
Confidential Computing Deployment
Guide - (Intel TDX & KVM)

DU-11462-001_3.0 | February 2024

Documentation History

DU-11462-001

Version Date Authors Description of Change

1.0 7/25/2023 Rob Nertney Initial Version for Early Access

2.0 8/30/2023 Rob Nertney Minor fixes. EA2 Updates for Kata/CoCo and TDX
installs

3.0 2/22/2024 Rob Nertney GA Version Release

4.0 7/09/2024 Rob Nertney Updating instructions from MVP Intel stack to more
upstreamable flows.

Confidential Computing Deployment Guide DU-11462-001_2.0 | 2

Table of Contents

Using This Guide...4

Document Structure... 5
Supported Combinations... 5

Host OS Administrator (Part-1)..6
Setting Up the Host OS... 6

Hardware IT Administrator.. 11

Selecting Hardware... 11
Setting Up the Hardware Setup and Configuring Your System... 12

Host OS Administrator (Part-2)..12
Preparing to Launch a Guest Virtual Machine with KVM..13
(Optional) Setting up the Guest VM...15

Virtual Machine Administrator.. 22

Virtual Machine User..25

Validating Your Configuration...26

Installing the Attestation SDK..27

Executing an Attestation of the GPU.. 28

Successful Attestation Result.. 30

Conclusion..32

Confidential Computing Deployment Guide DU-11462-001_2.0 | 3

Using This Guide

This guide is the most distilled set of instructions required to configure a system for
Confidential Computing (CC) with the NVIDIA®Hopper™ H100 GPU. Explanations as to the
value of a particular step, or the details of what is going on behind the scenes are covered
in several of our other collateral, such as our whitepaper, GTC talks, and YouTube videos.

Here, you will find instructions that are targeted to various personas who want to use
Hopper Confidential Compute (HCC). These personas are rough definitions of individuals
who might have different responsibilities in the overall confidential system. The overall flow
of using one is illustrated in Figure 1.

Figure 1. Overall Workflow

You can see that not every person involved in enabling and using CC will be required at
every step. For example, a CSP might only provision a VM, and the user then takes over.

Figure 2. Workflow Example

In this example, the CSP does not require a policy for how often the GPU must be checked
for integrity/validity, nor does it need to consider the infrastructure requirements for
Confidential Containers. The user/tenant of the CSP does not need to consider the steps
required to configure the GPU for confidential or non-confidential modes. Depending on
who you are, and what your goals are, you might require all, or only a fraction, of the steps.

The following personas have been defined:
● Hardware IT Administrator

● Host OS Administrator

Confidential Computing Deployment Guide DU-11462-001_2.0 | 4

● Virtual Machine Administrator

● Virtual Machine User

● Container User

You can read the entire documentation or jump directly to the section that most
accurately describes your persona use case. This guide is organized in a linear manner, so
reading all sections in order will make logical sense to a developer who considers
themselves all the above personas.

Document Structure

In this document, for code, if there is no prefix that is an output from a command.
$ shell-command to execute

(optional) NVIDIA-commentary

sample output 1st row

sample output 2nd row

...

There might be times where, for the sake of simplicity, output will be omitted when not
required to be noted. The below example shows shell-command-A and shell-command-B:
$ shell-command-A

$ shell-command-B

Output might occur after either of these commands, however, the output is not important
(unless there are errors) and will not be included.

Supported Combinations

Due to the nascency of the CC market, many of the vendors, both hardware and software
alike, are currently split in their tested-and-supported environments. As such, there
(currently) is a very specific set of supported software/hardware combinations, outlined in
the table below:

Confidential Computing Deployment Guide DU-11462-001_2.0 | 5

CPU Vendor Operating
System

Host
Kernel

Hypervisor Guest
Kernel

Notes

Intel Emerald
Rapids

Ubuntu
24.04

6.9+ KVM 6.8+ The only validated Intel TDX
branch for nvTrust solutions
is described in this guide

Host OS Administrator (Part-1)
Figure 3. The Host OS Administrator Persona

The Host OS Administrator is the persona that has received a system with its BIOS/UEFI
configured so that it is racked and stacked with the CC modes enabled. This persona is
responsible for selecting the Operating System (OS) that is installed on the host so that
the OS can provision virtual machines (VMs). The roles are System Architects, Cloud
Administrators, or Advanced On-Premise Users.

Setting Up the Host OS
This section provides information about setting up the Host OS.

Installing the Required Host Prerequisites
Install a supported Host OS by following their standard installation instructions. It is not
important if you were using a different Linux kernel other than what is listed above. After
completing these steps you will have the correct kernel installed.

Before building the Linux, some prerequisite software packages must be installed.

Preparing the Host
To install the prerequisites, run the following commands.:

Confidential Computing Deployment Guide DU-11462-001_2.0 | 6

Packages to support the build
$ sudo apt update
$ sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
debhelper-compat=12 meson ninja-build libglib2.0-dev python3-pip nasm iasl

We will now build a 6.9-based kernel with TDX support. This kernel will be installed on the
host and will be the basis for guests that are created.

The following commands build the Host and Guest Linux kernel, Qemu, and the Ovmf BIOS
that was used to launch the TDX guests.

Note: Here is some important information:

● The Intel TDX tree is continually evolving in sync with the kernel version.
● The only supported Intel TDX branch for HCC use with KVM is the

device-passthrough.

