
Confidential Computing Deployment
Guide - (AMD SEV-SNP & KVM)

DU-11462-001_2.0 | August 2023

Documentation History

DU-11462-001

Version Date Authors Description of Change

1.0 7/25/2023 Rob Nertney Initial Version for Early Access

2.0 8/30/2023 Rob Nertney Minor fixes. EA2 Updates for Kata/CoCo and TDX
installs

3.0 2/23/2024 Rob Nertney GA Version Release

Confidential Computing Deployment Guide DU-11462-001_2.0 | 2

Table of Contents

Using This Guide...4

Document Structure... 5
Supported Combinations... 5

Hardware IT Administrator...6

Selecting Hardware..6

Setting Up the Hardware Setup and Configuring Your System..7

Host OS Administrator.. 7

Setting Up the Host OS... 8

Preparing to Launch a Guest Virtual Machine with KVM..12

(Optional) Guest VM Setup.. 14

Virtual Machine Administrator.. 22

Virtual Machine User..24

Validating Your Configuration...26

Installing the Attestation SDK..26

Executing an Attestation of the GPU.. 27

Successful Attestation Result.. 29

Confidential Container User... 31

Installing Container Runtime and Kubernetes.. 32

Install the Confidential Containers Operator...34

Install NVIDIA GPU Operator... 36

Running a Sample CoCo Workload... 38

Attestation in a Confidential Container..40

Conclusion..41

Confidential Computing Deployment Guide DU-11462-001_2.0 | 3

Using This Guide

This guide is the most distilled set of instructions required to configure a system for
Confidential Computing (CC) with the NVIDIA®Hopper™ H100 GPU. Explanations as to the
value of a particular step, or the details of what is going on behind the scenes are covered
in several of our other collateral, such as our whitepaper, GTC talks, and YouTube videos.

Here, you will find instructions that are targeted to various personas who want to use
Hopper Confidential Compute (HCC). These personas are rough definitions of individuals
who might have different responsibilities in the overall confidential system. The overall flow
of using one is illustrated in Figure 1.

Figure 1. Overall Workflow

You can see that not every person involved in enabling and using CC will be required at
every step. For example, a CSP might only provision a VM, and the user then takes over.

Figure 2. Workflow Example

In this example, the CSP does not require a policy for how often the GPU must be checked
for integrity/validity, nor does it need to consider the infrastructure requirements for
Confidential Containers. The user/tenant of the CSP does not need to consider the steps
required to configure the GPU for confidential or non-confidential modes. Depending on
who you are, and what your goals are, you might require all, or only a fraction, of the steps.

The following personas have been defined:
● Hardware IT Administrator

● Host OS Administrator

Confidential Computing Deployment Guide DU-11462-001_2.0 | 4

● Virtual Machine Administrator

● Virtual Machine User

● Container User

You can read the entire documentation or jump directly to the section that most
accurately describes your persona use case. This guide is organized in a linear manner, so
reading all sections in order will make logical sense to a developer who considers
themselves all the above personas.

Document Structure

In this document, for code, if there is no prefix that is an output from a command.
$ shell-command to execute

(optional) NVIDIA-commentary

sample output 1st row

sample output 2nd row

...

There might be times where, for the sake of simplicity, output will be omitted when not
required to be noted. The below example shows shell-command-A and shell-command-B:
$ shell-command-A

$ shell-command-B

Output might occur after either of these commands, however, the output is not important
(unless there are errors) and will not be included.

Supported Combinations

Due to the nascency of the CC market, many of the vendors, both hardware and software
alike, are currently split in their tested-and-supported environments. As such, there
(currently) is a very specific set of supported software/hardware combinations, outlined in
the table below:

Confidential Computing Deployment Guide DU-11462-001_2.0 | 5

CPU Vendor Host Kernel Hypervisor Guest Kernel Notes

AMD 5.19 KVM 5.19

Hardware IT Administrator

Figure 3. The Hardware IT Administrator Persona

The Hardware IT Administrator persona is at the beginning of the CC chain and attention
needs to be paid to selecting your CPU and GPU. This persona should contain System
Architects and IT Administrators, selects the correct part numbers, and configures the
BIOS/UEFI for the subsequent steps.

Selecting Hardware
CC requires CPUs and GPUs with specific functionality that enable the security outlined by
the CC Consortium.
● CPU Requirements

○ AMD with SEV-SNP support
● GPU Requirements

○ NVIDIA Hopper H100 GPU
● Other Recommendations

○ Your motherboard vendor can be configured with Secure Boot and SNP enabled

To set up your system, you need to configure the motherboard’s BIOS to enable the CC
mode options. NVIDIA has tested the following motherboard vendors with Hopper CC and
provided the BIOS menu-flows so that you can easily set them.

Confidential Computing Deployment Guide DU-11462-001_2.0 | 6

Setting Up the Hardware Setup and
Configuring Your System

ASRockRack BIOS Version L3.12C
Advanced -->

AMD CBS ->
CPU Common ->

SEV ASID Count -> 509 ASIDs
SEV-ES ASID space Limit Control -> Manual
SEV-ES ASID space limit -> 100
SNP Memory Coverage -> Enabled
SMEE -> Enabled

NBIO common ->
SEV-SNP Support -> Enabled

Supermicro System: BIOS Firmware Version 2.5
Advanced -->

CPU Configuration -->
SMEE -> Enabled
SEV ASID Count -> 509 ASIDs
SEV-ES ASID Space Limit Control -> Manual
SEV-ES ASID Space Limit -> 100
SNP Memory Coverage -> Enabled

NB Configuration ->
IOMMU -> Enabled
SEV-SNP support -> Enabled

With the above System BIOS configured for SEV-SNP, you are now ready to begin
configuring the Host Operating System and the Hypervisor.

