<3

NVIDIA

NVIDIA DRIVE OS 6.0 SDK Migration Guide

Version: 6.0.8.1

5:)

SWE-SWDOCDRV-017-PGRF | August 2023

NVIDIA

SWE-SWDOCDRV-017-PGRF

Version Date Description of Change
01 August 1, 2021 Initial release
02 August 16, 2021 Added Installation and Tools Changes chapter

Added NvMedia API Changes section
Added Drive Update Changes section

Added the following sections to the TensorRT
content:

Symbols
Plugins and Plugin Registry
Library Names

03 August 24, 2021 In the TensorRT API Changes section, added
information about a build flag to enable safety
restrictions and a method check for |Builder.

04 September 30, 2021 Incorporated major content and organizational
changes to NvMedia API tables

Incorporated updates to the TensorRT AP
Changes section

Updated the last four rows in the SDK File
Locations in 5.2 and 6.0 table

05 December 16, 2021 Updated content in the NvStreams APl Changes
section

Updated the Tensor RT APl Changes section to
rename the section and remove content now found
in the release notes.

Added a table: TensorRT Changes for 6.0.1 and
6.0.2
06 January 21, 2022 Added the following sections:

NvMedia Image Processing Pipeline (IPP)
Changes Introduced in DRIVE 055.1.15.0

NvMedia 2D: Migrating from 5.2 to 6.0

NvMedia Lens Distartion Correction (LDC]):
Migrating from 5.2 to 6.0

Updated TensorRT information

Implemented editorial updates

07 February 11, 2022 Added a timeline summary of NvMedia AP
changes
08 March 10, 2022 Added the NvScilpc API Changes section

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 1

NVIDIA DRIVE 0S 6.0 Migration Guide
NVIDIA

Version Date Description of Change

09 April 12, 2022 Added the Linux targetfs directory to targetfs
Image section
Added information about a TensorRT API

10 July, 2022 Added PKCS#11 API Changes section
Added Board Support Packages [BSP) API Changes
Added a Utilities section

Updated the NvScilpc API Changes section for
6.0.4

Updated the NvMedia Core Deprecation section
Added NvMedia Tensor API Changes section

11 September, 2022 Added information about nvGPIO to the BSP Driver
table

Updated PKCS#11 information for 6.0.5

Updated code snippets in the Camera/SIPL API
Changes table

12 January, 2023 Added a section: NITO File Path Changes in 6.0
Added a topic on Accessing and Choosing a Token
Updated NvSciplc Deprecated and Modified APls

section
13 March, 2023 Added NvMediaEncodeQuality Deprecation section
14 April, 2023 Updated TensorRT bulleted list in DRIVE 0S 5.2 to

6.0 Packaging Changes section
Updated Camera/SIPL API Changes table

15 July, 2023 Updated the What's New table

Updated the DRIVE 0S 5.2 to 6.0 Packaging
Changes section for TensorRT

Added MCU Communication Coordinator Changes
section

Updated the NvMedia Image Processing Pipeline
(IPP) Changes Introduced in DRIVE 05 5.1.15.0
section

Added Camera SIPL GPIO and Interrupt
Localization Changes Introduced in DRIVE 0S
6.0.6.0 section

16 August, 2023 Added SIPL Event Deprecation section for 6.0.8

Updated the table, Migrating PKCS#11 Library
from 5.2t0 6.0, for 6.0.8 and 6.0.8.1 APl changes

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 2

<Z NVIDIA DRIVE 0S 6.0 Migration Guide

NVIDIA.
Table of Contents

OV BIVIBW e 9
DRIVE 0S 5.2 to 6.0 Packaging Changes ... 12
Master Debian Packages ... 13

L U e 14

QANX [SEANAAN] o 14
Foundation (Standard) ..o, 15
LiNUX (SEANAAIA] ..o, 16
QANX (STANAAI) .o 19
AN (SAT Y] e 20
COMIMION ettt 22
Installation and Tools Changes ... 23
Linux targetfs directory to targetfs image ... 23
T0OLChAIN UPGrade ..o 24
UBUNTU UPGrade ... 25
Changes to Files In targetfs . .. 27
NITO File Path Changes in 6.0.6 . oo 27
MCU Communication Coordinator Changes............coooooiiiii e 28
L A1 L A= SO UPPPPRPORP 29
Migration QNX I0Launcher config File to Device Tree ..o 29
SDK SErUCTUTE e 31
NEeW TOP-LeVel DIFECTOTIES ..ot 31
t186ref Removal from the SDK Installation Directory and File Names ... 31

SDK File Locations in 5.2 and 6.0o 32
APl Changes in DRIVE OS 6.0, oo 37
OVBIVIBW ..ottt e ettt 37
NVMedia APl Changes ... 38
Summary of the NvMedia APl TIMELiNe ..o 38
RELEASE 6.0.2.0 . i 38
RELEASE 6.0.3.0: . i 38
RElEase 6.0.4.0: .. i 38
RELEASE 6.0.7.0: . e 38
NvMediaEncodeQuality Deprecation 38
NvMedialmage to NvSciBuf Migration ... 65

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 3

<Z NVIDIA DRIVE 0S 6.0 Migration Guide

NVIDIA

NvMedia EGL Stream to NvSciStreams Migration ..o 67
NvMedia Image Processing Pipeline (IPP] Changes Introduced in DRIVE 0S5 5.1.15.0...... 70
Capture and Process from a Live Camera ..o 70
Reprocess a RAW File Using Hardware ISP ... 72
NvMedia Array and NvMedia CVScratchPad Deprecationcccoociiiiiiiiiiiii, 75
NVMedia [SC DEPreCatioN ... e 75
NvMedia Core DepreCation ... oo 75
NvMedia 2D: Migrating from 5.2 £0 6.0 ... 76
NvMedia Lens Distortion Correction (LDC): Migrating from 5.2t0 6.0 ..., 83
Camera SIPL GPIO and Interrupt Localization Changes Introduced in DRIVE 0S 6.0.6.0 .93
INtErrUPT LOCALIZAtION 1..iiii e 93
Device Tree ConfigUIation ... i 93

B A D e 94
PLlatform ConfigUIationo 94

B AN D e 95
SIPL EVENt DEPIreCation ..o 95
NVSEreams AP Changes 95
ADOUE NVSTIEAMIS ...t 95
About the NvStreams Migrationoii i 96
NVSErEaMS EXAMPLES ..o 96
GENErAl ChaANGeS . 97
LP G SO UD et 98
COMMECEION L.ttt 98
B A D e 98
UNmMOdified CoE ..o 98
INEW COTE et 98
EVENT HANAUNG oo 98
E AN DL e 99
OLd LTt 99
NEW COQ@ ... 100

BT O EVENES e 100
ELemMENt SUP PO e 101
Specifying Element SUPPOIT. ... 101
Producer (and Consumer) EXampleoooooioiiiieoceeeeeeeeeee 101
Ol GO 101
NEW COG@ . 102
POOL EXAMIPLE . 102
Receiving Element SUPPOrt. ..o 102

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 4

<Z NVIDIA DRIVE 0S 6.0 Migration Guide

NVIDIA

P OOl EXAMIPLE ¢ 104
OLld POOL COTE . 104
NEW POOL COE . 105

Producer and Consumer EXample ..o 106
Old Producer/Consumer COAE ..ot 106
New Producer/Consumer COAe ... 106

Element SYNc AtIIDULES ..o 107

B XA D e 108
O OO 108
NEW O .t 108

P A KBS 109

SPECITYING PACKETS ..o 109

B A D e 110
Ol OO e 110
NEW GO e (N

RECEIVING PaCKeLS ... o 112

B XA DL 113
Ol L0 113
NEW COOB ..o 114

SYNC OB CES e 115

SPeCifying SYNC ODJECES .o 115

B XA DL 116
Ol L0 116
NEW O et 116

ReCeIVING SYNC ODJECES . 117

E XA DL 117
Ol L0 117
NeW CoNSUMET COG@ ..oiiiiiiii e 118
NeW Producer Code ..o 118

PRase CRaNge oo 118

B XA D e 118

NEW O e 118
Streaming FUNCHIONS ... e 119

B XA D e 120
Ol ProduCer GO ... 120
NeW Producer Code ... 120

NVSCIPC AP CRaNGeS .o 121
Summary of the NvScCilpc AP TIMELINE ...oiiiii e 121

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 5

<Z NVIDIA DRIVE 0S 6.0 Migration Guide

NVIDIA

RELEaSE 6.0.2.0 . i 121
RELEase 6.0.3.0 . i 121
Release 6.0.4.0 .. i 121
RElEase 6.0.0.0 .. i 121
The NVSCIPC LIDFANY .o 121
Differences Between DRIVE 0S 5.2 and 6.0 ..o 122

TN 6,030, 1o 122

TN 6.0.4.0, 1o 122
Deprecated and Modified APIS.... .o 122
PCSHTT APL CRANGES ..ot 132
PKCS#T1-Implementation DetailS ..o, 136
RElEase 6.0.0.0 . i 136
SLOtS AN TOKENS L. 136
RELEaSE 6.0.6.0 . i 137
Accessing and Choosing @ TOKENooiiii i 137
Board Support Packages (BSP) APl Changescooovoiocoieeeeeeeeeeeeeeeeee . 137
DRIVE Update Changeso 138
TensOrRT AP Changes ..o 139
Appendix: Additional RESOUTCeSooooiiiiie e 142