For ease of use, we will be operating in the /shared directory and load all supporting items
in this folder. You can modify the scripts to point to locations more reasonable to your
system
Ensure /shared has read/write permissions for the user via chmod
$ sudo mkdir /shared
$ cd /shared/
$ sudo chmod -R 777 /shared

To apply git patches, you must set some settings:
$ git config --global user.email "youremail@yourdomain.com"
$ git config --global user.name "Your Name"

Downloading the GitHub Packages
Clone the required GitHub Repositories:

Mainline nvtrust
$ git clone https://github.com/NVIDIA/nvtrust.git

Intel’s patches to upstream
$ git clone https://github.com/intel/tdx-linux.git
$ cd tdx-linux
$ git checkout -b device-passthrough 1323f7b1ddf81076e3fcda6385c0c0dcf506258c

Specific branch of Linux Kernel

Confidential Computing Deployment Guide DU-11462-001_2.0 | 7

https://github.com/intel/tdx-linux/tree/device-passthrough
https://github.com/NVIDIA/nvtrust.git
https://github.com/intel/tdx-linux.git

$ git clone -b kvm-coco-queue-20240512
https://git.kernel.org/pub/scm/linux/kernel/git/vishal/kvm.git

QEMU mainline
$ git clone https://gitlab.com/qemu-project/qemu

Checkout the QEMU commit that supports H100 CC Passthrough
$ cd qemu
$ git checkout -b hcc-h100 ff6d8490e33acf44ed8afd549e203a42d6f813b5
$ cd ..

OVMF
$ git clone -b edk2-stable202405 https://github.com/tianocore/edk2

Patch the GitHub Packages
Patch the kernel:
$ cd /shared/tdx-linux/kvm
$ cp ../tdx-kvm/tdx_kvm_baseline_698ca1e40357.mbox .
$ git am --empty=drop tdx_kvm_baseline_698ca1e40357.mbox

Patch QEMU
$ cd /shared/tdx-linux/qemu
$ cp ../tdx-qemu/tdx_qemu_baseline_900536d3e9.mbox .
$ git am --empty=drop tdx_qemu_baseline_900536d3e9.mbox

Note: If you receive errors about error: unknown option –empty=drop not being a
valid flag, then you are likely running 22.04 as a host OS.

This solution ONLY works with Ubuntu 24.04 on the host.

Build the Kernel
Rebuild and package that are required by the Linux files.

$ cd /shared/tdx-linux/kvm
$ cp /boot/config-$(uname -r) .config
$ scripts/config -d KEXEC \
-d KEXEC_FILE \
-d SYSTEM_TRUSTED_KEYS \

Confidential Computing Deployment Guide DU-11462-001_2.0 | 8

https://git.kernel.org/pub/scm/linux/kernel/git/vishal/kvm.git
https://gitlab.com/qemu-project/qemu
https://github.com/tianocore/edk2

-d SYSTEM_REVOCATION_KEYS

$ scripts/config -e KVM \
-e KVM_INTEL \
-e KVM_TDX_GUEST_DRIVER \
-e HYPERV \
-e INTEL_TDX_HOST \
-e CRYPTO_ECC \
-e CRYPTO_ECDH \
-e CRYPTO_ECDSA \
-e CRYPTO_ECRDSA

$ make oldconfig
Press and hold “enter” when prompted for new features to add to the config file.

$ make -j$(nproc)
$ make modules -j$(nproc)

Install the & Configure the Host OS
$ sudo make modules_install
$ sudo make install

$ sudo sh -c “echo options kvm_intel tdx=on > /etc/modprobe.d/tdx.conf”

Edit /etc/default/grub
Change GRUB_CMDLINE_LINUX_DEFAULT to the following:

GRUB_CMDLINE_LINUX_DEFAULT="nohibernate kvm_intel.tdx=on"

save and close your editor
$ sudo update-grub

Build QEMU
$ cd /shared/tdx-linux/qemu

Obtain the network package so the CVM can have internet access.
$ git clone https://gitlab.freedesktop.org/slirp/libslirp.git
$ cd libslirp
$ meson build
$ sudo ninja -C build install
$ cd ..

Confidential Computing Deployment Guide DU-11462-001_2.0 | 9

Use your preference to ensure that libslirp.so is in the ldconfig path
Here is one option:
$ sudo ln -s /usr/local/lib/x86_64-linux-gnu/libslirp.so.0 /lib/x86_64-linux-gnu/

Build & Install QEMU
$./configure --enable-slirp --enable-kvm --target-list=x86_64-softmmu
$ make -j$(nproc)
$ sudo make install

Build OVMF
$ cd /shared/tdx-linux/edk2

initialize the submodules
$ git submodule update --init

Create a new file titled build_ovmf.sh and copy this code:
#!/bin/bash

rm -rf Build
make -C BaseTools
. edksetup.sh
cat <<-EOF > Conf/target.txt

ACTIVE_PLATFORM = OvmfPkg/OvmfPkgX64.dsc
TARGET = DEBUG
TARGET_ARCH = X64
TOOL_CHAIN_CONF = Conf/tools_def.txt
TOOL_CHAIN_TAG = GCC5
BUILD_RULE_CONF = Conf/build_rule.txt
MAX_CONCURRENT_THREAD_NUMBER = $(nproc)

EOF
build clean
build

if [! -f Build/OvmfX64/DEBUG_GCC5/FV/OVMF.fd]; then
echo "Build failed, OVMF.fd not found"
exit 1

fi

cp Build/OvmfX64/DEBUG_GCC5/FV/OVMF.fd ./OVMF.fd

Save and close the file above, and set it to executable via
$ chmod +x ./build_ovmf.sh

Confidential Computing Deployment Guide DU-11462-001_2.0 | 10

Execute the script:

$./build_ovmf.sh

Reboot the host
$ sudo reboot

Ubuntu 24.04’s kernel may not boot when TDX is pre-enabled in the BIOS/UEFI. As such,
your Hardware IT Administrator should be involved in the next steps: configuring the
System BIOS to enable TDX.