Host OS Administrator
Figure 4. The Host OS Administrator Persona

Confidential Computing Deployment Guide DU-11462-001_2.0 | 7

The Host OS Administrator is the persona that has received a system with its BIOS/UEFI
configured so that it is racked and stacked with the CC modes enabled. This persona is
responsible for selecting the Operating System (OS) that is installed on the host so that
the OS can provision virtual machines (VMs). The roles are System Architects, Cloud
Administrators, or Advanced On-Premise Users.

Setting Up the Host OS
This section provides information about setting up the Host OS.

Installing the Required Host Prerequisites
Install a supported Host OS by following their standard installation instructions. It is not
important if you were using a different Linux kernel other than what is listed above. After
completing these steps you will have the correct kernel installed.

Before building the Linux, some prerequisite software packages must be installed.

Preparing the Host
To install the prerequisites, run the following commands.:
Packages to support the build
$ sudo apt update

$ sudo apt install -y ninja-build iasl nasm flex bison openssl dkms autoconf
zlib1g-dev python3-pip libncurses-dev libssl-dev libelf-dev libudev-dev libpci-dev
libiberty-dev libtool libsdl-console libsdl-console-dev libpango1.0-dev libjpeg8-dev
libpixman-1-dev libcairo2-dev libgif-dev libglib2.0-dev git-lfs jq

$ sudo pip3 install numpy flex bison

We will now build a 5.19-based kernel with SEV-SNP support. This kernel will be installed on
the host and will be the basis for guests that are created.

Confidential Computing Deployment Guide DU-11462-001_2.0 | 8

Downloading the GitHub Packages
The following commands build the Host and Guest Linux kernel, Qemu, and the Ovmf BIOS
that was used to launch the SEV-SNP guests.

Note: Here is some important information:

● The AMD SEV-SNP tree is continually evolving in sync with the kernel version.
● The only supported AMD SEV SNP branch for HCC use with KVM is the sev-snp-devel

branch.
● For GPU support, you will need to apply two patches to the 5.19-rc6 kernel.

For ease of use, we will be operating in the /shared directory and load all supporting items
in this folder. You can modify the scripts to point to locations more reasonable to your
system
$ cd /shared/
$ git clone https://github.com/AMDESE/AMDSEV.git
$ git clone https://github.com/NVIDIA/nvtrust.git
$ cd AMDSEV
$ git checkout sev-snp-devel

Preparing to Build the Kernel
NVIDIA’s driver requires that LKCA be enabled in the kernel. It is not enabled by default in
the AMDESE package, so you need to edit /shared/AMDSEV/common.sh to include the
following lines after line 81:
run_cmd ./scripts/config --enable CONFIG_CRYPTO_ECC
run_cmd ./scripts/config --enable CONFIG_CRYPTO_ECDH
run_cmd ./scripts/config --enable CONFIG_CRYPTO_ECDSA
run_cmd ./scripts/config --enable CONFIG_CGROUP_MISC

Now, we can run the script that will fetch and build the required components:
$./build.sh --package

Modifying the Kernel
At this point, you have built the unpatched 5.19 from the sev-snp-devel branch
Unfortunately, this code tree could not be patched before the build because the AMD-SNP
repository automates many of these steps.
1. Now, we can patch the code and build the kernel required for the H100:

copy the patch files from /shared/nvtrust into /shared/AMDSEV
$ cp /shared/nvtrust/infrastructure/patches/linux/*.patch /shared/AMDSEV

Confidential Computing Deployment Guide DU-11462-001_2.0 | 9

https://github.com/AMDESE/AMDSEV/tree/sev-snp-devel

$ pushd /shared/AMDSEV/linux/host
$ patch -p1 -l < ../../iommu_pagefault.patch
$ patch -p1 -l < ../../iommu_pagesize.patch
$ popd

2. Rebuild and package the linux files required:
$./build.sh --package

Installing the Host OS
Run the following commands to install the SNP-aware host kernel.
$ sudo cp kvm.conf /etc/modprobe.d/

The following folder will be appended with the build date
$ cd /shared/AMDSEV/snp-release-<DATE>
$ sudo ./install.sh
#GRUB should automatically use the new linux image.

#reboot the host:
$ sudo reboot

Validating the Host Detects SNP
1. After the host reboots, to check that our kernel is the new SNP-aware version, and that

our configuration options were correctly applied, run the following commands.
$ uname -a
Linux hostname1 5.19.0-rc6-snp-host-d9bd54fea4d2 #3 SMP Wed Nov 30 10:23:09 UTC
2022 x86_64 x86_64 x86_64 GNU/Linux

The dates and hashes above might vary slightly. The important thing is to see snp in the
string.