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 6

<Z NVIDIA DRIVE 0S 6.0 Migration Guide

NVIDIA.
List of Tables

Table 1. What's New in NVIDIA DRIVE OS 6ooiiiiiiii i 9
Table 2. List 0f Vari@bles ..o 13
Table 3. Master Debian Package Names [Linux).......c.cooooooiooiiii 14
Table 4. Master Debian Package Names [ANX Standard) ... 14
Table 5. Standard Foundation .run File to .deb File Map ..o, 15
Table 6. Standard Linux .run File to .deb File Map ... 16
Table 7. Standard QNX .run File to .deb File Map......cocooiiiiii 19
Table 8. Safety QNX .run File to .deb File Map ..o, 20
Table 9. Common .run File .deb File Map ..o 22
Table 10. Legacy Toolchain and Replacement Toolchainoocooiiiiiiii 24
Table 11. Startup Command DT FIleS ..o 29
Table 12. SDK File Locations in 5.2.and 6.0 ..o 32
Table 13. Mapping between NvMediaEncodeQuality and NvMediaEncPreset....................... 39
Table 14. Support Matrix for NvMedia Multimedia APIS ... 40
Table 15, NvMedia Video DeCOOr . ..ot 41
Table 16. NvMedia IEP - NvMedialmage based to NvSciBuf based..........ccccooiiiiiiiii 45
Table 17. NvMedia IOFST [DRIVE 0S 5.2) to NvMedia IOFA ... 48
Table 18. NvMedia IOFA - NvMedialmage based to NvSciBuf basedccccocoiiiiiinn, 52
Table 19. NvMedia [JPEG DECOAEo it 54
Table 20. NvMedia [JPEG ENCOAE ..o 56
Table 21, NVMEAIa VP ... e 58
Table 22. Camera/SIPL AP Changes ..o 59
Table 23. NvMediaTensor APl Changesoiiii i 65
Table 24. Deprecated NvMedialmage APIS ... 66
Table 25. Migration from NvMedialmage to NvSciBuf ... 66
Table 26. Deprecated NvMedia EGL Stream APIs in NVIDIADRIVE 6.0 ... 68
Table 27. NvMedia Producer and NvSciStreams Programming Sequencescocoooeeennne. 69
Table 28. NvMedia Consumer and NvSciStreams Programming Sequencescocoooveeeene. 69
Table 29. NvMedia IPP and SIPL API Call Sequence Comparisonccccoccieioioiicininee, 70
Table 30. Reprocessing a RAW File using Hardware ISP.........ccooiiiiii 73
Table 31. Possible Sequences for APl Calls ... 76
Table 32, NVMEIA 2D ..o 77
Table 33. Possible Sequences for API Calls ... 83
Table 34. NvMedia Lens Distortion CorreCtionooi oo 85
Table 35. Device Tree Configuration........ooiiiiiiic e 94

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 7

Cz NVIDIA DRIVE 0S 6.0 Migration Guide

NVIDIA

Table 36.
Table 37.
Table 38.
Table 39.
Table 40.

|

Table 41

Platform Configurationo 95
Migrating PKCS#11 Library from 5.2 t0 6.0 ..o 132
QANX BSP DFIVET e 137
Drive Update Changes from 5.7 t0 6.0 138
Drive Update Changes from 5.2 t0 6.0.....ccoooiiiii 138
AP CRaNgS .. e 139

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 8

Overview

NVIDIA DRIVE® 0S 6.0 is currently in development. As a result, this
document describes pre-production data; all content is subject to
change. System development using pre-production data comes with
inherent risk that should be understood by system developers

This document summarizes the changes you can expect moving from NVIDIA DRIVE® 0S 5.1
and 5.2 to 6.0. While NVIDA DRIVE Xavier™ supports DRIVE 0S 5.2, NVIDIA DRIVE Orin™, our
next-generation System on a Chip (SoC) for Automotive and Safety, supports DRIVE 6.0.

This migration guide is designed to help you plan early to migrate your applications for a
seamless experience when you gain access to Orin development and reference production
boards starting with 6.0 releases.

The following figure identifies component changes between 5.2 and 6.0.

Table 1. What's New in NVIDIA DRIVE OS 6
NVIDIA DRIVE 0OS DRIVE OS 5.2 | DRIVE OS 6.0 DRIVE OS 6.5
COMPONENTS
Ubuntu Host Development 18.04 20.04

Environment

Ubuntu Target Root File

System !

Linux Kernel 414 5.1
Blackberry QNX SDP 2 7.0.4 7.1.1
Blackberry QNX Q0S? 2.7 2.2
QCC Toolchain 53 8.3
GCC Toolchain 5.4 9.3
C++ Feature Set 14 17
DriveWorks 4 5
CUDA Toolkit 10.2 1.4

NVIDIA CONFIDENTIAL

NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 9

NVIDIA DRIVE 0S 6.0 Migration Guide

NVIDIA DRIVE OS DRIVEOS 5.2 | DRIVE OS 6.0 DRIVE OS 6.5
COMPONENTS
NVIDIA UDA CUDA Driver! r450 r470
(x86)
TensorRT b.4 8.x4
CuDNN 7.6 8.x°
Vulkan 1.2
Wayland 1.17
Vulcan SC N/A 1.0
QNX Screen N/A 711
PKCS#11 V4 v
HARDWARE DRIVEOS 5.2 | DRIVE OS 6.0 DRIVE OS 6.5
Xavier/Xavier DevKit v X
Orin/Orin Devkit X 4
SENSORS
OnSemi AR0231 v -
OnSemi AR0820
Sony IMX390
Sony IMX728 X v
Sony IMX623
OV 0V2311
OTHER
Packaging .run files Debian/Docker
Distribution NVONLINE NGC
Notes:

1) Linux only; not available on QNX

2] QNXonly; not available on Linux
3] GCC tollchain will be either 9.2 or 9.3

4) Finalversion number TBD

With the NVIDIA DRIVE OS 6.0 release, you can expect changes to the following:

Packaging

Installation and Tools

NVIDIA CONFIDENTIAL

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 10

NVIDIA DRIVE 0S 6.0 Migration Guide

Utilities
The SDK Structure

Safety Services
APls

vV v vy

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 11

NVIDIA DRIVE 0S 6.0 Migration Guide

DRIVE 0S 5.2 to 6.0 Packaging Changes

This document is not 5.2 specific. Debian packages are not supported
for external consumption.

This document is provided as a preview of upcoming changes; version
numbers and file names are subject to change.

Release 6.0 includes packaging changes from 5.2. This document describes the transition
from . run files to .deb files for Standard and Safety releases.

The following Debian package files remain unchanged from 5.2 to 6.0:

The versions will be updated from 10.2 to 11.x.

» Developer Tools
e NsightSystems-linux-nda-2021.2.2.3-9b295cc.deb and
NVIDIA_Nsight_Graphics_D5Q_NDA_2020.5.20339.deb

» NVIDIA CUDA®

e cuda-repo-cross-aarché4-gnx-standard-<cuda_version>-
local_<cuda_version>.<build_version>_all.deb

e cuda-repo-cross-qnx-safe-<cuda_version>-
local_<cuda_version>.<build version>_all.deb

e cuda-repo-minimal-toolkit-<cuda_version>-
local_<cuda_version>.<build_version>_amdé4.deb
e cuda-repo-gnx-<cuda_version>-local_<cuda_version>.<build_version>_amdé4.deb

e cuda-repo-ubuntu2004-<cuda_version>-local_<cuda_version>.<build_version>-
450.118-1_amdé4.deb

» cuDNN
e cudnn-local-repo-ubuntu{VERSION} _armé4.deb

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 12

NVIDIA DRIVE 0S 6.0 Migration Guide

e cudnn-local-repo-ubuntu{VERSION} amdé4.deb

e cudnn-local-repo-cross-aarché4-d6l-{VERSION} all.deb

e cudnn-local-repo-cross-aarché4-qnx-{VERSION}.{BUILD} all.deb
> TensorRT

e nv-tensorrt-repo-ubuntu2004-{CUDA_VERSION}-trt{VERSION}-x86-host-ga-
{BUILD}_amdé4.deb

e nv-tensorrt-repo-ubuntu2004-{CUDA_VERSION}-trt{VERSION}-dél-target-ga-
{BUILD} _armé4.deb

e nv-tensorrt-repo-ubuntu2004-{CUDA_VERSION}-trt{VERSION}-dél-cross-ga-
{BUILD} amdb4.deb

e nv-tensorrt-repo-ubuntu2004-{CUDA_VERSION}-trt{VERSION}-gnx-cross-ga-
{BUILD}_amdé4.deb

e nv-tensorrt-repo-ubuntu2004-{CUDA_VERSION}-trt{VERSION}-gnx-safe-cross-ga-
{BUILD}_1-1_amdé4.deb

The following table describes variables used in this document:

Table 2. List of Variables
Field Mandatory DRIVE OS Values
DrivePlatform Yes driveos
Flavor Yes, but applicable only for flash, build
Master Debian packages
oS Yes common
DriveType Yes safety, standard

In the case of “standard”, this
field will not be populated, and
without adjacent dashes

Module Yes, only for shell and leaf Component name
Debian packages
PDK Yes, for Master and optional for | sdk, pdk
leaf and shell Debian packages
DriveVersion Yes {RELEASE}-{GCID}
For example, 5.2.x.0-GCID,
6.x.0.0-GCID

Master Debian Packages
« NVIDIA DRIVE™ QS Software Development Kit (SDK] is used to develop
DRIVE OS applications for deployment on NVIDIA DRIVE AGX™ based

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 13

NVIDIA DRIVE 0S 6.0 Migration Guide

Linux

Table 3.

hardware platforms. NVIDIA recommends installing from the Master
Debian package files for SDKs.

« NVIDIA DRIVE™ QS Platform Development Kit (PDK] is used to adapt
NVIDIA DRIVE OS to run on custom hardware based on NVIDIA
Automotive SoC [that is Xavier]. NVIDIA provides the flexibility to install up
to the leaf from Master for PDKs.

Not all developers have access to all DRIVE OS components. For more

information, contact your NVIDIA representative.

Master Debian Package Names (Linux]

Master Debian Package File Names

Master Debian Package Names

nv-driveos-build-{DriveType}-sdk-
linux {DriveVersion} amd64.deb

nv-driveos-build-{DriveType}-sdk-
linux-{DriveVersion}

nv-driveos-flash-{DriveType}-sdk-
linux {DriveVersion} amd64.deb

nv-driveos-flash-{DriveType}-sdk-
linux-{DriveVersion}

QNX (Standard]

Table 4.

Master Debian Package Names (QNX Standard)

Master Debian Package File Names

Master Debian Package Names

nv-driveos-build-{DriveType}-sdk-
gnx_{DriveVersion} amdé64.deb

nv-driveos-build-{DriveType}-sdk-
gqnx-{DriveVersion}

nv-driveos-flash-{DriveType}-sdk-
gnx_{DriveVersion} amd64.deb

nv-driveos-flash-{DriveType}-sdk-
gnx-{DriveVersion}

nv-driveos-build-{DriveType}-debug-
sdk-gnx {DriveVersion} amdé64.deb

nv-driveos-build-{DriveType}-debug-
sdk-gnx-{DriveVersion}

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF |

14

NVIDIA DRIVE 0S 6.0 Migration Guide

Foundation (Standard]

The following table describes the 5.2 to 6.0 Standard Foundation transition:

Table b.