Hardware IT Administrator

Figure 4. The Hardware IT Administrator Persona

The Hardware IT Administrator persona is nedar the beginning of the CC chain and
attention needs to be paid to selecting your CPU and GPU. This persona should contain
System Architects and IT Administrators, selects the correct part numbers, and
configures the BIOS/UEFI for the subsequent steps.

Selecting Hardware
CC requires CPUs and GPUs with specific functionality that enable the security outlined by
the CC Consortium.
● CPU Requirements

○ Intel with TDX support
● GPU Requirements

○ NVIDIA Hopper H100 GPU
● Other Recommendations

○ Your motherboard vendor can be configured with Secure Boot and TDX enabled

Confidential Computing Deployment Guide DU-11462-001_2.0 | 11

To set up your system, you need to configure the motherboard’s BIOS to enable the CC
mode options. NVIDIA has tested the following motherboard vendors with Hopper CC and
provided the BIOS menu-flows so that you can easily set them.

Setting Up the Hardware Setup and
Configuring Your System

Supermicro System: BIOS Firmware Version 2.1
CPU Configuration -->

Processor Configuration -->
Limit CPU PA to 46 Bits -> Disable
Intel TME, Intel TME-MT, Intel TDX -->

Total Memory Encryption (Intel TME) -> Enable
Total Memory Encryption (Intel TME) Bypass -> Auto
Total Memory Encryption Multi-Tenant (Intel TME-MT) -> Enable
Memory Integrity -> Disable
Intel TDX -> Enable
TDX Secure Arbitration Mode Loader (SEAM) -> Enabled
Disable excluding Mem below 1MB in CMR -> Auto
Intel TDX Key Split -> <Non-zero value>

Software Guard Extension -> Enable

With the above System BIOS configured for Intel TDX, you are now ready to begin
configuring the Host Operating System and the Hypervisor.

Host OS Administrator (Part-2)
After ensuring that you have built and installed Linux kernel enabling TDX, and configuring

your BIOS/UEFI for the feature, you may continue onward:

Validating the Host Detects TDX
After the host reboots, to check that our kernel is the new TDX-aware version, and that our
configuration options were correctly applied, run the following commands.
$ uname -a

Confidential Computing Deployment Guide DU-11462-001_2.0 | 12

Linux hcc-host 6.9.0-rc7+ #1 SMP PREEMPT_DYNAMIC Tue Jul 9 20:29:57 UTC 2024 x86_64
x86_64 x86_64 GNU/Linux

$ sudo dmesg | grep -i tdx

[sudo] password for user:

[0.000000] Command line: BOOT_IMAGE=/vmlinuz-6.9.0-rc7+
root=/dev/mapper/ubuntu--vg-ubuntu--lv ro clearcpuid=mtrr,avx,avx2 nohibernate
kvm_intel.tdx=on
[4.967868] Kernel command line: BOOT_IMAGE=/vmlinuz-6.9.0-rc7+
root=/dev/mapper/ubuntu--vg-ubuntu--lv ro clearcpuid=mtrr,avx,avx2 nohibernate
kvm_intel.tdx=on
[10.580190] virt/tdx: BIOS enabled: private KeyID range [64, 128)
[10.580193] virt/tdx: Disable ACPI S3. Turn off TDX in the BIOS to use ACPI S3.
[21.364881] virt/tdx: 8405028 KB allocated for PAMT
[21.364890] virt/tdx: module initialized
[21.364909] virt/tdx: SEAMCALL (0x0000000000000022) failed: 0xc0000c0000000000
[21.364913] virt/tdx: RCX 0x0000000000000000 RDX 0xffffffffffffffff R08
0x0000000000000000
[21.364916] virt/tdx: R09 0x0000000000000000 R10 0x0000000000000000 R11
0x0000000000000000

Note: Errors of SEAMCALL (0x0000000000000022) failed: 0xc0000c0000000000 may be
ignored for this release. This error occurs when you do not have the latest TDX-Module
installed. Please contact your OEM for an updated BIOS.

Workaround instructions that do not modify the BIOS may be documented in a future
release of this document.

Preparing to Launch a Guest Virtual Machine
with KVM
This section covers how the Host Administrator can use KVM/QEMU to launch a
Confidential VM (CVM) for a guest. These instructions can be followed by new developers
who want to start from scratch , but you can modify the steps at your discretion.

Confidential Computing Deployment Guide DU-11462-001_2.0 | 13

Note:While the hypervisor set up and VM launch steps might be redundant for a
developer who has an existing orchestration flow, there are steps that must be taken to
enable the NVIDIA H100 in confidential modes.

(Required) Configuring the GPU for Confidential
Compute Mode
The NVIDIA H100 can only be toggled into and out of CC modes with a privileged call from
in the Host.
Here are the main flags:
● --query-cc-settings

○ Prints the current mode that the GPU is operating in
● --set-cc-mode <MODE>

○ Where MODE is
■ on
■ off
■ devtools

Refer to our whitepaper for more information about what the modes represent. NVIDIA has
provided the following script to help facilitate this call.:

$ cd /shared/nvtrust

$ git submodule update --init

$ cd host_tools/python

Query the state to see how your H100’s are configured

$ sudo python3 ./nvidia_gpu_tools.py --gpu-name=H100 --query-cc-mode

NVIDIA GPU Tools version v2024.02.14o

Command line arguments: ['./nvidia_gpu_tools.py', '--gpu-name=H100',
'--query-cc-mode']

Topo:

Intel root port 0000:a7:01.0

PCI 0000:a8:00.0 0x1000:0xc030

PCI 0000:a9:03.0 0x1000:0xc030

Confidential Computing Deployment Guide DU-11462-001_2.0 | 14

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/HCC-Whitepaper-v1.0.pdf

GPU 0000:ad:00.0 H100-PCIE 0x2321 BAR0 0x10e042000000

2024-07-09,22:35:42.530 INFO Selected GPU 0000:ad:00.0 H100-PCIE 0x2321 BAR0
0x10e042000000

2024-07-09,22:35:42.530 INFO GPU 0000:ad:00.0 H100-PCIE 0x2321 BAR0 0x10e042000000
CC mode is off

Change the state to enable CC mode:

$ sudo python3 ./nvidia_gpu_tools.py --gpu-name=H100 --set-cc-mode=on
--reset-after-cc-mode-switch

NVIDIA GPU Tools version v2024.02.14o

Command line arguments: ['./nvidia_gpu_tools.py', '--gpu-name=H100',
'--set-cc-mode=on', '--reset-after-cc-mode-switch']

Topo:

Intel root port 0000:a7:01.0

PCI 0000:a8:00.0 0x1000:0xc030

PCI 0000:a9:03.0 0x1000:0xc030

GPU 0000:ad:00.0 H100-PCIE 0x2321 BAR0 0x10e042000000

2024-07-09,22:37:21.028 INFO Selected GPU 0000:ad:00.0 H100-PCIE 0x2321 BAR0
0x10e042000000

2024-07-09,22:37:21.173 INFO GPU 0000:ad:00.0 H100-PCIE 0x2321 BAR0 0x10e042000000
CC mode set to on. It will be active after GPU reset.

2024-07-09,22:37:23.029 INFO GPU 0000:ad:00.0 H100-PCIE 0x2321 BAR0 0x10e042000000
was reset to apply the new CC mode.

The GPU is now configured and ready to be directly assigned to your CVM. If you already
have an orchestration flow for building, configuring, and so onVMs with KVM, you can skip
the next section.

(Optional) Setting up the Guest VM
This section provides information about how to set up the guest VM.

Create the VM Base Image
1. Run the following commands to obtain an ISO of a supported operating system.

In this example, we are using Ubuntu 24.04.
$ cd /shared/nvtrust/host_tools/sample_kvm_scripts/isos

Confidential Computing Deployment Guide DU-11462-001_2.0 | 15

#download an ISO of a supported OS here, for example:

$ wget https://releases.ubuntu.com/24.04/ubuntu-24.04-live-server-amd64.iso

2. Create a blank VM drive, which is one file that acts as the VM's storage drive.
Create the empty Virtual Disk Drive. Change 500G to your desired size
$ qemu-img create -f qcow2
/shared/nvtrust/host_tools/sample_kvm_scripts/images/ubuntu.qcow2 500G

Installing the Guest OS
Create a file: /shared/launch_vm.sh and put this info in it.
PREFIX="/shared/nvtrust/host_tools/sample_kvm_scripts/"

qemu-system-x86_64 \
-enable-kvm \
-drive file=$PREFIX/images/ubuntu.qcow2,if=virtio \
-smp cores=50,threads=2,sockets=2 \
-m 512G \
-cpu host \
-netdev user,id=n1,ipv6=off,hostfwd=tcp::2022-:22 \
-device virtio-net-pci,netdev=n1,mac=7c:c2:55:9f:64:58 \
-nographic \
-object tdx-guest,id=tdx \
-object memory-backend-ram,id=mem0,size=512G \
-machine

q35,kernel-irqchip=split,confidential-guest-support=tdx,memory-backend=mem0 \
-bios /shared/tdx-tools/edk2/OVMF.fd \
-vga none \
-nodefaults \
-serial stdio \
-object iommufd,id=iommufd0 \
-device pcie-root-port,id=pci.1,bus=pcie.0 \
-device vfio-pci,host=ad:00.0,bus=pci.1,iommufd=iommufd0 -fw_cfg

name=opt/ovmf/X-PciMmio64,string=262144 \
-cdrom $PREFIX/isos/ubuntu-24.04-live-server-amd64.iso

Please ensure that the the following flags are appropriate for your system:
● -drive file=ubuntu.qcow2,if=virtio

○ Check the name and location of when you created it above
● -smp

○ Total cores, threads, and socket topology desired in your VM

Confidential Computing Deployment Guide DU-11462-001_2.0 | 16

● -m
○ Memory allocated to the VM

● -device virtio-net-pci,netdev=n1,mac=7c:c2:55:9f:64:58
○ Change the mac address; for the virtIO device

● -object memory-backend-ram,id=mem0,size=512G
○ Change this memory size to match your -m flag above

● -device vfio-pci,host=ad:00.0 (...)
○ Align this to the found H100 when you previously ran lspci -d 10de: -nn

Ensure that launch_vm.sh is executable:
$ chmod +x /shared/launch_vm.sh

Identifying the GPUs to be Passed Through to the
Guest
In the Host OS, to identify an H100 to pass to our new Guest VM.
1. Identify the NVIDIA devices in the system.

$ lspci -d 10de: -nn
ad:00.0 3D controller [0302]: NVIDIA Corporation GH100 [H100L 94GB] [10de:2321]
(rev a1)

The value above tells us about an H100 that is found in the system:

● The slot ID: ad:00.0
● The device ID of the specific H100 in slot ad:00.0: 2321

KVM a Virtual Function I/O (VFIO), which is a Linux kernel feature that allows a VM to
access and control physical hardware devices for improved performance as if they were
directly connected to it.