2. Validate the kernel that was configured with the proper CC options. This is done by
reviewing the /boot/config-5.19.0-rc6-snp-host<...>.
$ grep CONFIG_CRYPTO_EC /boot/config-5.19.0-rc6-snp-host<...>
CONFIG_CRYPTO_ECC=y
CONFIG_CRYPTO_ECDH=y
CONFIG_CRYPTO_ECDSA=y

3. Ensure that the kernel actually detects the SEV-SNP processor.
If you do not see this correct output, then please review the Hardware IT Administrator
section above, or contact your IT Administrator and have them review that section.
$ sudo dmesg | grep -i -e rmp -e sev

Confidential Computing Deployment Guide DU-11462-001_2.0 | 10

[0.768000] SEV-SNP: RMP table physical address 0x0000000035600000 -
0x0000000075bfffff
[3.868558] ccp 0000:45:00.1: sev enabled
[3.918694] ccp 0000:45:00.1: SEV firmware update successful
[7.315402] ccp 0000:45:00.1: SEV API:1.51 build:3
[7.315410] ccp 0000:45:00.1: SEV-SNP API:1.51 build:3
[7.322019] SEV supported: 410 ASIDs
[7.322019] SEV-ES and SEV-SNP supported: 99 ASIDs

(Optional) Upgrade out-of-date SEV Firmware (<1.51)
In the command above, you might notice that the output is like the following output. This
means your SEV firmware is out of date and needs to be updated.
$ sudo dmesg | grep -i -e rmp -e sev

[0.564845] SEV-SNP: RMP table physical address 0x0000000088900000 -
0x00000000a8efffff
[3.257600] ccp 0000:45:00.1: sev enabled
[3.274785] ccp 0000:45:00.1: SEV-SNP support requires firmware version >= 1:51
[3.284535] ccp 0000:45:00.1: SEV: failed to INIT error 0x1, rc -5
[3.284541] ccp 0000:45:00.1: SEV API:1.49 build:3
[3.424129] SEV supported: 410 ASIDs
[3.424130] SEV-ES and SEV-SNP supported: 99 ASIDs

SEV-SNP support requires a firmware version that is later than version 1.51:1. The latest
SEV-SNP firmware is available on https://developer.amd.com/sev and through the
linux-firmware project.

The following steps document the firmware upgrade process for the latest SEV-SNP
firmware on https://developer.amd.com/sev at the time this was written. A similar
procedure can also be used for newer firmware:
1. Run the following commands to reboot your system.

$ wget
https://developer.amd.com/wp-content/resources/amd_sev_fam19h_model0xh_1.33.03.zip

$ unzip amd_sev_fam19h_model0xh_1.33.03.zip

$ sudo mkdir -p /lib/firmware/amd
$ sudo cp amd_sev_fam19h_model0xh_1.33.03.sbin
/lib/firmware/amd/amd_sev_fam19h_model0xh.sbin

$ sudo reboot

2. After your system reboots, you should see correct messages in the dmesg output.

Confidential Computing Deployment Guide DU-11462-001_2.0 | 11

https://developer.amd.com/sev
https://developer.amd.com/sev

$ sudo dmesg | grep -i -e rmp -e sev
[0.768000] SEV-SNP: RMP table physical address 0x0000000035600000 -
0x0000000075bfffff
[3.868558] ccp 0000:45:00.1: sev enabled
[3.918694] ccp 0000:45:00.1: SEV firmware update successful
[7.315402] ccp 0000:45:00.1: SEV API:1.51 build:3
[7.315410] ccp 0000:45:00.1: SEV-SNP API:1.51 build:3
[7.322019] SEV supported: 410 ASIDs
[7.322019] SEV-ES and SEV-SNP supported: 99 ASIDs

3. Run the following commands to do a final check for SNP support.
All outputs should be "Y"
$ cat /sys/module/kvm_amd/parameters/sev
Y
$ cat /sys/module/kvm_amd/parameters/sev_es
Y
$ cat /sys/module/kvm_amd/parameters/sev_snp
Y

Your system is now configured for CC modes. To use these features, launch a VM.

Preparing to Launch a Guest Virtual Machine
with KVM
This section covers how the Host Administrator can use KVM/QEMU to launch a
Confidential VM (CVM) for a guest. These instructions can be followed by new developers
who want to start from scratch , but you can modify the steps at your discretion.

Note:While the hypervisor set up and VM launch steps might be redundant for a
developer who has an existing orchestration flow, there are steps that must be taken to
enable the NVIDIA H100 in confidential modes.

Confidential Computing Deployment Guide DU-11462-001_2.0 | 12

(Required) Configuring the GPU for Confidential
Compute Mode
The NVIDIA H100 can only be toggled into and out of CC modes with a privileged call from
in the Host.
Here are the main flags:
● --query-cc-settings

○ Prints the current mode that the GPU is operating in
● --set-cc-mode <MODE>

○ Where MODE is
■ on
■ off
■ devtools

Refer to our whitepaper for more information about what the modes represent. NVIDIA has
provided the following script to help facilitate this call.:

$ cd /shared/nvtrust/host_tools/python
$ git clone https://github.com/nvidia/gpu-admin-tools
$ cd gpu-admin-tools

$ sudo python3 ./nvidia_gpu_tools.py --gpu-bdf=1b:00.0 --query-cc-mode

2024-02-01,16:13:54.447 WARNING GPU 0000:1b:00.0 ? 0x2330 BAR0 0x21e042000000 not in
D0 (current state 3), forcing it to D0

Topo:

Intel root port 0000:15:01.0

PCI 0000:16:00.0 0x15b3:0x1979

PCI 0000:17:02.0 0x15b3:0x1979

PCI 0000:19:00.0 0x15b3:0x1979

PCI 0000:1a:00.0 0x15b3:0x1979

GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0 0x21e042000000

2024-02-01,16:13:54.558 INFO Selected GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0
0x21e042000000

2024-02-01,16:13:54.558 INFO GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0 0x21e042000000
CC mode is off

To change the state:

$ sudo python3 ./nvidia_gpu_tools.py --gpu-bdf=1b:00.0 --set-cc-mode=devtools
--reset-after-cc-mode-switch

NVIDIA GPU Tools version %VERSION%

Topo:

Intel root port 0000:15:01.0

Confidential Computing Deployment Guide DU-11462-001_2.0 | 13

PCI 0000:16:00.0 0x15b3:0x1979

PCI 0000:17:02.0 0x15b3:0x1979

PCI 0000:19:00.0 0x15b3:0x1979

PCI 0000:1a:00.0 0x15b3:0x1979

GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0 0x21e042000000

2024-02-01,16:10:34.040 INFO Selected GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0
0x21e042000000

2024-02-01,16:10:34.040 WARNING GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0 0x21e042000000
has CC mode devtools, some functionality may not work

2024-02-01,16:10:34.146 INFO GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0 0x21e042000000
CC mode set to devtools.

Query the state again:

$ sudo python3 ./nvidia_gpu_tools.py --gpu-bdf=1b:00.0 --query-cc-settings

NVIDIA GPU Tools version %VERSION%

Topo:

Intel root port 0000:15:01.0

PCI 0000:16:00.0 0x15b3:0x1979

PCI 0000:17:02.0 0x15b3:0x1979

PCI 0000:19:00.0 0x15b3:0x1979

PCI 0000:1a:00.0 0x15b3:0x1979

GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0 0x21e042000000

2024-02-01,16:07:54.247 INFO Selected GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0
0x21e042000000

2024-02-01,16:07:54.247 WARNING GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0 0x21e042000000
has CC mode devtools, some functionality may not work

2024-02-01,16:07:54.248 INFO GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0 0x21e042000000
CC mode is devtools

The GPU is now configured and ready to be directly assigned to your CVM. If you already
have an orchestration flow for building, configuring, and so onVMs with KVM, you can skip
the next section.

(Optional) Guest VM Setup
This section provides instructions about how to build and configure a basic Guest VM that
is CC enlightened.

Create the VM Base Image
1. Run the following commands to obtain an ISO of a supported operating system.

Confidential Computing Deployment Guide DU-11462-001_2.0 | 14

In this example, we are using Ubuntu 22.04.
$ cd /shared/nvtrust/host_tools/sample_kvm_scripts/isos
#download an ISO of a supported OS here, for example:

$ wget https://releases.ubuntu.com/22.04.4/ubuntu-22.04.4-live-server-amd64.iso

2. Create a blank VM drive, which is one file that acts as the VM's storage drive.

Create the empty Virtual Disk Drive. Change 500G to your desired size

$ /shared/AMDSEV/snp-release-<DATE>/usr/local/bin/qemu-img create -f qcow2
/shared/nvtrust/host_tools/sample_kvm_scripts/images/ubuntu22.04.qcow2 500G

Installing the Guest OS
1. To confirm some of the parameters in the top of prepare_vm.sh to align with your VM

location, run the following commands.

Edit /shared/nvtrust/host_tools/sample_kvm_scripts/prepare_vm.sh
#
Modify Variables to point to your correct paths for:
AMD_SEV_DIR -> /shared/AMDSEV/snp-release-<DATE>
VDD_IMAGE -> /shared/nvtrust/host_tools/sample_kvm_scripts/images/<your qcow2
drive file>
ISO -> /shared/nvtrust/host_tools/sample_kvm_scripts/isos/<ubuntu22.04>.iso

2. After the file points to the correct paths for appropriate items, run the following
command to launch the VM.
$ sudo ./prepare_vm.sh

Confidential Computing Deployment Guide DU-11462-001_2.0 | 15

Modifying GRUB to Print the Kernel Launch to the TTY
1. Select install option “Try or Install Ubuntu Server”

Figure 5. Selecting an Installation Option

Confidential Computing Deployment Guide DU-11462-001_2.0 | 16

2. To edit the command, press e.

Figure 6. Editing the Command

3. To modify the Linux launch and print to the local console, edit the following command.

linux /casper/hwe-vmlinuz console=ttyS0 ---

Figure 7. Printing the Local Console

Confidential Computing Deployment Guide DU-11462-001_2.0 | 17

4. To continue the launch, press CTRL+X.

You can now configure the Guest OS install parameters. No specific options during this
install are required. After the Guest OS is installed, Ubuntu will prompt you to reboot, and
the VM will terminate, which returns you to the host.

Note: Due to SNP limitations, a reboot command terminates the VM. This is expected for
all subsequent reboots.

Update the Guest Kernel
Restart your Guest VM:

On the Host
$ sudo ./launch_vm.sh -x

Copy over the SNP-aware guest kernel from the host into the guest.