Standard Foundation .run File to .deb File Map

Existing Runfile

Shell Debian Package File Name

Leaf Debian Package File Names

drive-tl86ref-
foundation-
{DriveVersion}-
toolchain.run

nv-driveos-foundation-
{DriveType}-

toolchains {ToolVersion
} _amd64.deb

nv-driveos-foundation-
{DriveType}—-gcc-linaro-
aarch64-linux-
gnu_{DriveVersion} amd64.
deb

nv-driveos-foundation-
{DriveType}—-gcc-linaro-
arm-linux-

gnueabi {DriveVersion} am
do4d.deb

nv-driveos-foundation-
{DriveType}-gcc-linaro-
arm-linux-

gnueabihf {DriveVersion}
amd64 .deb

drive-tl1l86ref-
foundation-
{DriveVersion}-release-
sdk.run

NVIDIA CONFIDENTIAL

nv-driveos-foundation-
{DriveType}-release-
sdk {DriveVersion} amdé6
4.deb

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

nv-driveos-foundation-
{DriveType}-release-sdk-
ist {DriveVersion} amd64.
deb

nv-driveos-foundation-
{DriveType}-release-sdk-
platform-

config {DriveVersion} amd
64 .deb

nv-driveos-foundation-
{DriveType}-release-sdk-
virtualization {DriveVers
ion} amd64.deb

nv-driveos-foundation-
{DriveType}-release-sdk-
core-flash-

data {DriveVersion} amdt4
.deb

nv-driveos-foundation-
{DriveType}-release-sdk-
core-flash-

SWE-SWDOCDRV-017-PGRF | 15

NVIDIA DRIVE 0S 6.0 Migration Guide

Existing Runfile Shell Debian Package File Name |Leaf Debian Package File Names

tools {DriveVersion} amdé6
4.deb

nv-driveos-foundation-
{DriveType}-release-sdk-
flash-

data {DriveVersion} amdé64
.deb

nv-driveos-foundation-
{DriveType}-release-sdk-

flash-
tools {DriveVersion} amdé6
4 .deb
drive-tl1l86ref- N/A nv-driveos-foundation-
foundation-oss-src.run {DriveType}-oss-
src_{DriveVersion} amd64.
deb
drive-tl1l86ref- N/A nv-driveos-foundation-
foundation- {DriveType}-debug-
{DriveVersion}-debug- overlay {DriveVersion} am
overlay.run de4d.deb
drive-tl86ref- N/A None - use e3550 specific .zip files
foundation- containing FW directly
{DriveVersion}-
e3550specific.run
drive-tl86ref- N/A None - use p3479 specific .zip files
foundation- containing FW directly

{DriveVersion}-
p3479specific.run

The following table describes the 5.2 to 6.0 Standard Linux transition:

Table 6. Standard Linux .run File to .deb File Map

Existing Runfile Shell Debian Package File Name |Leaf Debian Package File Names

drive-tl86ref-linux-— nv-driveos-linux-oss- nv-driveos-linux-oss-

{DriveVersion}-oss- minimal- minimal-sdk-

minimal-sdk.run sdk {DriveVersion} amd6 |kernel {DriveVersion} amd
4.deb 64 .deb

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 16

NVIDIA DRIVE 0S 6.0 Migration Guide

Existing Runfile

Shell Debian Package File Name

Leaf Debian Package File Names

nv-driveos-linux-oss-
minimal-sdk-kernel-rt-
patches {DriveVersion} am
do4d.deb

nv-driveos-linux-oss-
minimal-sdk-

core {DriveVersion} amd64
.deb

drive-tl86ref-linux- N/A nv-driveos-linux-oss-
{DriveVersion}-oss- src_{DriveVersion} amd64.
src.run deb

drive-tl86ref-linux- N/A nv-driveos-linux-

{DriveVersion}-
initramfs.run

initramfs {DriveVersion}
amdo64 .deb

drive-tl86ref-linux-
{DriveVersion}-nv-
minimal-sdk.run

nv-driveos-linux-nv-
minimal-

sdk {DriveVersion} amdé
4 .deb

nv-driveos-linux-nv-
minimal-sdk-

samples {DriveVersion} am
do4d.deb

nv-driveos-linux-nv-
minimal-sdk-bin-

target {DriveVersion} amd
64 .deb

nv-driveos-linux-nv-
minimal-sdk-bin-

core {DriveVersion} amd64
.deb

nv-driveos-linux-nv-
minimal-sdk-

base {DriveVersion} amd64
.deb

nv-driveos-linux-nv-
minimal-sdk-usermode-
multimedia {DriveVersion}
_amd64.deb

nv-driveos-linux-nv-
minimal-sdk-usermode-
compute {DriveVersion} am
de64.deb

nv-driveos-linux-nv-
minimal-sdk-usermode-
nvsci {DriveVersion} amdé6
4 .deb

NVIDIA CONFIDENTIAL

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 17

NVIDIA DRIVE 0S 6.0 Migration Guide

Existing Runfile

Shell Debian Package File Name

Leaf Debian Package File Names

nv-driveos-linux-nv-
minimal-sdk-usermode-
graphics_{DriveVersion} a
md64.deb

nv-driveos-linux-nv-
minimal-sdk-usermode-
buildkit {DriveVersion} a
md64.deb

drive-tl86ref-linux-
{DriveVersion}-dds.run

nv-driveos-linux-
dds {DriveVersion} amd6
4.deb

nv-driveos-linux-dds-
install-

static {DriveVersion} amd
64 .deb

nv-driveos-linux-dds-
isamples {DriveVersion} a
md64 .deb

nv-driveos-linux-dds-—
core {DriveVersion} amd64
.deb

drive-tl86ref-linux-—
{DriveVersion}-nvros.run

N/A

nv-driveos-linux-—
nvros {DriveVersion} amdé6
4 .deb

drive-tl86ref-linux-—
{DriveVersion}-dpx-
patch-v0.0.run

None - Must be able to cleanly
apply new shell/leaf .debs
individually for patch updates

nv-driveos-linux-dpx-
patch {DriveVersion} amdé6
4 .deb

drive-tl86ref-linux-
{DriveVersion}-driveos-—
core-rfs.run / nvidia-
driveos-{Release}-
driveos-core-rfs.deb

N/A

nv-driveos-linux-driveos-
core-

rfs_ {DriveVersion} amdé64.
deb

drive-tl86ref-linux- N/A nv-driveos-linux-driveos-
{DriveVersion}-driveos-— oobe-

oobe-rfs.run / nvidia- rfs {DriveVersion} amd64.
driveos-{Release}- deb

driveos-oobe-rfs.deb

drive-tl86ref-linux- N/A nv-driveos-linux-nv-core-
{DriveVersion}-nv-core- rfs {DriveVersion} amd64.
rfs.run / nvidia- deb

driveos-{Release}-nv-

core-rfs.deb

nvidia-driveos- N/A nv-driveos-linux-

{DriveVersion}-
copytarget.deb

{DriveType}-copytarget-
{DriveVersion} amd64.deb

NVIDIA CONFIDENTIAL

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 18

NVIDIA DRIVE 0S 6.0 Migration Guide

Existing Runfile

Shell Debian Package File Name

Leaf Debian Package File Names

nvidia-driveos-
{DriveVersion}-
buildkit.deb

N/A

nv-driveos-linux-
{DriveType}-buildkit-
{DriveVersion} amd64.deb

QNX (Standard]

The following table describes the 5.2 to 6.0 Standard QNX transition:

Table 7.

Standard QNX .run File to .deb File Map

Existing Runfile

Shell Debian Package File Name

Leaf Debian Package File Names

{DriveVersion}-dds.run

drive-tl86ref-gnx- N/A nv-driveos—-gqnx-
{DriveVersion}- {DriveType}-tegrazaurix-
tegraZaurix updater.run updater {DriveVersion} am
ded.deb
drive-tl86ref-gnx- N/A nv-driveos—-gqnx-

{DriveType}-
dds {DriveVersion} amd64.
deb

drive-tl86ref-gnx-<REL>-
<GCID>-driver-sdk.run

nv-driveos-gnx-driver-
sdk {DriveVersion} amdé6
4.deb

nv-driveos—-gnx-
{DriveType}-nv-minimal-
sdk-

base {DriveVersion} amdo64
.deb

nv-driveos—-gnx-
{DriveType}-nv-minimal-
sdk-usermode-

multimedia {DriveVersion}
_amd64.deb

nv-driveos-gqnx-
{DriveType}-nv-minimal-
sdk-usermode-

compute {DriveVersion} am
de4.deb

nv-driveos-gqnx-
{DriveType}-nv-minimal-
sdk-usermode-

nvsci {DriveVersion} amdé6
4.deb

nv-driveos-gqnx-
{DriveType}-nv-minimal-

NVIDIA CONFIDENTIAL

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 19

NVIDIA DRIVE 0S 6.0 Migration Guide

Existing Runfile

Shell Debian Package File Name

Leaf Debian Package File Names

sdk-usermode-
graphics {DriveVersion} a
md64.deb

nv-driveos-gqnx-
{DriveType}-nv-minimal-
sdk-usermode-

buildkit {DriveVersion} a
md64.deb

{DriveVersion}-
buildkit.deb

drive-tl86ref-gnx- N/A N/A

{DriveVersion}-tensorrt-

gnx.run

drive-tl86ref-gnx- N/A nv-driveos-gqnx-

{DriveVersion}-tgv.run {DriveType} -
tgv_{DriveVersion} amd64.
deb

drive-tl86ref-gnx- N/A nv-driveos-gqnx-

{DriveVersion}- {DriveType} -

nvsomeip.run nvsomeip {DriveVersion} a
md64.deb

nvidia-driveos- N/A nv-driveos—-gqnx-

{DriveVersion}-driveos- {DriveType}-fs-

agnx—-fs.deb {DriveVersion} amd64.deb

nvidia-driveos- N/A nv-driveos—-gqnx-

{DriveVersion}- {DriveType}-copytarget-

copytarget.deb {DriveVersion} amd64.deb

nvidia-driveos- N/A nv-driveos-gqnx-

{DriveType}-buildkit-
{DriveVersion} amdé64.deb

The following table describes the 5.2 to 6.0 Safety ANX transition:

Table 8.

