since a context utilizes a HW processing unit, it needs a device in order to operate. This
device will also determine which bu�ers are accessible by that context.

Contexts provide HW processing operation APIs in the form of tasks and events.

Task:

Application prepares the task arguments.

https://docs.nvidia.compages/createpage.action?spaceKey=doca253&title=DOCA+Core&linkCreation=true&fromPageId=3483841423
https://docs.nvidia.compages/createpage.action?spaceKey=doca253&title=DOCA+Core&linkCreation=true&fromPageId=3483841423
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Application submits the task, this will issue a request to the relevant HW processing
unit.

Application receives a completion in the form of a callback once the HW processing
is completed.

Event:

Application registers to the event. This will inform HW to report whenever the event
occurs.

Application receives a completion in form of a callback every time HW identi�es that
the event occurred.

Since HW processing is asynchronous in nature. DOCA provides an object that allows
waiting on processing operations (tasks & events). This object is referred to as Progress
Engine or PE.

The PE allows waiting on completions using the following methods:

Busy waiting/polling mode - in this case the application will repeatedly invoke a
method that checks if some completion has occurred.

Noti�cation-driven mode - in this case the application can use OS primitives (E.g.,
linux event fd) to notify thread whenever some completion has occurred.

Once completion has occurred, whether caused by Task or Event, the relevant callback will
be invoked as part of PE method.

A single PE instance allows waiting on multiple Tasks/Events from di�erent contexts. As
such it is possible for application to utilize a single PE per thread.

The following diagram shows how a combination of various DOCA modules combine
DOCA cross-library processing runtime.
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The diagram shows 3 contexts that are utilizing the same device, each context has some
tasks/events that have been submitted/registered by application. All 3 contexts are
connected to the same PE, where application can use same PE to wait on all completions
at once.

For more details about DOCA Execution model see section "DOCA Execution Model".
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