On the Host (replace guestUser with the username you created in the previous steps)

Confidential Computing Deployment Guide DU-11462-001_2.0 | 18

$ scp -P9899 /shared/AMDSEV/snp-release-<DATE>/linux/guest/* guestUser@localhost:~/

Log into your CVM.
hostUser@host:~$ ssh -p9899 guestUser@localhost
guestUser@localhost's password:
Welcome to Ubuntu 22.04.2 LTS (GNU/Linux 5.19.0-43-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

System information as of Wed Jun 7 10:00:56 PM UTC 2023

System load: 0.080078125
Usage of /: 5.5% of 982.19GB
Memory usage: 0%
Swap usage: 0%
Processes: 220
Users logged in: 0
IPv4 address for docker0: 172.17.0.1
IPv4 address for enp0s3: 10.0.2.15
IPv6 address for enp0s3: fec0::5054:ff:fe12:3456

* Introducing Expanded Security Maintenance for Applications.
Receive updates to over 25,000 software packages with your
Ubuntu Pro subscription. Free for personal use.

https://ubuntu.com/pro

Expanded Security Maintenance for Applications is not enabled.

57 updates can be applied immediately.
To see these additional updates run: apt list --upgradable

Enable ESM Apps to receive additional future security updates.
See https://ubuntu.com/esm or run: sudo pro status

Last login: Wed Jun 7 21:46:48 2023
guestUser@guestVM:~$

Install the kernel
On the Guest
$ sudo apt install ~/*.deb

Confidential Computing Deployment Guide DU-11462-001_2.0 | 19

$ sudo reboot

Relaunch the VM

$ sudo ./launch_vm.sh

Validate that the Guest is in CVM mode:

$ sudo dmesg | grep -i sev
[sudo] password for user:
[1.063740] Memory Encryption Features active: AMD SEV SEV-ES SEV-SNP
[1.248095] SEV: Using SNP CPUID table, 31 entries present.
[6.632952] SEV: SNP guest platform device initialized.

Identifying the GPUs to be Passed Through to the
Guest
In the Host OS, to identify an H100 to pass to our new Guest VM.
1. Identify the NVIDIA devices in the system.

$ lspci -d 10de:
81:00.0 3D controller: NVIDIA Corporation Device 2336 (rev a1)

The value above tells us about an H100 that is found in the system:

● The slot ID: 81:00.0
● The device ID of the specific H100 in slot 81:00.0: 2336

KVM a Virtual Function I/O (VFIO), which is a Linux kernel feature that allows a VM to
access and control physical hardware devices for improved performance as if they were
directly connected to it.

2. Tell the host kernel that these device IDs should be allocated for VMs.
$ sudo sh -c "echo 10de 2336 > /sys/bus/pci/drivers/vfio-pci/new_id"

Confidential Computing Deployment Guide DU-11462-001_2.0 | 20

Note: This assignment must be done each time the Host reboots. You can restart Guests
multiple times or reassign the GPU(s) without repeating the steps.

Launching the Guest OS
The GPU is now configured for CC mode, we have installed Ubuntu on a VM, and configured
the H100 in the system for VM attachment, we are ready to launch our VM in Confidential
mode!

We have provided the launch_vm.sh script to help with this task. Again, it will need to be
modified to match your system’s folder configuration.
Modify /shared/nvtrust/host_tools/sample_kvm_scripts/launch_vm.sh
#
Modify Variables to point to your correct paths for:
AMD_SEV_DIR -> /shared/nvtrust/AMDSEV/snp-release-<DATE>
VDD_IMAGE -> /shared/nvtrust/host_tools/sample_kvm_scripts/images/<your qcow2
drive file>
NVIDIA_GPU -> the slot ID found in the steps above
MEM -> specifies amount of RAM the guest
FWDPORT -> specifies which port will forward to the sshd on this machine

After the modifications are complete, you can launch your Confidential VM:
$ sudo ./launch_vm.sh

At this point, the Host OS Administrator persona has completed the required work to
enable a Confidential VM with a Confidential H100 attached to it. The next steps will be
from the persona of a user who has received access to a VM and is ready to develop or
deploy a confidential application.

Virtual Machine Administrator
Figure 8. Virtual Machine Administrator

Confidential Computing Deployment Guide DU-11462-001_2.0 | 21

The Virtual Machine Administrator persona assumes that the hardware is correctly
configured and expects to receive a CVM that can be attested to, with a GPU attached to it
by the hypervisor. This persona might (or might not) have awareness about the lower-level
details of the system, such as the BIOS or Host OS configuration.Most users will begin
their journey here.

Note: The sample code snippets in this section will be presented as a continuation from
the previous steps of this document, which means a clean Ubuntu 22.04 install. If you
have been provided a CVM from your System Administrators, you might have a slightly
different output, but the overall flow and instructions should not differ greatly.

Enabling LKCA on the Guest VM

LKCA is required for Hopper CC all operation modes, so we recommend that you enable it in
the guest VM.

1. Create a /etc/modprobe.d/nvidia-lkca.conf file and add this line to it:
install nvidia /sbin/modprobe ecdsa_generic ecdh; /sbin/modprobe --ignore-install
nvidia

2. Update the initramfs.
sudo update-initramfs -u
sudo reboot

Installing the NVIDIA Driver and CUDA Toolkit
We recommend you use the Package Manager method of installing the NVIDIA drivers..
OpenRM is the open-source version of our Kernel drivers, and the source can be found on
our GitHub.