Safety QNX .run File to .deb File Map

Existing Runfile

Shell Debian Package File
Name

Leaf Debian Package File Names

drive-tl86ref-gnx-<REL>-
<GCID>-driver-sdk.run

nv-driveos-gnx-
{DriveType}-nv-minimal-
sdk-

NVIDIA CONFIDENTIAL

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 20

NVIDIA DRIVE 0S 6.0 Migration Guide

Existing Runfile

Shell Debian Package File
Name

Leaf Debian Package File Names

nv-driveos-gqnx-driver-
sdk {DriveVersion} amdé
4 .deb

base {DriveVersion} amdo64.
deb

nv-driveos-gnx-
{DriveType}-nv-minimal-
sdk-usermode-

multimedia {DriveVersion}
amd64.deb

nv-driveos-gqnx-
{DriveType}-nv-minimal-
sdk-usermode-

compute {DriveVersion} amd
64 .deb

nv-driveos-gqnx-
{DriveType}-nv-minimal-
sdk-usermode-

nvsci {DriveVersion} amd64
.deb

nv-driveos-gnx-
{DriveType}-nv-minimal-
sdk-usermode-

graphics_ {DriveVersion} am
de4.deb

nv-driveos—-gnx-
{DriveType}-nv-minimal-
sdk-usermode-

buildkit {DriveVersion} am
do4.deb

drive-tl86ref-gqnx- N/A N/A
{DriveVersion}-tensorrt-
gnx.run
drive-tl86ref-gnx- N/A nv-driveos-gqnx-
{DriveVersion}-tgv.run {DriveType} -
tgv_ {DriveVersion} amd64.d
eb
drive-tl86ref-gnx- N/A nv-driveos-gqnx-
{DriveVersion}-debug- {DriveType}-debug-
overlay.run overlay {DriveVersion} amd
64 .deb
nvidia-driveos- N/A nv-driveos-gqnx-

{DriveVersion}-driveos-
gnx-safety-fs.deb

{DriveType}-fs-
{DriveVersion} amd64.deb

NVIDIA CONFIDENTIAL

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 21

NVIDIA DRIVE 0S 6.0 Migration Guide

Existing Runfile

Shell Debian Package File
Name

Leaf Debian Package File Names

{DriveVersion}-
buildkit.deb

nvidia-driveos- N/A nv-driveos-gnx-
{DriveVersion}-driveos- {DriveType}-debug-fs-
gnx-safety-debug-fs.deb {DriveVersion} amd64.deb
nvidia-driveos- N/A nv-driveos-gnx-
{DriveVersion}- {DriveType}-copytarget-
copytarget.deb {DriveVersion} amd64.deb
nvidia-driveos- N/A nv-driveos-gqnx-

{DriveType}-buildfs-

{DriveVersion} amd64.deb

The following table describes the 5.2 to 6.0 transition for files common to both Linux and QNX:

Table 9.

Common .run File .deb File Map

Existing Runfile

Shell Debian Package File
Name

Leaf Debian Package File Names

{DriveVersion}-
buildkit.deb

nvidia-driveos- N/A nv-driveos-common-—
{DriveVersion}- {DriveType}-copytarget-
copytarget.deb {Version} amdé64.deb
nvidia-driveos- N/A nv-driveos-common-

{DriveType}-build-fs-
{Version} amd64.deb

NVIDIA CONFIDENTIAL

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 22

NVIDIA DRIVE 0S 6.0 Migration Guide

Installation and Tools Changes

Linux targetfs directory to targetfs image

» DRIVE 0S Linux defaults to using targetfs image (EXT4 image) while flashing the target.

e F[orexample, <NV_WORKSPACE>/drive-linux/filesystem/targetfs.img will be

flashed as the Linux rootfs instead of <NV_WORKSPACE>/drive-
linux/filesystem/targetfs/

> File additions and modifications required to reflected in the target need to occur by editing
the EXT4 image using one of the following ways.

e Using Build-FS tool (Recommended). For additional information, refer to the following
topics in the NVIDIA DRIVE 0S 6.0 Linux SDK Developer Guide.

> Editing NVIDIA Build-FS CONFIG
> Executing NVIDIA Build-FS With the Updated CONFIG
> Flashing the Customized Target Filesystem

e Editing of <NV_WORKSPACE>/drive-linux/filesystem/targetfs.img:
1. mkdir /tmp/mount

2. sudo mount <NV_WORKSPACE>/drive-linux/filesystem/targetfs.img
/tmp/mount

Make minor edits in /tmp/mount
sudo umount /tmp/mount
This is only possible for small edits as the targetfs.img free space is limited

» Debian to install the filesystem in DRIVE OS Linux has been updated from:
nv-driveos-linux-<fs variant>-tar-extract-<release>-<gcid> <release>-
<gcid> amd64.deb to nv-driveos-linux-<fs variant>-<release>-
<gcid> <release>-<gcid> amdé64.deb

Where

<fs variant> is one from (driveos-core-ubuntu-20.04-rfs, driveos-oobe-
ubuntu-20.04-rfs, driveos-oobe-desktop-ubuntu-20.04-rfs),

<release> is the DRIVE OS RELEASE
<gcid> is the DRIVE 0S GCID

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 23

https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/oxy_ex-1/common/topics/sys_components/EditingNVIDIABuild-KitCONFIG20.html
https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/oxy_ex-1/common/topics/sys_components/ExecutingNVIDIABuild-KitWiththeUpdatedCO24.html
https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/oxy_ex-1/common/topics/sys_components/FlashingtheCustomizedTargetFilesystem28.html

NVIDIA DRIVE 0S 6.0 Migration Guide

» To ensure backwards compatibility and allow a smooth transition, DRIVE OS Linux still
creates the <NV_WORKSPACE>/drive-linux/filesystem/targetfs/ directory when
the new Debian package is installed.

e |f <NV _WORKSPACE>/drive-linux/filesystem/targetfs/ is not available inyour
installation, ensure your system supports loop mounting (Ubuntu Manpage: losetup -
set up and control loop devices) and run the following commands for manual mount of
Ext4 image:

mkdir -p /tmp/mount <NV_WORKSPACE>/drive-linux/filesystem/targetfs/
sudo mount -t ext4 <NV_WORKSPACE>/drive-linux/filesystem/targetfs.img
/tmp/mount

sudo cp -a /tmp/mount/. <NV_WORKSPACE>/drive-linux/filesystem/targetfs/

Optional Debian packages on installation will update both <NV _WORKSPACE>/drive-
linux/filesystem/targetfs.img and <NV _WORKSPACE>/drive-
linux/filesystem/targetfs/ directory.

> The directory <NV_WORKSPACE>/drive-linux/filesystem/targetfs/ Is supported in
DRIVE OS for the entire DRIVE 0S 6.0.x release cycle.

» Torevert PCT to pick up rootfs contents from <NV_WORKSPACE>/drive-
linux/filesystem/targetfs/ similar to behavior in previous releases:

e After bind partitions (such as make -f Makefile.bind), run
<NV_WORKSPACE>/drive-foundation/tools/misc/use rootfs img.sh -r

Toolchain Upgrade

Toolchain in DRIVE OS cross compilation is upgrading from GCC 7.3.1 to GCC 9.3.0, and the
Toolchain vendor is changing from Linaro to Bootlin.

Table 10. Legacy Toolchain and Replacement Toolchain

Legacy Toolchain in DRIVE OS 5.2 Replacement Toolchain in DRIVE OS 6.0
<INSTALL DIR>/toolchains/gcc- <INSTALL DIR>/toolchains/aarch64--
linaro-7.3.1-2018.05- glibc--stable-2020.08-1

x86 64 aarch64-linux-gnu

<INSTALL DIR>/toolchains/gcc- <INSTALL DIR>/toolchains/armv5-eabi--
linaro-7.3.1-2018.05-x86_ 64 arm- glibc--stable-2020.08-1

linux-gnueabi

<INSTALL DIR>/toolchains/gcc- <INSTALL DIR>/toolchains/armv7-
linaro-7.3.1-2018.05-x86_64 arm- eabihf--glibc--stable-2020.08-1

linux-gnueabihf

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF |

24

https://manpages.ubuntu.com/manpages/bionic/man8/losetup.8.html
https://manpages.ubuntu.com/manpages/bionic/man8/losetup.8.html

NVIDIA DRIVE 0S 6.0 Migration Guide

You can install the new toolchains in DRIVE OS two different ways.

» Runfile Installation: drive-<NVPLATFOTM>-foundation-<VERSION>-toolchain.run
installs the new toolchain binaries.

» Debian Installation: Three new Debian packages are available to install the individual
toolchains:

e nv-driveos-foundation-gcc-bootlin-gcc9.3-aarch64--glibc--stable-
2020.08-1 9.3.0_amdé64.deb

e nv-driveos-foundation-gcc-bootlin-gcc9.3-armv5-eabi--glibc--stable-
2020.08-1 9.3.0_amdé64.deb

e nv-driveos-foundation-gcc-bootlin-gcc9.3-armv7-eabihf--glibc--stable-
2020.08-1 9.3.0_amdé64.deb

These can be installed using the APT package manager and by providing the
NV_WORKSPACE value when prompted. (Refer to the installation documentation for
more details)
» Bind partitions using Makefile.bind on the user side require the updated aarché4
toolchain (aarch64--glibc--stable-2020.08-1/)

» Rebuild of QB and Kernel from DRIVE OS require the updated aarché4 toolchain (aarché4-

-glibc--stable-2020.08-1/)

» Rebuild the entire software stack with the updated toolchain instead of mixing toolchain
versions.

» Shared libraries (.so] generated with older compilers are theoretically compatible and
linkable with the current toolchain.

e However, shared libraries (.so] generated with new toolchain can be incompatible when

linked with the older toolchain due to references to newer library APIs in the ".s0’

Ubuntu Upgrade

The Ubuntu distribution version was upgraded from 18.04 to 20.04.
You have two different installation options.

> Runfile Installation:
e Select either driveos—-core-rfs or driveos-oobe-rfs.
e Install the run file depending on core/oobe RFS respectively:

> drive-<NVPLATFORM>-1inux-<VERSION>-driveos-oobe-ubuntu-20.04-
rfs.run

> drive-<NVPLATFORM>-1inux-<VERSION>-driveos-core-ubuntu-20.04-
rfs.run.

» Debian Installation:
e NVIDIA provides two Debian packages.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF |

25

NVIDIA DRIVE 0S 6.0 Migration Guide

> nvidia-driveos-<VERSION>-driveos-core-ubuntu-20.04-rfs.deb
> nvidia-driveos-<VERSION>-driveos-oobe-ubuntu-20.04-rfs.deb

e The Debian packages are installable side-by-side. Filesystem images of core/oobe,
respectively, are as follows:

> /Jopt/nvidia/driveos/6.0.0.0/filesystems/driveos-core-ubuntu-20.04-
rfs/driveos-core-ubuntu-20.04-rfs.img

> /opt/nvidia/driveos/6.0.0.0/filesystems/driveos-oobe-ubuntu-20.04-
rfs/driveos-oobe-ubuntu-20.04-rfs.img

Ubuntu 20.04, no longer provides the package python. You must install python2 or python3 and
execute it as such.

» sudo apt install python2 python3

» python?

