
DOCA SDK Architecture

Table of contents

Device Subsystem

Memory Management Subsystem

Execution Model

DOCA SDK Architecture 1

Table of contents

Device Subsystem

Memory Management Subsystem

Execution Model

DOCA SDK Architecture 2

DOCA provides libraries for networking and data processing programmability that
leverage NVIDIA® BlueField® DPU and NVIDIA® ConnectX® NIC hardware accelerators.

DOCA software framework is built on top of DOCA Core, which provides a uni�ed software
framework for DOCA libraries, to form a processing pipeline or work�ow build of one or
many DOCA libraries.

Device Subsystem

The DOCA SDK allows applications to o�oad resource intensive tasks to HW, such as
encryption, and compression.

The SDK also allows applications to o�oad network related tasks, such as packet
acquisition, and RDMA send.

As such DPUs/NICs provide dedicated HW processing units for executing such tasks.

The DOCA device subsystem provides an abstraction of the HW processing units referred
to as device.

DOCA Device subsystem provides means to:

Discover available hardware acceleration units provided by DPUs/NICs

Query capabilities and properties of available hardware acceleration units

Open device to enable libraries to allocate and share resources necessary for HW
acceleration

On a given system there can be multiple available devices. An application can choose a
device based on the following characteristics:

Topology - E.g., PCIe address

Capabilities - E.g., Encryption support

DOCA Core supports two DOCA Device types:

Local device – this is an actual device exposed in the local system (DPU or host) and
can perform DOCA library processing jobs. This can be a PCI physical function (PF)
virtual function (VF) or scalable function (SF)

DOCA SDK Architecture 3

Representor device – this is a representation of a local device. The represented local
device is usually on the host (except for SFs) and the representor is always on the
DPU side (a proxy on the DPU for the host-side device).

The following �gure provides an example of host local devices with representors on DPU:

The diagram shows a DPU (on the right side of the �gure) connected to a host (on the
left). The host has physical function PF0 with a child virtual function VF0.

The DPU side has a representor-device per each host function in a 1-to-1 relation (e.g.,
hpf0 is the representor device for the host's PF0 device and so on) as well as a

representor for each SF function, such that both the SF and its representor reside in the
DPU.

For more details about DOCA Device subsystem, see section "DOCA Device".

Memory Management Subsystem

Note

The diagram shows typical topology when using a DPU in DPU mode
as described in NVIDIA BlueField DPU Modes of Operation .

https://docs.nvidia.compages/createpage.action?spaceKey=doca253&title=DOCA+Core&linkCreation=true&fromPageId=3483841423
https://confluence.nvidia.com/display/doca250/NVIDIA+BlueField+DPU+Modes+of+Operation

DOCA SDK Architecture 4

HW processing tasks require data bu�ers as inputs and/or outputs to processing
operations. The application is responsible to provide the input data and/or read the output
data.

In order to achieve maximum performance, the SDK uses zero-copy technology to pass
data to the HW. To allow zero-copy, the application must register the memory that will
hold data bu�ers beforehand.

The memory management subsystem provides a means to register memory and manage
allocation of data bu�ers on registered memory.

Memory registration:

De�nes user application memory range that will be used to hold data bu�ers.

Allows one or more devices to access the memory range.

De�nes the access permission (E.g., read only).

Data bu�er allocation management:

Allows allocating data bu�ers that cover subranges within the registered memory.

Allows memory pool semantics over registered memory.

DOCA memory has the following main components:

doca_buf – Describes a data bu�er, and is used as input/output to various HW
processing tasks within DOCA libraries.

doca_mmap – Describes registered memory, that is accessible by devices, with a set

of permissions. doca_buf is a segment in the memory range represented by

doca_mmap .

doca_buf_inventory – pool of doca_buf with the same characteristics (see
more in sections "DOCA Core Bu�ers" and "DOCA Core Inventories")

The following diagram shows the various modules within the DOCA memory subsystem:

https://docs.nvidia.compages/createpage.action?spaceKey=doca253&title=DOCA+Core&linkCreation=true&fromPageId=3483841423
https://docs.nvidia.compages/createpage.action?spaceKey=doca253&title=DOCA+Core&linkCreation=true&fromPageId=3483841423

DOCA SDK Architecture 5

The diagram shows a doca_buf_inventory containing 2 doca_buf s. Each

doca_buf points to a portion of the memory bu�er which is part of a doca_mmap . The
mmap is populated with one continuous memory range and is registered with Two DOCA
Devices, dev1 and dev2.