Hopper CC is enabled starting with CUDA 12.4 and is paired with driver r550-TRD1
(550.54.15), which can be downloaded as described below:
Obtain the NVIDIA keys to download the CUDA Toolkit
$ wget
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyrin
g_1.1-1_all.deb
$ sudo dpkg -i cuda-keyring_1.1-1_all.deb
$ sudo apt-get update

Install the toolkit
$ sudo apt-get -y install cuda-toolkit-12-4

Confidential Computing Deployment Guide DU-11462-001_2.0 | 22

https://github.com/NVIDIA/open-gpu-kernel-modules

Install the Driver
$ sudo apt install nvidia-driver-550-server-open

Setting up the NVIDIA Driver to be in Persistence Mode
When the NVIDIA driver loads, we will automatically establish a secured SPDM session with
the H100. As part of this session, secure ephemeral encryption keys are exchanged
between the host and the device.

In a typical operation, when the NVIDIA device resources are no longer being used, the
NVIDIA kernel driver will tear down the device state. However, in the CC mode, this leads to
destroying the shared-secret and the shared keys that were established during the setup
SPDM phase of the driver. Due to security concerns, the GPU will not allow the restart of
an SPDM session establishment without an FLR which resets and scrubs the GPU.

To avoid this situation, nvidia-persistenced provides a configuration option called
persistence mode that can be set by NVIDIA management software, such as nvidia-smi.
When the persistence mode is enabled, the NVIDIA kernel driver is prevented from exiting.
nvidia-persistenced does not use any device resources. It simply sleeps while maintaining a
reference to the NVIDIA device state.

1. Determine whether nvidia-persistenced is already running.
$ ps -aux | grep nvidia-persistenced
nvidia-+ 797 0.0 0.0 5472 1852 ? Ss 17:23 0:00
/usr/bin/nvidia-persistenced --user nvidia-persistenced --no-persistence-mode
--verbose

2. If you see the above with --no-persistence-mode or the only output is the grep
command:
$ ps -aux | grep nvidia-persistenced
user 25944 0.0 0.0 4032 2180 pts/0 S+ 18:52 0:00 grep
--color=auto nvidia-persistenced

then we must make changes for Confidential Computing modes.

a. Modify the service that automatically launches nvidia-persistenced:
On the Guest:
Edit /usr/lib/systemd/system/nvidia-persistenced.service

Change:

Confidential Computing Deployment Guide DU-11462-001_2.0 | 23

ExecStart=/usr/bin/nvidia-persistenced --user nvidia-persistenced
--no-persistence-mode --verbose

to this:
ExecStart=/usr/bin/nvidia-persistenced --user nvidia-persistenced

--uvm-persistence-mode --verbose

b. Tell systemd to reload its modules, and reboot the guest
On the Guest:

$ sudo systemctl daemon-reload
$ sudo reboot

Validating State and Versions
1. With the driver in persistent mode, you can check the status of the GPU to ensure that

it is configured in a CC mode.
$ nvidia-smi conf-compute -f
CC status: ON

2. Ensure that the firmware on the H100 is at a minimum version of 96.00.5E.00.00
$ nvidia-smi -q | grep VBIOS

VBIOS Version : 96.00.5E.00.25

If you have an earlier version of the VBIOS, contact NVIDIA for instructions on how to
upgrade to version 96.00.5E.00.00.

You have successfully configured the Guest CVM to operate in the CC mode with a secured
H100 accelerator! The next section is the persona for CVM users. However, before this
persona can use the GPU, we strongly recommend that you complete the attestation of
the GPU.

Confidential Computing Deployment Guide DU-11462-001_2.0 | 24

Virtual Machine User
Figure 9. Virtual Machine Administrator

The Virtual Machine user might (or might not) be the administrator of the system (refer to
Virtual Machine Administrator for more information). This Persona assumes that the
system is correctly configured for CC.

Note: We recommend that you complete your work in the /shared folder in the guest VM.

At this point, users must begin the attestation workflow to ensure the system is authentic
and valid. Attestation is the process of challenging the GPU where measurements are
collected and signed by the GPU, and these measurements are compared to known-good,
golden measurements. After the verification passes, you might want to enable the GPU by
setting its ReadyState.

Note: The GPU will not accept any work until an enlightened CVM user sets the
ReadyState. This is to prevent accidental usage before the confirmation of the GPU is
complete.

Confidential Computing Deployment Guide DU-11462-001_2.0 | 25

Figure 10. Attesting the GPU

The recommended flow for attestation is to directly use the Attestation SDK and its APIs .
However, you can directly call the Local GPU Verifier. This flow to learn more about the
Local GPU Verifier, refer to the NVIDIA Attestation SDK guide at
https://docs.nvidia.com/nvtrust

Validating Your Configuration
After the driver is successfully installed, and you can query the device, the next step is to

attest to the GPU.

1. If you are coming directly to this persona section, ensure that nvidia-persistenced is

already running. If you started in the previous persona, you skip this verification step.