» python3

Some pip plugins are retired and will not work with python?2. For developing new applications,
use python3 instead of python2.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 26

NVIDIA DRIVE 0S 6.0 Migration Guide

Changes to Files in targetfs

NITO File Path Changes in 6.0.6

Camera NITO files moved from /opt/nvidia/nvmedia/nit/ to /usr/bin/camera.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 27

NVIDIA DRIVE 0S 6.0 Migration Guide

MCU Communication Coordinator
Changes

Bootchain command responses have a data length of 100 bytes in 6.0 vs 9 bytes in 5.2. The
response layout is the same, but there are trailing zeroes in 6.0.x.

The number of bootchains is higher in Orin, which affects the content of frames that include
the bootchain number.

There is no Tegra reboot command in 6.0.x.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 28

NVIDIA DRIVE 0S 6.0 Migration Guide

Utilities

Migration ANX |OLauncher config File to
Device Tree

For integration with DRIVEQS State Management, all processes must start from the startup
command device tree.

Device Tree property details is described in "Starting process from the device tree” section of
IOLauncher utility manual. For more information, refer to the /0 Launcher topic in the NVIDIA
DRIVE OS 6.0 PDK for QNX or Linux.

Each command line in the I0Launcher config file migrates as cmd property of each command
node in the startup command device node. cmd property has the same command line string as
the source config file.

IOLauncher executes the commands sequentially, as listed in start _seq propertyhe order of
command nodes does not affect the execution sequence.

critical process propertyis yes if the command has the --critical iolauncher option.
Otherwise, the property is no.

heartbeat and oneshot are reserved properties for the future. They have no impact on any
behavior.

sc7 property has a corresponding value as described in the I0launcher utility manual.

Table 11. Startup Command DT Files
DT Files Applicable to
tegra234-startupcmds-gos0-safety.dtsi QNX Safety GOS0 VM
tegra234-startupcmds-gos0.dtsi QNX Standard GOS0 VM
tegra234-startupcmds-gosl-safety.dtsi ANX Safety GOS1 VM

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 29

NVIDIA DRIVE 0S 6.0 Migration Guide

DT Files

Applicable to

tegra234-startupcmds-gosl.dtsi

QNX Standard GOS1 VM

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF

30

NVIDIA DRIVE 0S 6.0 Migration Guide

SDK Structure

DRIVE 0S 6.0 presents an improved directory structure and file layout over previous versions.
The SDK contents are presented in a more organized fashion, making files more discoverable.
Related files for a particular area of functionality are now localized to a single location.

New Top-Level Directories

New top-level directories are used to localize all related files to a single directory. In previous
versions of DRIVE OS, these contents were scattered across multiple locations.

> filesystem/ contains all files related to the population of the target filesystem for a Guest
0S.
tools/ contains all tools, scripts, and utilities intended to run on the host.

kernel/ contains all files related to the Linux kernel.

v vy

platform-config/ contains all files related to platform configuration.
» firmware/ contains all files that can be categorized as firmware.

There are some cases where specific files might fall into more than one area of functionality.
In those cases, the files were placed into the most appropriate location.

t186ref Removal from the SDK Installation Directory

and File Names

The t186 Tegra chip is no longer supported in DRIVE 0OS 6.0 SDK. Furthermore, the DRIVE 0S
SDK is designed to support multiple Tegra chips, so no one chip should be in the SDK name.

This change is expected to have a large impact on customers who used prior releases of
DRIVE 0S. The runfile names previously containing drive-t186ref-foundation, drive-t18éref-
linux and drive-t186ref-qnx will now contain drive-foundation, drive-linux, and drive-gnx.
Similarly, the top-level installation directories, previously drive-t18éref-foundation/, drive-
t186ref-linux/, and drive-t186ref-qnx/, are now drive-foundation/, drive-linux/, and drive-qnx/.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 31

NVIDIA DRIVE 0S 6.0 Migration Guide

Customers who wrote installation scripts, test scripts, Makefiles, documentation pages, or
other files referencing the old SDK names will need to make modifications to use the new

names

SDK File Locations in 5.2 and 6.0

The following table describes how file locations have changed between 5.2 and 6.0:

Table 12. SDK File Locations in 5.2 and 6.0
DRIVE 0S 5.2 DRIVE 0S 6.0
Filesyste| 5.2 6.0

drive-tl86ref-linux/

bin-target/*

filesystem/contents/bin/*

data/conf/*.conf

filesystem/contents/config/x11/

kernel-rt patches/yocto-
tegra-initramfs-rootfs.img

filesystem/initramfs.cpio

modules/*.rules

filesystem/contents/config/startup/

modules/scripts/*

filesystem/contents/config/startup/s
cripts/

OOBE/lib/systemd/system/driv
e-setup.service

filesystem/contents/config/O0OBE/

targetfs-
pkgs/filesystem.tar.bz2

filesystem/targetfs-
pkgs/filesystem.tar.bz?2

target-images/debians/*.deb

filesystem/contents/debians/

targetfs-images/ (*.img and
MANIFEST.json)

filesystem/targetfs—images/ (*.img
and MANIFEST.json)

targetfs/

filesystem/targetfs/

utils/nvpmodel/*

filesystem/contents/ (various

subdirectories)

utils/scripts/copytarget/man
ifest/*.yaml

filesystem/copytarget/manifest/*.yam
1

vulkan/icd.d/nvidia icd.json

filesystem/contents/config/vulkan/

rootfs-licenses.txt

filesystem/rootfs-licenses.txt

drive-tl86ref-gnx/
(standard)

bin-target/*

filesystem/contents/bin/*

targetfs-images/*

filesystem/targetfs—-images/*

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF |

32

NVIDIA DRIVE 0S 6.0 Migration Guide

DRIVE OS 5.2

DRIVE OS 6.0

build-fs-configs/driveos-
gnx-fs.CONFIG.json

filesystem/build-fs/configs/driveos-
anx—-fs.CONFIG. json

gnx create targetfs*.sh

filesystem/gnx create targetfs*.sh

rootfs-licenses.txt

filesystem/rootfs-licenses.txt

targetfs/

filesystem/targetfs/

utils/scripts/copytarget/man
ifest/*.yaml

filesystem/copytarget/manifest/*.yam
1

vulkan/icd.d/nvidia icd.json

filesystem/contents/config/vulkan/

drive-tl86ref-qnx/ (safety)

bin-target/*

filesystem/contents/bin/*

targetfs.build file

filesystem/targetfs.build file

gnx_targetfs.img

filesystem/gnx targetfs.img

targetfs-images/*

filesystem/targetfs—-images/*

build-fs-configs/driveos-
gnx-safety-fs.CONFIG. json

filesystem/build-fs/configs/driveos-
gnx-safety-fs.CONFIG. json

gnx create targetfs safety*.
sh

filesystem/qnx create targetfs safet
y*.sh

rootfs-licenses.txt

filesystem/rootfs-licenses.txt

targetfs/

filesystem/targetfs/

utils/scripts/copytarget/man
ifest/*.yaml

filesystem/copytarget/manifest/*.yam
1

Tools 5.2

6.0

drive-tl86ref-foundation/
(standard)

firmware/src/trusted os/ta-
dev/tools/eks gen/*

tools/security/eks gen/*

Makefile.bind

make/Makefile.bind

security/trusted- tools/security/pkecsll/keywrap/*
os/scripts/tools/nv_pkcsll k

eywrap/*

security/trusted- tools/security/tos _gen/*
os/scripts/tools/tos gen/*

tools/host/dtc/dtc tools/device-tree/dtc
tools/host/delnode* tools/device-tree/delnode*
tools/host/flashtools/* tools/flashtools/*
tools/host/ist/* tools/ist/*
tools/host/*muxer/* tools/muxer/*
tools/host/use rootfs img.sh | tools/misc/

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF |

33

NVIDIA DRIVE 0S 6.0 Migration Guide

DRIVE OS 5.2 DRIVE OS 6.0
virtualization/tools/eventli | tools/perf/eventlib/*
b/*
virtualization/tools/pctdump | tools/pctdump/*

x86/*

drive-tl86ref-foundation/
(safety)

Makefile.bind

make/Makefile.bind

security/trusted- tools/security/pkecsll/keywrap/*
os/scripts/tools/nv_pkcsll k

eywrap/*

security/trusted- tools/security/tos_gen/*
os/scripts/tools/tos gen/*

tools/host/dtc/dtc tools/device-tree/dtc
tools/host/delnode* tools/device-tree/*
tools/host/flashtools/* tools/flashtools/*
tools/host/ist/* tools/ist/*

drive-tl86ref-linux/

utils/nv_edidgenerate

tools/nv_edidgenerate/nv_edidgenerat
e

utils/openGL-tools/glslc

tools/openGL-tools/glslc

utils/optin fuse

tools/optin fuse/optin fuse

drive-tl86ref-gnx/
(standard)

utils/asid hash calculator

tools/asid hash/asid hash calculator

utils/emc_log

tools/emc_log/emc_ log

utils/fpdlink init/*

tools/fpdlink init/*

utils/host/laptsa-imp

tools/laptsa-imp/laptsa-imp

utils/memuage

tools/memusage/memusage

utils/nvcanrtc/nvcanrtc

tools/nvcanrtc/nvcanrtc

utils/openGL-tools/glslc

tools/openGL-tools/glslc

utils/thermal utils/*

tools/thermal utils/*

drive-tl86ref-gnx/ (safety)

utils/host/laptsa-imp

tools/laptsa-imp/laptsa-imp

Linux 5.2

Kernel

6.0

drive-tl86ref-linux/

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF |

34

NVIDIA DRIVE 0S 6.0 Migration Guide

DRIVE OS 5.2

DRIVE OS 6.0

kernel-rt-
patches/{Image, System.map, vin
linux}

kernel/preempt rt/images/{Image,Syst
em.map,vmlinux}

kernel-rt-patches/modules/*

kernel/preempt rt/modules/*

drive-oss-src/

*

kernel/source/oss_src/kernel
kernel/source/oss_src/nvgpu
kernel/source/oss_src/nvidia

kernel/source/oss_src/nvlink

hardware/
* kernel/source/hardware
Platfor | 5.2 6.0
m
Config
Xavier (t19x] platform canfiguration Orin (t23x) platform configuration files are
files across multiple directories will be | localized to the platform-config/ directory in each
removed from DRIVE 0S 6.0. SDK.
Firmwa | 5.2 6.0
re
drive-tl86ref-foundation/
(Standard and Safety)
firmwares/* firmware/*
drive-tl86ref-linux/
lib-target/<firmware files> firmware/<firmware files>
drive-tl86ref-gnx/ (Standard
and Safety)
lib-target/<firmware files> firmware/<firmware files>
nvidia- firmware/<firmware files>
bsp/aarché64le/usr/lib/<firmw
are files>
t186ref | 5.2 6.0
Remov
al

drive-tl86ref-foundation/
(Standard)

drive-foundation/

drive-tl86ref-foundation/
(Safety)

drive-foundation-safety/

drive-tl86ref-linux/

drive-linux/

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 35

NVIDIA DRIVE 0S 6.0 Migration Guide

DRIVE OS 5.2 DRIVE OS 6.0
drive-tl86ref-gnx/ drive-gnx/
(Standard)

drive-tl86ref-gqnx/ (Safety)

drive-gnx-safety/

Other

5.2

6.0

drive-tl86ref-linux/

oss/X11/*

filesystem/targetfs/ from

(all X11 libs and headers are
present in appropriate locations)

oss/{ssl,usb}/

filesystem/targetfs/

(libs only in appropriate locations,
headers deprecated)

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF |

36

NVIDIA DRIVE 0S 6.0 Migration Guide

API Changes in DRIVE 0S 6.0

Overview
NVIDIA DRIVE 0S 6.0 introduces API changes to the modules shown in the following figure:

DRIVE PLATFORM APIs & SDKs

What’s New

Workstation / Cloud (x86) Embedded Target (Tegra)
Middleware & Platform APIs Linux Linux QNX OS for Safety (QOS)

e

TensorRT V4

cuoA _
NvStreams

NvMedia

DriveWorks*

NvMedia SIPL
NvMedia DLA

Vulkan S5C Coming in DRIVE 05 6.1
Vulkan
cuDNN
OpenGL ES v 4
EGL
EGL Streams
OpenGL
Notes:
1) Approximation of safety on non-safety platforms for development.
2) For development only, not for use in production.