For more details about DOCA Memory management subsystem, see section "DOCA
Memory Subsystem".

Execution Model

DOCA SDK introduces libraries that utilize HW processing units. Each library de�nes
dedicated APIs for achieving a speci�c processing task (E.g., Encryption). The library
abstracts all the low level details related to operation of the HW, and instead lets the
application focus on what matters. This type of library is referred to as a context.

Since a context utilizes a HW processing unit, it needs a device in order to operate. This
device will also determine which bu�ers are accessible by that context.

Contexts provide HW processing operation APIs in the form of tasks and events.

Task:

Application prepares the task arguments.

https://docs.nvidia.compages/createpage.action?spaceKey=doca253&title=DOCA+Core&linkCreation=true&fromPageId=3483841423
https://docs.nvidia.compages/createpage.action?spaceKey=doca253&title=DOCA+Core&linkCreation=true&fromPageId=3483841423

DOCA SDK Architecture 6

Application submits the task, this will issue a request to the relevant HW processing
unit.

Application receives a completion in the form of a callback once the HW processing
is completed.

Event:

Application registers to the event. This will inform HW to report whenever the event
occurs.

Application receives a completion in form of a callback every time HW identi�es that
the event occurred.

Since HW processing is asynchronous in nature. DOCA provides an object that allows
waiting on processing operations (tasks & events). This object is referred to as Progress
Engine or PE.

The PE allows waiting on completions using the following methods:

Busy waiting/polling mode - in this case the application will repeatedly invoke a
method that checks if some completion has occurred.

Noti�cation-driven mode - in this case the application can use OS primitives (E.g.,
linux event fd) to notify thread whenever some completion has occurred.

Once completion has occurred, whether caused by Task or Event, the relevant callback will
be invoked as part of PE method.

A single PE instance allows waiting on multiple Tasks/Events from di�erent contexts. As
such it is possible for application to utilize a single PE per thread.

The following diagram shows how a combination of various DOCA modules combine
DOCA cross-library processing runtime.

DOCA SDK Architecture 7

The diagram shows 3 contexts that are utilizing the same device, each context has some
tasks/events that have been submitted/registered by application. All 3 contexts are
connected to the same PE, where application can use same PE to wait on all completions
at once.

For more details about DOCA Execution model see section "DOCA Execution Model".

Notice

This document is provided for information purposes only and shall not be regarded as a
warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no
representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in
this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (de�ned below), code,
or functionality.

NVIDIA reserves the right to make corrections, modi�cations, enhancements, improvements,
and any other changes to this document, at any time without notice.

Customer should obtain the latest
relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of
order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives
of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or
warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where
failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property
or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no
representation or warranty that products based on this document will be suitable for any speci�ed use. Testing of all
parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and

https://docs.nvidia.compages/createpage.action?spaceKey=doca253&title=DOCA+Core&linkCreation=true&fromPageId=3483841423

DOCA SDK Architecture 8

determine the applicability of any information contained in this document, ensure the product is suitable and �t for the
application planned by customer, and perform the necessary testing for the application in order to avoid a default of the
application or the product. Weaknesses in customer’s product designs may a�ect the quality and reliability of the
NVIDIA product and may result in additional or di�erent conditions and/or requirements beyond those contained in this
document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or
attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer
product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright,
or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property
rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in
advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS
DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of
Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are
trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

© Copyright 2024, NVIDIA. PDF Generated on 01/15/2025

	Device Subsystem
	Memory Management Subsystem
	Execution Model