$ ps -aux | grep nvidia-persistenced
root 2327 20.1 0.0 5312 1788 ? Ss 08:57 0:05
nvidia-persistenced

2. If nothing is returned, run the following command to start it.
$ sudo nvidia-persistenced

3. Check the status of the GPU to ensure that it is configured in a CC mode.
$ nvidia-smi conf-compute -f
CC status: ON

Confidential Computing Deployment Guide DU-11462-001_2.0 | 26

https://docs.nvidia.com/nvtrust

Installing the Attestation SDK
Before you begin, install the Local GPU Verifier, which is also in the nvTrust repository. To
keep it simple, perform another clone of the repo:
$ cd /shared
$ git clone https://github.com/nvidia/nvtrust

$ cd nvtrust/guest_tools/

Installation Prerequisites
The Attestation SDK and the Local GPU Verifier require Python3. We also recommend that
you also install the Virtual Environment module, which can keep your primary system
Python environment clean.
$ sudo apt install python3-pip

Optionally install:
$ sudo apt install python3.10-venv

(Optional) Configuring a Python Virtual Environment
Create a new virtual env named nvAttest
python3 -m venv /shared/nvAttest

Configure the shell to use nvAttest
$ source /shared/nvAttest/bin/activate
(nvAttest) user@guestVM:/shared/$

Your Python virtual environment will now always be prefixed with (nvAttest). If you do not
see this string on your terminal (for example, after changing terminal windows, logging out,
and so on), run the following command again.
$ source /shared/nvAttest/bin/activate

Installing the Local GPU Verifier
You must install the plugins before you install the Attestation SDK, otherwise you will get
errors.
(nvAttest) $ cd /shared/nvtrust/guest_tools/gpu_verifiers/local_gpu_verifier
(nvAttest) $ pip3 install .

Confidential Computing Deployment Guide DU-11462-001_2.0 | 27

Installing the Attestation SDK
Note: Ensure you are running in the same python environment (either the optional virtual
environment nvAttest created above or your default one).

(nvAttest) $ cd /shared/nvtrust/guest_tools/attestation_sdk/
(nvAttest) $ pip3 install .

Executing an Attestation of the GPU
After the components have been installed, you are ready to perform an attestation using
the SDK. The sample code can be found on the nvTrust GitHub under
nvtrust/guest_tools/attestation_sdk/tests/SmallGPUTest.py

However, here is the Python code, and you can run this code on the python3 command line.
from nv_attestation_sdk import attestation

Create a Attestation object
client = attestation.Attestation("test_node")

Add the type of verifier that you would like to use
client.add_verifier(attestation.Devices.GPU, attestation.Environment.LOCAL, "", "")

Set the Attestation Policy that you want to validate your token against.
attestation_results_policy =
'{"version":"1.0","authorization-rules":{"x-nv-gpu-available":true,' \

'"x-nv-gpu-attestation-report-available":true}}'

Run Attest
print(client.attest())

Call validate_token to validate the results against the Appraisal policy for
Attestation Results
print(client.validate_token(attestation_results_policy))

The primary focus of the attestation should be the yellow highlighted variable. As the
developer, you can decide which measurements constitute a pass or a fail result from the
Attestation SDK. In the example above, the code will return TRUE as long as there is an
NVIDIA GPU detected in the CVM and the process to obtain the GPU measurements was
returned properly.

Confidential Computing Deployment Guide DU-11462-001_2.0 | 28

We provide a full list of all the possible measurements that returned during an attestation
query. It is listed below for your reference.
/shared/nvtrust/guest_tools/attestation_sdk/tests/NVGPUPolicyExample.json

{

"version":"1.0",

"authorization-rules":{

"x-nv-gpu-available":true,

"x-nv-gpu-attestation-report-available":true,

"x-nv-gpu-info-fetched":true,

"x-nv-gpu-arch-check":true,

"x-nv-gpu-root-cert-available":true,

"x-nv-gpu-cert-chain-verified":true,

"x-nv-gpu-ocsp-cert-chain-verified":true,

"x-nv-gpu-ocsp-signature-verified":true,

"x-nv-gpu-cert-ocsp-nonce-match":true,

"x-nv-gpu-cert-check-complete":true,

"x-nv-gpu-measurement-available":true,

"x-nv-gpu-attestation-report-parsed":true,

"x-nv-gpu-nonce-match":true,

"x-nv-gpu-attestation-report-driver-version-match":true,

"x-nv-gpu-attestation-report-vbios-version-match":true,

"x-nv-gpu-attestation-report-verified":true,

"x-nv-gpu-driver-rim-schema-fetched":true,

"x-nv-gpu-driver-rim-schema-validated":true,

"x-nv-gpu-driver-rim-cert-extracted":true,

"x-nv-gpu-driver-rim-signature-verified":true,

"x-nv-gpu-driver-rim-driver-measurements-available":true,

"x-nv-gpu-driver-vbios-rim-fetched":true,

"x-nv-gpu-vbios-rim-schema-validated":true,

"x-nv-gpu-vbios-rim-cert-extracted":true,

"x-nv-gpu-vbios-rim-signature-verified":true,

"x-nv-gpu-vbios-rim-driver-measurements-available":true,

"x-nv-gpu-vbios-index-conflict":true,

"x-nv-gpu-measurements-match":true

}

Confidential Computing Deployment Guide DU-11462-001_2.0 | 29

}

Successful Attestation Result

When the Attestation SDK has successfully returned a valid result, you should see

something like below (varies slightly based on your specific system):