3) Refer to the DRIVE OS Safety Manual and QNX Safety Manuals for safety context definitions.
4) Refer to DRIVE platform roadmap for scope of DriveWorks Safety Proxy and Safety Builds

Safety Proxy APIs are identical to Safety APIs on QNX and supported in
the Standard build.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 37

NVIDIA DRIVE 0S 6.0 Migration Guide

NvMedia APl Changes

Summary of the NvMedia API Timeline

Release 6.0.2.0
NvMedialmage, NvMedialmage-based, and NvSciBuf APls are available.

Release 6.0.3.0:

QNX Safety no longer supports NvMedialmage APls and NvMedialmage-based APIs. QNX
Standard and Linux use NvMedialmage APls and NvMedialmage-based APIs.

Release 6.0.4.0:
NvMedialmage APls and NvMedialmage-based APls are deprecated.

Release 6.0.7.0:

NvMediaEncodeQuality is deprecated in 6.0.7 and replaced by NvMediaEncPreset, which is
supported in 6.0.6.0 and later releases.

For releases with both NvMedialmage and NvSciBuf APls, the NvSciBuf based APIs
and test applications are packaged in the nvmedia_éx directories.

When using NvSciBuf APIs, include the nvmedia_éx directory first followed by the
default include directories

NvMediaEncodeQuality Deprecation

NvMediaEncodeQuality is deprecated in 6.0.7, which requires migrating to
NvMediaEncPreset. Both APIs are defined in nvmedia common encode.h, which is part of the
IEP (Image Encode Processing) API.

To enable NvMediaEncPreset in 6.0.6 (using the H264 codec as an example):
NvMediaEncodeConfigH264: :enableNewPreset = true

NvMediaEncodeConfigH264: :NvMediaEncPreset = <value>
NvMediaEncodeConfigH264: :NvMediaEncodeQuality, if setisignored

To enable NvMediaEncPreset for 6.0.7.0 and later releases:

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 38

NVIDIA DRIVE 0S 6.0 Migration Guide

NvMediaEncodeConfigH264: :NvMediaEncPreset = <value>

Table 13.

Mapping between NvMediaEncodeQuality and

NvMediaEncPreset

Nvmedia Previous Name

Nvmedia New Preset

Codec (NvMediaEncodeQuality) (NvMediaEncPreset)
NVMEDIA_ENCODE_QUALITY_LO NVMEDIA_ENC_PRESET UHP
H264
NVMEDIA ENCODE QUALITY L1 NVMEDIA ENC PRESET HP
NVMEDIA ENCODE QUALITY L2 NVMEDIA ENC PRESET HQ
NVMEDIA ENCODE QUALITY L0+
(Feature)
NVMEDIA_ENCODE_CONFIG_H265
H265 _ENABLE_ULTRA FAST ENCODE | NVMEDIA ENC PRESET UHP
NVMEDIA ENCODE QUALITY LO NVMEDIA ENC PRESET HP
NVMEDIA ENCODE QUALITY L1 NVMEDIA ENC PRESET HQ
- NVMEDIA ENCODE QUALITY L2 NVMEDIA ENC PRESET UHP

NVMEDIA_ENCODE_QUALITY_L1

NYMEDIA_ENC_PRESET_HP

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 39

NVIDIA DRIVE 0S 6.0 Migration Guide

Table 14.

Support Matrix for NvMedia Multimedia APls

Release

Feature

6.0.0.0

6.0.1.0

6.0.2.0

6.0.3.0

6.0.4.0

Ref.

NvMedialmage
based
NvMedialmage
Decoder
(nvmedia_imgdec.h)

NvMedia Video
Decode API

[nvmedia_viddec.h)

NvSciBuf based
NvMediaDecode
r API

[nvmedia_ide.h')

Decode
via
NvDEC

Deprecate
d

Deprecate
d

Deprecate
d

Deprecate
d

Deprecate
d

Supported

Supported

Supported

\

Supported

Deprecate
d

N/A

N/A

\

Supported

—

Supported

Supported

Table
15

NvMedia Video
Encode API

(nvmedia_vep.h)

NvMedialmage
based
NvMedialEP API
(nvmedia_iep.h,
nvmedia_iep_nvscis
ync.h)

NvSciBuf based
NvMedialEP AP

(nvmedia_iep.h')

Encode
via
NvENC

Deprecate
d

Deprecate
d

Deprecate
d

Deprecate
d

Deprecate
d

Supported

Supported

Supported

\

Supported

Deprecate
d

N/A

N/A

.

Supported

—

Supported

Supported

Table
16

NvMedialmage
based
NvMedialOFST
API

(nvmedia_iofst.h)

NvMedialmage
based
NvMedialOFA
API

(nvmedia ofa.h)

NvSciBuf based
NvMedialOFA
API

(nvmedia_iofa.h')

Optical
Flow/

Stereo
via OFA

Deprecate
d

Deprecate
d

Deprecate
d

Deprecate
d

Deprecate
d

Supported

Supported

Supported

\

Supported

Deprecate
d

N/A

N/A

\

—

Supported

Supported

Supported

Table
17

Table
18

" NvSciBuf-based APIs are introduced in DRIVE OS 6.0.2.0 separately from the NvMedialmage-based

APls

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 40

NVIDIA DRIVE 0S 6.0 Migration Guide

NvMedialmage Deprecate
based d
E;Ev]edlaUPD JPEG
—
(nvmedia_ijpd.h] \E)izcode Supported | Supported | Supported | Supported Igb[e
NvSciBuf based Supported
NvMedialspp | NPEC
AP
(nvmedia_ijpd.h'} N/A Supported | Supported
NvMedialmage Deprecate
base d
NvMedial JPE JPEG
AP Encode - Tabl
(nvmedia_ijpe.h] . Supported | Supported | Supported | Supported abte
: via 20
NvSciBuf based NvJPEG Supported
NvMedial JPE
AP]
(nvmedia_ijpe.h'] N/A Supported | Supported
Table 15. NvMedia Video Decoder
Module: NvMedia Video Decoder
Header File and API Comments

Header File:

nvimedia viddec.h
OLD NAME:

NvMediaVideoDecoder *

NvMedia Video Decoder APls use the NVDEC HW
engine on DRIVE 0S 5.2 to decode bitstreams
campressed using standard video compression
algorithms such as H.264, H.265, VP9, VP8, and
MPEG2. These APIs will be deprecated in DRIVE 0S
6.0.4.0 release

NvSciBuf based NvMedia Decoder APl will be
introduced as a part of the DRIVE 05 6.0.2.0
release which will supersede the existing NvMedia
Video Decoder APIs

OLD API:

NvMediaVideoDecoder *

NvMediaVideoDecoderCreateEx (
const NvMediaDevice *device,
NvMediaVideoCodec codec,

uintlé t width,

uintlé_t height,

e NvMediaDevice will be deprecated

and the argument will be removed
from the API

e Additionally the APl name has changed

e NvMediaVideoCodec will be
updated to support AV1 decoding only
from T234 and further chips

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 41

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia Video Decoder

uintl6 t maxReferences,
uint64 t maxBitstreamSize,
uint8 t inputBuffering,
uint32 t flags,

NvMediaDecoderInstanceId
instancelId

)7

Header File

nvmedia ide.h

New API:

NvMediaIDE *

NvMediaIDECreate (
NvMediaVideoCodec codec,
uintlé6_t width,
uintl6_t height,
uintl6_t maxReferences,
uint64 t maxBitstreamSize,
uint8 t inputBuffering,
uint32 t flags,

NvMediaDecoderInstanceId
instanceId

J;

OLD API:
NvMediaStatus
NvMediaVideoDecoderRenderEx (

const NvMediaVideoDecoder
*decoder,

const NvMediaVideoSurface
*target,

const NvMediaPicturelInfo
*picturelnfo,

const void *encryptParams,

uint32 t
numBitstreamBuffers,

const
NvMediaBitstreamBuffer
*bitstreams,

NvMediaVideoDecodeStats
*FrameStatsDump,

e NvMediaImage will be deprecated
and replaced by NvSciBufObj

Additionally, the APl name might change

Header File:

nvmedia ide.h

New API:

NvMediaStatus

NvMediaIDEDecoderRender (
const NvMediaIDE *decoder,
NvSciBufObj target,

const NvMediaPictureInfo
*picturelnfo,

const void *encryptParams,

uint32 t numBitstreamBuffers,

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF

42

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia Video Decoder

NvMediaDecoderInstanceId
instanceld

)

const NvMediaBitstreamBuffer
*bitstreams,

NvMediaIDEFrameStats
*FrameStatsDump,

NvMediaDecoderInstancelId
instanceId

) 7

OLD API: NvMediaIDEFillNvSciBufAttrList 1is a
N/A new API introduced in DRIVE OS 6.0 to
fill IDE-specific attributes in the
NvSciBufAttrList. The
NvSciBufAttrList is used during
creation of NvSciBufObj. This is a
mandatory API
Header File:
nvmedia ide.h
NEW API:
NvMediaStatus
NvMediaIDEFillNvSciBufAttrList (
NvMediaDecoderInstancelId
instancelId,
NvSciBufAttrList
attrlist
)7
OLD API: NvMediaIDEFillNvSciSyncAttrList is a
N/A new API introduced in DRIVE 0OS 6.0 to

fill IDE-specific Sync attributes in
the NvSciBufAttrList. 1like engindID.
This is a mandatory API