2. Tell the host kernel that these device IDs should be allocated for VMs.
Insert the VFIO drivers
$ sudo modprobe vfio
$ sudo modprobe vfio_pci

Tag the H100s in your system as being ready for passthrough:
$ sudo sh -c "echo 10de 2321 > /sys/bus/pci/drivers/vfio-pci/new_id"

Confidential Computing Deployment Guide DU-11462-001_2.0 | 17

Note: This assignment must be done each time the Host reboots. You can restart Guests
multiple times or reassign the GPU(s) without repeating the steps.

Modifying GRUB to Print the Kernel Launch to the TTY
1. Launch sudo /shared/launch_vm.sh

2. Select install option “Try or Install Ubuntu Server”

Figure 5. Selecting an Installation Option

Confidential Computing Deployment Guide DU-11462-001_2.0 | 18

3. To edit the command, press e.

Figure 6. Editing the Command

4. To modify the Linux launch and print to the local console, edit the following

command.

linux /casper/vmlinuz console=ttyS0 clearcpuid=mtrr ---

Note: If you do not have the latest TDX-Module installed–generally delivered via the
system-OEM’s BIOS–AVX may not work, and you may encounter errors during boot, or
instability during testing. If you notice this, please attempt to modify the code to:

linux /casper/vmlinuz console=ttyS0 clearcpuid=mtrr,avx,avx2 ---

5. To continue the launch, press CTRL+X.

You can now configure the Guest OS install parameters. No specific options during this
install are required. After the Guest OS is installed, Ubuntu will prompt you to reboot, and
the VM will terminate, which returns you to the host.

Confidential Computing Deployment Guide DU-11462-001_2.0 | 19

Note: Due to CC limitations, a reboot command terminates the VM. This is expected for
all subsequent reboots.

6. After you complete the install, and the reboot of the Guest VM is requested,

QEMU will terminate. Modify launch_vm.sh afterwards and remove the -cdrom line,

also removing the \ on the line above:

PREFIX="/shared/nvtrust/host_tools/sample_kvm_scripts/"

qemu-system-x86_64 \
-enable-kvm \
-drive file=$PREFIX/images/ubuntu.qcow2,if=virtio \
-smp cores=50,threads=2,sockets=2 \
-m 512G \
-cpu host \
-netdev user,id=n1,ipv6=off,hostfwd=tcp::2022-:22 \
-device virtio-net-pci,netdev=n1,mac=7c:c2:55:9f:64:58 \
-nographic \
-object tdx-guest,id=tdx \
-object memory-backend-ram,id=mem0,size=512G \
-machine

q35,kernel-irqchip=split,confidential-guest-support=tdx,memory-backend=mem0 \
-bios /shared/edk2/OVMF.fd \
-vga none \
-nodefaults \
-serial stdio \
-object iommufd,id=iommufd0 \
-device pcie-root-port,id=pci.1,bus=pcie.0 \
-device vfio-pci,host=ad:00.0,bus=pci.1,iommufd=iommufd0 -fw_cfg

name=opt/ovmf/X-PciMmio64,string=262144 \
-cdrom $PREFIX/isos/ubuntu-24.04-live-server-amd64.iso

7. Relaunch launch_vm.sh , stopping once more to hit e on the “Ubuntu” option to edit

the launch parameters:

Confidential Computing Deployment Guide DU-11462-001_2.0 | 20

8. After console=ttyS0 add once again clearcpuid=mtrr,avx,avx2

9. Again, to continue the launch, press CTRL+X. We will make this option persist in a

later step.

Confidential Computing Deployment Guide DU-11462-001_2.0 | 21

Validating the TDX Guest:
Once the CVM guest is launched, log in via SSH and check the dmesg log to validate the
TDX hooks are detected. Change the username to match what you configured in previous
steps.

Log In:
$ ssh -p2022 user@localhost

Check the kernel logs for TDX support:

nvidia@tdx-guest:~$ sudo dmesg | grep -i tdx
[sudo] password for user:
[0.000000] tdx: Guest detected
[29.669467] process: using TDX aware idle routine
[29.669467] Memory Encryption Features active: Intel TDX
[46.864001] systemd[1]: Detected confidential virtualization tdx.

Modify GRUB configuration file to persistently disable mtrr, avx, and avx2

Update the grub file

$ nano /etc/default/grub

GRUB_CMDLINE_LINUX_DEFAULT="console=ttyS0 clearcpuid=mtrr"

#save and close the file, and run:

$ update-grub

$ reboot

Note: If you do not have the latest TDX-Module installed–generally delivered via the
system-OEM’s BIOS–AVX may not work, and you may encounter errors during boot, or
instability during testing. If you notice this, please attempt to modify the code to:

linux /casper/vmlinuz console=ttyS0 clearcpuid=mtrr,avx,avx2 ---

Confidential Computing Deployment Guide DU-11462-001_2.0 | 22

At this point, the Host OS Administrator persona has completed the required work to
enable a Confidential VM with a Confidential H100 attached to it. The next steps will be
from the persona of a user who has received access to a VM and is ready to develop or
deploy a confidential application.

Virtual Machine Administrator
Figure 8. Virtual Machine Administrator

The Virtual Machine Administrator persona assumes that the hardware is correctly
configured and expects to receive a CVM that can be attested to, with a GPU attached to it
by the hypervisor. This persona might (or might not) have awareness about the lower-level
details of the system, such as the BIOS or Host OS configuration.Most users will begin
their journey here.

Note: The sample code snippets in this section will be presented as a continuation from
the previous steps of this document, which means a clean Ubuntu 22.04 install. If you
have been provided a CVM from your System Administrators, you might have a slightly
different output, but the overall flow and instructions should not differ greatly.

Log into your CVM.
hostUser@host:~$ ssh -p2022 user@localhost

Enabling LKCA on the Guest VM

LKCA is required for Hopper CC all operation modes, so we recommend that you enable it in
the guest VM.