python3
Python 3.10.6 (main, May 29 2023, 11:10:38) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from nv_attestation_sdk import attestation
>>> client = attestation.Attestation("test_node")
>>> client.add_verifier(attestation.Devices.GPU, attestation.Environment.LOCAL, "",
"")
>>> attestation_results_policy =
'{"version":"1.0","authorization-rules":{"x-nv-gpu-available":true,' \
...
'"x-nv-gpu-attestation-report-available":true,"x-nv-gpu-info-fetched":true,' \
...
'"x-nv-gpu-arch-check":true,"x-nv-gpu-root-cert-available":true,' \
...
'"x-nv-gpu-cert-chain-verified":true,"x-nv-gpu-ocsp-cert-chain-verified":true,' \
...
'"x-nv-gpu-ocsp-signature-verified":true,"x-nv-gpu-cert-ocsp-nonce-match":true,' \
...
'"x-nv-gpu-cert-check-complete":true,"x-nv-gpu-measurement-available":true,' \
...
'"x-nv-gpu-attestation-report-parsed":true,"x-nv-gpu-nonce-match":true,' \
...
'"x-nv-gpu-attestation-report-driver-version-match":true,' \
...
'"x-nv-gpu-attestation-report-vbios-version-match":true,' \
...
'"x-nv-gpu-attestation-report-verified":true,"x-nv-gpu-driver-rim-schema-fetched":true
,' \
...
'"x-nv-gpu-driver-rim-schema-validated":true,"x-nv-gpu-driver-rim-cert-extracted":true
,' \
... '"x-nv-gpu-driver-rim-signature-verified":true,' \
...
'"x-nv-gpu-driver-rim-driver-measurements-available":true,' \
...
'"x-nv-gpu-driver-vbios-rim-fetched":true,"x-nv-gpu-vbios-rim-schema-validated":true,'
\

Confidential Computing Deployment Guide DU-11462-001_2.0 | 30

...
'"x-nv-gpu-vbios-rim-cert-extracted":true,"x-nv-gpu-vbios-rim-signature-verified":true
,' \
...
'"x-nv-gpu-vbios-rim-driver-measurements-available":true,' \
...
'"x-nv-gpu-vbios-index-conflict":true,"x-nv-gpu-measurements-match":true}}'
>>> client.attest()
Number of GPUs available : 1

Fetching GPU 0 information from GPU driver.
VERIFYING GPU : 0

Driver version fetched : 535.86.05
VBIOS version fetched : 96.00.5e.00.01
Validating GPU certificate chains.

GPU attestation report certificate chain validation successful.
The certificate chain revocation status verification successful.

Authenticating attestation report
The nonce in the SPDM GET MEASUREMENT request message is matching with the

generated nonce.
Driver version fetched from the attestation report : 535.86.05
VBIOS version fetched from the attestation report : 96.00.5e.00.01
Attestation report signature verification successful.
Attestation report verification successful.

Authenticating the RIMs.
Authenticating Driver RIM

RIM Schema validation passed.
driver RIM certificate chain verification successful.
The certificate chain revocation status verification successful.
driver RIM signature verification successful.
Driver RIM verification successful

Authenticating VBIOS RIM.
RIM Schema validation passed.
vbios RIM certificate chain verification successful.
The certificate chain revocation status verification successful.
vbios RIM signature verification successful.
VBIOS RIM verification successful

Comparing measurements (runtime vs golden)
The runtime measurements are matching with the golden measurements.

GPU is in expected state.
GPU 0 verified successfully.
GPU Attested Successfully

True
>>> client.validate_token(attestation_results_policy)

Confidential Computing Deployment Guide DU-11462-001_2.0 | 31

Conclusion

With this guide, we have provided information about the process from when the machine is
racked and stacked to configuring the host and guest operating systems, and finally to
attaching an H100 in a CVM. This flow can be modified to suit your specific needs, and we
encourage you to provide feedback, comments, or questions. You can reach out to us on
our forum page:
https://forums.developer.nvidia.com/c/accelerated-computing/confidential-computing/663
.
Stay tuned to our GitHub for the latest updates, news, and solutions in the meantime.
Happy coding!

Confidential Computing Deployment Guide DU-11462-001_2.0 | 32

https://forums.developer.nvidia.com/c/accelerated-computing/confidential-computing/663

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality,
condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for
any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this
document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is
current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order
acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA
and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with
regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either
directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life
support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to
result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of
NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use.
Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to
evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit
for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document.
NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the
use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual
property right under this document. Information published by NVIDIA regarding third-party products or services does not
constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such
information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced
without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated
conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051

http://www.nvidia.com

http://www.nvidia.com

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for
any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall
be limited in accordance with the Terms of Sale for the product.

Trademarks
NVIDIA, the NVIDIA logo, and Hopper are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and
other countries. Other company and product names may be trademarks of the respective companies with which they are
associated.

VESA DisplayPort
DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort
Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards Association in the United
States and other countries.

HDMI
HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing
LLC.

Arm
Arm, AMBA, and ARM Powered are registered trademarks of Arm Limited. Cortex, MPCore, and Mali are trademarks of Arm
Limited. All other brands or product names are the property of their respective holders. ʺArmʺ is used to represent ARM
Holdings plc; its operating company Arm Limited; and the regional subsidiaries Arm Inc.; Arm KK; Arm Korea Limited.; Arm
Taiwan Limited; Arm France SAS; Arm Consulting (Shanghai) Co. Ltd.; Arm Germany GmbH; Arm Embedded Technologies Pvt.
Ltd.; Arm Norway, AS, and Arm Sweden AB.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Copyright

© 2023 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051

http://www.nvidia.com

http://www.nvidia.com