Header File:

nvmedia ide.h

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF |

43

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia Video Decoder

NEW API:
NvMediaStatus
NvMediaIDEFillNvSciSyncAttrList (

const NvMedialIDE
*decoder,

NvSciSyncAttrList
attrlist,

NvMediaNvSciSyncClientType
clienttype

)7

OLD API:
N/A

In 5.2 these APIs are optional. In DRIVE 0S 6.0
these APIs are mandatory if IDE needs to be used
in a pipeline with other engine APls

In DRIVE 0S 6.0.2.0 these APIs will be supported
for fence synchronization between Driver and
Hardware

Header File:

nvmedia ide.h

NEW API:

NvMediaIDENvSciSync APIs
NvMediaIDEFillNvSciSyncAttrList
NvMediaIDERegisterNvSciSyncObj
NvMediaIDEUnregisterNvSciSyncObj
NvMediaIDESetNvSciSyncObjforEOF
NvMediaIDEInsertPreNvSciSyncFence

NvMediaIDEGetEOFNvSciSyncFence

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF |

44

NVIDIA DRIVE 0S 6.0 Migration Guide

Table 16. NvMedia IEP - NvMedialmage based to NvSciBuf based

Module: NvMedia IEP

Header File and API

Comments

Header File:
nvmedia iep.h

nvmedia iep nvscisync.h

The existing NvMediaImage-based NvMediaIEP
APls are supported until the DRIVE 0S5 6.0.4.0
release and will be superseded by the NvSciBuf
based NvMediaIEP APls. The NvSciBuf based
APIs will be introduced in the DRIVE 05 6.0.2.0

API: release

NvMedialEP* The changes between the existing
NvMediaImage-based -APIs and the proposed
NvSciBuf-based NvMedialEP APls are explained
in the following rows

Header File: NvMediaDevice will be deprecated and the

nvmedia iep.h

NvMedialmage based API:

NvMediaIEP *

NvMediaIEPCreate (
const NvMediaDevice *device,
NvMediaIEPType encodeType,
const void *initParams,

NvMediaSurfaceType
inputFormat,

uint8 t maxInputBuffering,
uint8 t maxOutputBuffering,

NvMediaEncoderInstanceld
instanceId

) 7

argument will be removed from the API

NvMediaSurfaceType will be replaced by
NvSciBufAttrList, which will describe the
properties of the surface in terms of NvSciBuf
Attributes

NvMediaIEPType will be updated to support AV1
encoding

maxInputBuffering will be deprecated and the
argument will be removed from the API

NvSciBuf based API:

NvMediaIEP *

NvMediaIEPCreate (
NvMedialIEPType encodeType,
const void *initParams,
NvSciBufAttrList bufAttrlList,
uint8 t maxBuffering,

NvMediaEncoderInstancelId
instanceId

)7

Header File:

nvmedia iep.h

NvMedialmage based API:
NvMediaStatus

NvMedialEPFeedFrame (

NvMediaImage will be deprecated and replaced
by NvSciBufOb]

NvMediaRect will no longer be supported, and
the argument will be removed from the API

NvSciBuf based API:
NvMediaStatus

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 45

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia IEP

Header File and API

Comments

const NvMediaIEP *encoder,
const NvMedialImage *frame,
NvMediaRect *sourceRect,
const void *picParams,

NvMediaEncoderInstanceld
instancelId

)7

NvMediaIEPFeedFrame (
const NvMediaIEP *encoder,
NvSciBufObj bufObj,
const void *picParams,

NvMediaEncoderInstancelId
instanceId

)7

Header File:

nvmedia iep.h

NvMedialmage based API:
NvMediaStatus
NvMediaIEPImageRegister (
const NvMedialEP *encoder,
const NvMediaImage *image,
NvMediaAccessMode accessMode

) 7

NvSciBufObj replaces NvMediaImage
which is deprecated with 6.0

accessMode is deprecated and removed

NvSciBuf based API:

NvMediaStatus

NvMediaIEPUnregisterNvSciBufObj (
const NvMediaIEP
NvSciBufObj

*encoder,
bufObj
) ;

Header File:

nvmedia iep.h

NvMedialmage based API:

NvMediaStatus

NvMediaIEPImageUnRegister (
const NvMedialEP *encoder,

const NvMediaImage *image

) 7

NvSciBufObj replaces NvMedialmage
which is deprecated with 6.0

NvSciBuf based API:

NvMediaStatus

NvMediaIEPUnregisterNvSciBufObj (
const NvMediaIEP
NvSciBufObj

*encoder,
bufObj
)

Header File:

nvmedia iep.h

NvMedialmage based API:
NvMediaStatus
NvMedialEPGetBitsEx (

const NvMediaIEP *encoder,

APl renamed to NvMediaIEPGetBits

NvSciBuf based API:
NvMediaStatus
NvMediaIEPGetBits (

const NvMediaIEP *encoder,

uint32 t *numBytes,

NVIDIA CONFIDENTIAL
NVIDIA DRIVE OS 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF

46

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia IEP

Header File and API

Comments

uint32 t *numBytes,
uint32 t numBitstreamBuffers,

const NvMediaBitstreamBuffer
*bitstreams,

void *extradata

)7

uint32 t numBitstreamBuffers,

const NvMediaBitstreamBuffer
*bitstreams,

void *extradata
)7

Header File:
N/A

NvSciBuf based API:
NvMediaStatus
NvMediaIEPFillNvSciBufAttrList (

NvMediaEncoderInstanceld
instanceld,

NvSciBufAttrList
attrlist

) 7

NvMediaIEPFillNvSciBufAttrList isanew
APl introduced in DRIVE 0S 6.0 to fill IEP-specific
attributes in the NvSciBufAttrList. The
NvSciBufAttrList is used during creation of
NvSciBufObj. This is a mandatory API, which
needs to be called to populate NvSciBufAttrList that
would eventually get used during NvSciBufOb)
allocation.

Header File:

nvmedia iep nvscisync.h

NvMedialmage based API:
NvMediaIEPNvSciSyncGetVersion
NvMediaIEPFillNvSciSyncAttrList
NvMedialEPRegisterNvSciSyncObj
NvMediaIEPUnregisterNvSciSyncObj
NvMediaIEPSetNvSciSyncObjforEOF
NvMediaIEPInsertPreNvSciSyncFence
NvMediaIEPGetEOFNvSciSyncFence
NvMediaIEPSetNvSciSyncObjforSOF

NvMediaIEPGetSOFNvSciSyncFence

In 5.2 these APIs are optional. In DRIVE 05 6.0
these APls are mandatory if IEP needs to be used in
a pipeline with other engine APIs

Header File:
nvmedia iep nvscisync.h

NvMedialmage based API:
NvMediaIEPSetNvSciSyncObjforSOF
NvMediaIEPGetSOFNvSciSyncFence

In DRIVE 0S 5.2 these APIs were not supported, but
they will be supported in 6.0

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 47

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia IEP

Header File and API

Comments

Header File:

nvmedia iep nvscisync.h

NvMedialmage based API:
NvMediaStatus

NvMediaIEPNvSciSyncGetVersion (

NvMediaVersion *version

)7

This APl will be deprecated in DRIVE 05 6.0.4.0
release

The contents of nvmedia iep nvscisync.h
header file will be merged with nvmedia iep.h
and the resulting APl set will have a single version

Header File:

nvmedia common_ encode.h

nvmedia common_ encode decode.h

nvmedia common_ encode ofst.h

The data structures fields will be reorganized and
cleaned up, removing unsupported fields previously
retained for backward compatibility and making a
cahesive grouping of features to enhance ease of
use

Table 17. NvMedia IOFST (DRIVE 0S 5.2) to NvMedia IOFA

Module: NvMedia IOFST

Header File and API

Comments

Header File:
nvmedia iofst.h

nvmedia iofst nvscisync.h

API:
NvMediaIOFST*

NvMedia IOFST APIs use the NVENC HW engine on
Xavier DRIVE 0S 5.2 to perform Optical Flow and
Stereo Disparity Processing Tasks. In Orin DRIVE
0S 6.0, the NVENC HW engine no longer supports
Optical Flow and Stereo Disparity Processing, and
these APIs will be deprecated in DRIVE 0S 6.0

With Orin we introduce a new engine OFA for
Optical Flow and Stereo Disparity Processing. The
NvMedia IOFA APIs support computation of Optical
Flow and Stereo Disparity using the OFA engine.
Users of NvMedia IOFST APIs should transition to
the NvMedia IOFA APls newly defined in DRIVE 0S
6.0. The look, feel and, usage of the new NvMedia
IOFA APIs are similar to prior NvMedia IOFA APls

Header File:

nvmedia iofst.h

API:
NvMediaStatus

Header File:

nvmedia ofa.h

API:
NvMediaStatus

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 48

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia IOFST

Header File and API

Comments

NvMediaIOFSTGetVersion (
NvMediaVersion *version

)7

NvMediaIOFAGetVersion (
NvMediaVersion *version

) 7

Header File:

nvmedia iofst.h

API:
NvMediaIOFST *
NvMediaIOFSTCreate (

const NvMediaDevice *device,

NvMediaIOFSTType
estimationType,

NvMediaSurfaceType
inputFormat,

NvMediaSurfaceType
outputFormat,

const
NvMediaOFSTInitializeParams
*initParams,

uint8 t maxInputBuffering,

NvMediaEncoderInstancelId
instanceld

)7

Header File:

nvmedia ofa.h

API:

NvMediaOFA *

NvMediaIOFACreate (
void

) ;

Followed by:

NvMediaStatus
NvMediaIOFAInit (

const NvMediaDevice
*device,

NvMediaOfa
*ofaPubl,

const NvMediaOfaInitParams
*initParams,

const uint8 t
maxInputBuffering

)7

Same of the existing arguments, such as
estimationType, inputFormat, and
outputFormat, are members of the
NvMediaOfaInitParams structure, along with
additional new parameters

Header File:

nvmedia iofst.h

API:

void NvMediaIOFSTDestroy (const
NvMediaIOFST *ofst);

Header File:

nvmedia ofa.h

API:
NvMediaStatus
NvMediaIOFADestroy (

const NvMediaOfa *ofaPubl

)7

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF

49

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia IOFST

Header File and API

Comments

Header File:

nvmedia iofst.h

API:
NvMediaStatus
NvMediaIOFSTProcessFrame (

const NvMediaIOFST *ofst,

const NvMedialImage *frame,

const NvMedialmage *refFrame,

const NvMedialmage *mvs,

const
NvMediaOFSTExternalHintParams
*extHintParams,

NvMediaEncoderInstanceld
instanceId

)7

Header File:

nvmedia ofa.h

API:
NvMediaStatus
NvMediaIOFAProcessFrame (

const NvMediaOfa
*ofaPubl,

const NvMediaOfalImageArray
*pSurfArray,

const NvMediaOfaProcessParams
*processParams,

const NvMediaOfaROIParams
*pROIParams) ;

Same of the existing arguments, like frame,
refFrame, mvs, or analogs of these parameters,
are members of the NvMediaOfaImageArray
structure along with additional new parameters.
The frame, reframe and mvs are the image
pyramids in case of OFA. Please refer to API
documentation for more information.