1. Create a /etc/modprobe.d/nvidia-lkca.conf file and add this line to it:
install nvidia /sbin/modprobe ecdsa_generic; /sbin/modprobe ecdh; /sbin/modprobe
--ignore-install nvidia

Confidential Computing Deployment Guide DU-11462-001_2.0 | 23

Note: Due to TDX limitations, a reboot command terminates the VM. This is expected for
all subsequent reboots.

2. Update the initramfs.
sudo update-initramfs -u
sudo reboot

Installing the NVIDIA Driver and CUDA Toolkit
We recommend you use the Package Manager method of installing the NVIDIA drivers.
OpenRM is the open-source version of our Kernel drivers, and the source can be found on
our GitHub.

Hopper CC is enabled starting with CUDA 12.5 and is paired with driver r550, which can be
downloaded as described below:
In the Guest:

Obtain the NVIDIA keys to download the CUDA Toolkit
$ wget
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyrin
g_1.1-1_all.deb
$ sudo dpkg -i cuda-keyring_1.1-1_all.deb
$ sudo apt-get update

Install the toolkit
$ sudo apt-get -y install cuda-toolkit-12-5

Install the Driver
$ sudo apt install nvidia-driver-550-server-open

Setting up the NVIDIA Driver to be in Persistence Mode
When the NVIDIA driver loads, we will automatically establish a secured SPDM session with
the H100. As part of this session, secure ephemeral encryption keys are exchanged
between the host and the device.

In a typical operation, when the NVIDIA device resources are no longer being used, the
NVIDIA kernel driver will tear down the device state. However, in the CC mode, this leads to
destroying the shared-secret and the shared keys that were established during the setup
SPDM phase of the driver. Due to security concerns, the GPU will not allow the restart of
an SPDM session establishment without an FLR which resets and scrubs the GPU.

To avoid this situation, nvidia-persistenced provides a configuration option called
persistence mode that can be set by NVIDIA management software, such as nvidia-smi.
When the persistence mode is enabled, the NVIDIA kernel driver is prevented from exiting.

Confidential Computing Deployment Guide DU-11462-001_2.0 | 24

https://github.com/NVIDIA/open-gpu-kernel-modules
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb

nvidia-persistenced does not use any device resources. It simply sleeps while maintaining a
reference to the NVIDIA device state.
1. Determine whether nvidia-persistenced is already running.

$ ps -aux | grep nvidia-persistenced
nvidia-+ 797 0.0 0.0 5472 1852 ? Ss 17:23 0:00
/usr/bin/nvidia-persistenced --user nvidia-persistenced --no-persistence-mode
--verbose

2. If you see the above with --no-persistence-mode or the only output is the grep
command:
$ ps -aux | grep nvidia-persistenced
user 25944 0.0 0.0 4032 2180 pts/0 S+ 18:52 0:00 grep
--color=auto nvidia-persistenced

then we must make changes for Confidential Computing modes.

a. Modify the service that automatically launches nvidia-persistenced:
On the Guest:
Edit /usr/lib/systemd/system/nvidia-persistenced.service

Change:
ExecStart=/usr/bin/nvidia-persistenced --user nvidia-persistenced

--no-persistence-mode --verbose

to this:
ExecStart=/usr/bin/nvidia-persistenced --user nvidia-persistenced

--uvm-persistence-mode --verbose

b. Tell systemd to reload its modules, and reboot the guest
On the Guest:

$ sudo systemctl daemon-reload
$ sudo reboot

Validating State and Versions
1. With the driver in persistent mode, you can check the status of the GPU to ensure that

it is configured in a CC mode.
$ nvidia-smi conf-compute -f
CC status: ON

2. Ensure that the firmware on the H100 is at a minimum version of 96.00.5E.00.00
$ nvidia-smi -q | grep VBIOS

Confidential Computing Deployment Guide DU-11462-001_2.0 | 25

VBIOS Version : 96.00.5E.00.25

If you have an earlier version of the VBIOS, contact NVIDIA for instructions on how to
upgrade to version 96.00.5E.00.00.

You have successfully configured the Guest CVM to operate in the CC mode with a secured
H100 accelerator! The next section is the persona for CVM users. However, before this
persona can use the GPU, we strongly recommend that you complete the attestation of
the GPU.

Virtual Machine User
Figure 9. Virtual Machine Administrator

The Virtual Machine user might (or might not) be the administrator of the system (refer to
Virtual Machine Administrator for more information). This Persona assumes that the
system is correctly configured for CC.

Note: We recommend that you complete your work in the /shared folder in the guest VM.

At this point, users must begin the attestation workflow to ensure the system is authentic
and valid. Attestation is the process of challenging the GPU where measurements are
collected and signed by the GPU, and these measurements are compared to known-good,
golden measurements. After the verification passes, you might want to enable the GPU by
setting its ReadyState.

Note: The GPU will not accept any work until an enlightened CVM user sets the
ReadyState. This is to prevent accidental usage before the confirmation of the GPU is
complete.

Successfully passing attestation as root (see below) or running the command below will
set the ready state.
nvidia-smi conf-compute -srs 1

Confidential Computing Deployment Guide DU-11462-001_2.0 | 26

Figure 10. Attesting the GPU

The recommended flow for attestation is to directly use the Attestation SDK and its APIs .
However, you can directly call the Local GPU Verifier. This flow to learn more about the
Local GPU Verifier, refer to the NVIDIA Attestation SDK guide at
https://docs.nvidia.com/nvtrust

Validating Your Configuration
After the driver is successfully installed, and you can query the device, the next step is to

attest to the GPU.

1. If you are coming directly to this persona section, ensure that nvidia-persistenced is

already running. If you started in the previous persona, you skip this verification step.

$ ps -aux | grep nvidia-persistenced
root 2327 20.1 0.0 5312 1788 ? Ss 08:57 0:05
nvidia-persistenced

Confidential Computing Deployment Guide DU-11462-001_2.0 | 27

https://docs.nvidia.com/nvtrust

2. If nothing is returned, run the following command to start it.
$ sudo nvidia-persistenced

3. Check the status of the GPU to ensure that it is configured in a CC mode.
$ nvidia-smi conf-compute -f
CC status: ON

Installing the Attestation SDK
Before you begin, install the Local GPU Verifier, which is also in the nvTrust repository. To
keep it simple, perform another clone of the repo:
$ sudo mkdir /shared
$ sudo chmod 777 /shared

$ cd /shared
$ git clone https://github.com/nvidia/nvtrust

$ cd nvtrust/guest_tools/

Installation Prerequisites
The Attestation SDK and the Local GPU Verifier require Python3. We also recommend that
you also install the Virtual Environment module, which can keep your primary system
Python environment clean.
$ sudo apt install python3-pip

Install:
$ sudo apt install python3-venv

(Optional) Configuring a Python Virtual Environment
Create a new virtual env named nvAttest
python3 -m venv /shared/nvAttest

Configure the shell to use nvAttest
$ source /shared/nvAttest/bin/activate
(nvAttest) user@guestVM:/shared/$

Your Python virtual environment will now always be prefixed with (nvAttest). If you do not
see this string on your terminal (for example, after changing terminal windows, logging out,
and so on), run the following command again.
$ source /shared/nvAttest/bin/activate

Confidential Computing Deployment Guide DU-11462-001_2.0 | 28

Installing the Local GPU Verifier
You must install the plugins before you install the Attestation SDK, otherwise you will get
errors.
(nvAttest) $ cd /shared/nvtrust/guest_tools/gpu_verifiers/local_gpu_verifier
(nvAttest) $ pip3 install .

Installing the Attestation SDK
Note: Ensure you are running in the same python environment (either the optional virtual
environment nvAttest created above or your default one).

(nvAttest) $ cd /shared/nvtrust/guest_tools/attestation_sdk/
(nvAttest) $ pip3 install .

Executing an Attestation of the GPU
After the components have been installed, you are ready to perform an attestation using
the SDK. The sample code can be found on the nvTrust GitHub under
nvtrust/guest_tools/attestation_sdk/tests/SmallGPUTest.py

However, here is the Python code, and you can run this code on the python3 command line.
from nv_attestation_sdk import attestation

Create a Attestation object
client = attestation.Attestation("test_node")

Add the type of verifier that you would like to use
client.add_verifier(attestation.Devices.GPU, attestation.Environment.LOCAL, "", "")

Set the Attestation Policy that you want to validate your token against.
attestation_results_policy =
'{"version":"1.0","authorization-rules":{"x-nv-gpu-available":true,' \

'"x-nv-gpu-attestation-report-available":true}}'

Run Attest
print(client.attest())

Call validate_token to validate the results against the Appraisal policy for
Attestation Results
print(client.validate_token(attestation_results_policy))

Confidential Computing Deployment Guide DU-11462-001_2.0 | 29

The primary focus of the attestation should be the yellow highlighted variable. As the
developer, you can decide which claims constitute a pass or a fail result from the
Attestation SDK. In the example above, the code will return TRUE as long as there is an
NVIDIA GPU detected in the CVM and the process to obtain the GPU measurements was
returned properly.

We provide a full list of all the possible claims that returned during an attestation query. It
is listed below for your reference.
/shared/nvtrust/guest_tools/attestation_sdk/tests/NVGPUPolicyExample.json

{

"version":"1.0",

"authorization-rules":{

"x-nv-gpu-available":true,

"x-nv-gpu-attestation-report-available":true,

"x-nv-gpu-info-fetched":true,

"x-nv-gpu-arch-check":true,

"x-nv-gpu-root-cert-available":true,

"x-nv-gpu-cert-chain-verified":true,

"x-nv-gpu-ocsp-cert-chain-verified":true,

"x-nv-gpu-ocsp-signature-verified":true,

"x-nv-gpu-cert-ocsp-nonce-match":true,

"x-nv-gpu-cert-check-complete":true,

"x-nv-gpu-measurement-available":true,

"x-nv-gpu-attestation-report-parsed":true,

"x-nv-gpu-nonce-match":true,

"x-nv-gpu-attestation-report-driver-version-match":true,

"x-nv-gpu-attestation-report-vbios-version-match":true,

"x-nv-gpu-attestation-report-verified":true,

"x-nv-gpu-driver-rim-schema-fetched":true,

"x-nv-gpu-driver-rim-schema-validated":true,

"x-nv-gpu-driver-rim-cert-extracted":true,

"x-nv-gpu-driver-rim-signature-verified":true,

"x-nv-gpu-driver-rim-driver-measurements-available":true,

"x-nv-gpu-driver-vbios-rim-fetched":true,

"x-nv-gpu-vbios-rim-schema-validated":true,

"x-nv-gpu-vbios-rim-cert-extracted":true,

Confidential Computing Deployment Guide DU-11462-001_2.0 | 30

"x-nv-gpu-vbios-rim-signature-verified":true,

"x-nv-gpu-vbios-rim-driver-measurements-available":true,

"x-nv-gpu-vbios-index-conflict":true,

"x-nv-gpu-measurements-match":true

}

}

Successful Attestation Result

When the Attestation SDK has successfully returned a valid result, you should see

something like below (varies slightly based on your specific system):

python3
Python 3.10.6 (main, May 29 2023, 11:10:38) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from nv_attestation_sdk import attestation
>>> client = attestation.Attestation("test_node")
>>> client.add_verifier(attestation.Devices.GPU, attestation.Environment.LOCAL, "",
"")
>>> attestation_results_policy =
'{"version":"1.0","authorization-rules":{"x-nv-gpu-available":true,' \
...
'"x-nv-gpu-attestation-report-available":true,"x-nv-gpu-info-fetched":true,' \
...
'"x-nv-gpu-arch-check":true,"x-nv-gpu-root-cert-available":true,' \
...
'"x-nv-gpu-cert-chain-verified":true,"x-nv-gpu-ocsp-cert-chain-verified":true,' \
...
'"x-nv-gpu-ocsp-signature-verified":true,"x-nv-gpu-cert-ocsp-nonce-match":true,' \
...
'"x-nv-gpu-cert-check-complete":true,"x-nv-gpu-measurement-available":true,' \
...
'"x-nv-gpu-attestation-report-parsed":true,"x-nv-gpu-nonce-match":true,' \
...
'"x-nv-gpu-attestation-report-driver-version-match":true,' \
...
'"x-nv-gpu-attestation-report-vbios-version-match":true,' \
...
'"x-nv-gpu-attestation-report-verified":true,"x-nv-gpu-driver-rim-schema-fetched":true
,' \

Confidential Computing Deployment Guide DU-11462-001_2.0 | 31

...
'"x-nv-gpu-driver-rim-schema-validated":true,"x-nv-gpu-driver-rim-cert-extracted":true
,' \
... '"x-nv-gpu-driver-rim-signature-verified":true,' \
...
'"x-nv-gpu-driver-rim-driver-measurements-available":true,' \
...
'"x-nv-gpu-driver-vbios-rim-fetched":true,"x-nv-gpu-vbios-rim-schema-validated":true,'
\
...
'"x-nv-gpu-vbios-rim-cert-extracted":true,"x-nv-gpu-vbios-rim-signature-verified":true
,' \
...
'"x-nv-gpu-vbios-rim-driver-measurements-available":true,' \
...
'"x-nv-gpu-vbios-index-conflict":true,"x-nv-gpu-measurements-match":true}}'
>>> client.attest()
Number of GPUs available : 1

Fetching GPU 0 information from GPU driver.
VERIFYING GPU : 0

Driver version fetched : 535.86.05
VBIOS version fetched : 96.00.5e.00.01
Validating GPU certificate chains.

GPU attestation report certificate chain validation successful.
The certificate chain revocation status verification successful.

Authenticating attestation report
The nonce in the SPDM GET MEASUREMENT request message is matching with the

generated nonce.
Driver version fetched from the attestation report : 535.86.05
VBIOS version fetched from the attestation report : 96.00.5e.00.01
Attestation report signature verification successful.
Attestation report verification successful.

Authenticating the RIMs.
Authenticating Driver RIM

RIM Schema validation passed.
driver RIM certificate chain verification successful.
The certificate chain revocation status verification successful.
driver RIM signature verification successful.
Driver RIM verification successful

Authenticating VBIOS RIM.
RIM Schema validation passed.
vbios RIM certificate chain verification successful.
The certificate chain revocation status verification successful.
vbios RIM signature verification successful.
VBIOS RIM verification successful

Confidential Computing Deployment Guide DU-11462-001_2.0 | 32

Comparing measurements (runtime vs golden)
The runtime measurements are matching with the golden measurements.

GPU is in expected state.
GPU 0 verified successfully.
GPU Attested Successfully

True
>>> client.validate_token(attestation_results_policy)

Conclusion

With this guide, we have provided information about the process from when the machine is
racked and stacked to configuring the host and guest operating systems, and finally to
attaching an H100 in a CVM. This flow can be modified to suit your specific needs, and we
encourage you to provide feedback, comments, or questions.. You can reach out to us on
our forum page:
https://forums.developer.nvidia.com/c/accelerated-computing/confidential-computing/663
.
Stay tuned to our GitHub for the latest updates, news, and solutions in the meantime.
Happy coding!

Confidential Computing Deployment Guide DU-11462-001_2.0 | 33

https://forums.developer.nvidia.com/c/accelerated-computing/confidential-computing/663

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality,
condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for
any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this
document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is
current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order
acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA
and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with
regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either
directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life
support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to
result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of
NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use.
Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to
evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit
for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document.
NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the
use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual
property right under this document. Information published by NVIDIA regarding third-party products or services does not
constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such
information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced
without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated
conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051

http://www.nvidia.com

http://www.nvidia.com

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for
any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall
be limited in accordance with the Terms of Sale for the product.

Trademarks
NVIDIA, the NVIDIA logo, and Hopper are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and
other countries. Other company and product names may be trademarks of the respective companies with which they are
associated.

VESA DisplayPort
DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort
Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards Association in the United
States and other countries.

HDMI
HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing
LLC.

Arm
Arm, AMBA, and ARM Powered are registered trademarks of Arm Limited. Cortex, MPCore, and Mali are trademarks of Arm
Limited. All other brands or product names are the property of their respective holders. ʺArmʺ is used to represent ARM
Holdings plc; its operating company Arm Limited; and the regional subsidiaries Arm Inc.; Arm KK; Arm Korea Limited.; Arm
Taiwan Limited; Arm France SAS; Arm Consulting (Shanghai) Co. Ltd.; Arm Germany GmbH; Arm Embedded Technologies Pvt.
Ltd.; Arm Norway, AS, and Arm Sweden AB.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Copyright

© 2023 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051

http://www.nvidia.com

http://www.nvidia.com