Header File:

nvmedia iofst.h

Header File:

nvmedia ofa.h

API: API:

NvMediaStatus NvMediaIOFAImageRegister (

NvMediaIOFSTImageRegister (const NvMediaOfa *ofaPubl,
const NvMediaIOFST *ofst, const NvMediaImage *image,
const NvMedialmage *image, const NvMediaAccessMode
NvMediaAccessMode accessMode accessMode

) ;)

Header File: Header File:

nvmedia iofst.h nvmedia ofa.h

API: API:

NvMediaStatus NvMediaIOFAImageUnRegister (

NvMediaIOFSTImageUnRegister (const NvMediaOfa *ofaPubl,

const NvMediaIOFST *ofst,

const NvMedialmage *image

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF |

50

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia IOFST

nvmedia iofst.h

Header File and API Comments
const NvMediaImage *image) ;

)

Header File: Header File:

nvmedia ofa.h

nvmedia iofst.h

API: API:
N/A (Get SGM configuration in use.)
NvMediaStatus
NvMediaIOFAGetSGMConfigParams (
const NvMediaOfa *ofaPubl,
NvMediaOfaSGMParams *pSGMParams
) ;
(Set SGM configuration]
NvMediaStatus
NvMediaIOFASetSGMConfigParams (
const NvMediaOfa *ofaPubl,
NvMediaOfaSGMParams *pSGMParams
) ;
Usage: OPTIONAL
Header File: Header File:

nvmedia ofa.h

nvmedia iofst.h

API:
N/A

API: API:
N/A (Get OFA Profile Data)
NvMediaIOFAGetProfileData (
const NvMediaOfa *ofaPubl,
NvMediaOfaProfileData *pProfData
) ;
Usage: OPTIONAL
Header File: Header File:

nvmedia ofa.h

API:

(Get OFA Capability)
NvMediaStatus
NvMediaIOFAGetCapability (

const NvMediaOfa *ofaPubl,

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF |

o1

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia IOFST

Header File and API

Comments

const NvMediaOfaMode mode,
NvMediaOfaCapability *pCapability
) ;

Usage: OPTIONAL

Table 18.

NvMedia IOFA - NvMedialmage based to NvSciBuf based

Module: NvMedia IOFA

Header File and API

Comments

Header File:

nvmedia ofa.h

NvMedialmage based API:
NvMediaStatus
NvMediaIOFAInit (

const NvMediaDevice
*device,

NvMediaOfa
*ofaPubl,

const NvMediaOfaInitParams
*initParams,

const uint8 t
maxInputBuffering

) 7

Header File:

nvmedia iofa.h

NvMediaDevice is deprecated and the
argument is removed from the API

NvSciBuf based API:
NvMediaStatus
NvMediaIOFAInit (

NvMediaIofa
*ofaPubl,

const NvMediaIofalInitParams
*initParams,

const uint8 t
maxInputBuffering

)7

Header File:

nvmedia ofa.h

NvMedialmage based API:
NvMediaStatus
NvMediaIOFAProcessFrame (

const NvMediaOfa
*ofaPubl,

const NvMediaOfaImageArray
*pSurfArray,

const NvMediaOfaProcessParams
*processParams,

Header File:

nvmedia iofa.h

NvMediaOfaImageArray Is replaced by
NvMediaIofaBufArray which uses

NvSciBufObj instead of
NvMedialImage.

NvSciBuf based API:
NvMediaStatus

NvMediaIOFAProcessFrame (

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF |

52

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia IOFA

Header File and API

Comments

const NvMediaOfaROIParams
*pROIParams

)7

const NvMediaIofa
*ofaPubl,

const NvMediaIofaBufArray
*pSurfArray,

const NvMedialofaProcessParams
*processParams,

const NvMediaIofaROIParams
*pROIParams

)7

Header File:

nvmedia ofa.h

NvMedialmage based API:
NvMediaIOFAImageRegister (

const NvMediaOfa
*ofaPubl,

const NvMediaImage
*image,

const NvMediaAccessMode
accessMode

) 7

Header File:

nvmedia iofa.h

NvSciBuf based API:
NvMediaStatus
NvMediaIOFARegisterNvSciBufObj (
const NvMediaIofa *ofaPubl,
NvSciBufObj bufObj
)
NvSciBufObj repmces NvMediaImage

NvMediaAccessMode will be removed
and is passed as NvSciBufObj attribute list.

Header File:

nvmedia ofa.h

NvMedialmage based API:
NvMediaIOFAImageUnRegister (
*ofaPubl,

const NvMediaImage *image

const NvMediaOfa

)7

Header File:

nvmedia iofa.h

NvSciBuf based API:
NvMediaIOFAUnregisterNvSciBufObj (
const NvMedialIofa *ofaPubl,
NvSciBufObj bufObj
)
NvSciBufObj replaces NvMedialImage

Header File:

nvmedia iofst nvscisync.h

API:
NvMediaIOFSTFillNvSciSyncAttrList
NvMediaIOFSTRegisterNvSciSyncObj
NvMediaIOFSTUnregisterNvSciSyncObj
NvMediaIOFSTSetNvSciSyncObjforEOF

In DRIVE 0S5 5.2 the NvSciSync APIs for IOFST
were optional. The newly defined analogues of
these APls for IOFA are mandatory in 6.0 1f IOFA
needs to be used in a pipeline with
other engine APIs.

Header File:

nvmedia iofa.h

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 53

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia IOFA

Header File and API

Comments

NvMediaIOFSTInsertPreNvSciSyncFenc
e

NvMediaIOFSTGetEOFNvSciSyncFence
NvMediaIOFSTSetNvSciSyncObjforSOF
NvMediaIOFSTGetSOFNvSciSyncFence

NvMediaIOFAFillNvSciSyncAttrList
NvMediaIOFARegisterNvSciSyncObj
NvMediaIOFAUnregisterNvSciSyncObj
NvMediaIOFASetNvSciSyncObjforEOF
NvMediaIOFAInsertPreNvSciSyncFence
NvMediaIOFAGetEOFNvSciSyncFence
NvMediaIOFASetNvSciSyncObjforSOF
NvMediaIOFAGetSOFNvSciSyncFence

Header File:

nvmedia iofst nvscisync.h

NvMediaIOFAFil1lNvSciBufAttrList is a new
APl in DRIVE 0S 6.0 to fill IOFA specific attributes in
the NvSciBufAttrList. The
NvSciBufAttrList is used during creation of

API: . .
NvSciBufObj. This APl is mandatory

N/A
NvMediaStatus
NvMediaIOFAFillNvSciBufAttrList (

NvSciBufAttrList
attrlist
)7
Table 19. NvMedia IJPEG Decode
Module: NvMedia IJPEG Decode
Header File and API Comments

Header File:

nvmedia ijpd.h

NvMedialmage based API:
NvMediaIJPD *
NvMediaIJPDCreate (
const NvMediaDevice *device,
uintl6é t maxWidth,
uintlé_ t maxHeight,
uint32 t maxBitstreamBytes,
uint8 t supportPartialAccel,

NvMediaJPEGInstanceId
instanceld

NvMediaDevice is deprecated and the
argument is removed from the API

NvMediaJPEGInstancelId parameter is
added with Orin. DRIVE 0S 6.0 supports two
instances of NVJPEG hardware

NvSciBuf based API:
NvMediaIJPD *
NvMediaIJPDCreate (
uintlé_ t maxWidth,
uintlé t maxHeight,
uint32 t maxBitstreamBytes,

bool supportPartialAccel,

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 54

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia IJPEG Decode

Header File and API

Comments

)7

NvMediaJPEGInstanceId instancelId
)7

Header File:

nvmedia ijpd.h

NvMedialmage based API:

NvMediaStatus

NvMediaIJPDRender (
const NvMediaIJPD *decoder,
NvMediaImage *output,
const NvMediaRect *srcRect,
const NvMediaRect *dstRect,
uint8 t downscalelog2,
uint32 t numBitstreamBuffers,

const NvMediaBitstreamBuffer
*bitstreams,

uint32 t flags,
NvMediaJPEGInstanceld

¢ NvMediaImage Is deprecated and
replaced by NvSciBufObj

* NvMediaJPEGInstanceId parameteris
added with Orin. DRIVE OS 6.0 supports two
instances of NVJPEG hardware

NvSciBuf based API:

NvMediaStatus

NvMediaIJPDRender (
const NvMediaIJPD *decoder,
NvSciBufObj target,
const NvMediaRect *srcRect,
const NvMediaRect *dstRect,
uint8 t downscalelLogZz,
uint32 t numBitstreamBuffers,

const NvMediaBitstreamBuffer
*bitstreams,

nvmedia ijpd.h

NvMedialmage based API:
NvMediaStatus
NvMediaIJPDRenderYUV (
const NvMediaIJPD *decoder,
NvMediaImage *output,
uint8 t downscalelog2z,
uint32 t numBitstreamBuffers,
const NvMediaBitstreamBuffer
*bitstreams,
uint32 t flags,
NvMediaJPEGInstanceId
instanceId

) ;

instanceId
) ; uint32 t flags,
NvMediaJPEGInstanceId instanceId
) ;
Header File: e NvMediaImage is deprecated and

replaced by NvSciBufObj.

e NvMediaJPEGInstancelId parameteris
added with Orin. DRIVE 0S 6.0 supports twao
instances of NVJPEG hardware.

NvSciBuf based API:
NvMediaStatus
NvMediaIJPDRenderYUV (
const NvMediaIJPD *decoder,
NvSciBufObj target,
uint8 t downscalelLogz,
uint32 t numBitstreamBuffers,

const NvMediaBitstreamBuffer
*bitstreams,

uint32 t flags,
NvMediaJPEGInstanceId instancelId

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 55

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia IJPEG Decode

Header File and API

Comments

) ;

Header File:

nvmedia ijpd nvscisync.h

API:

NvMediaIJPDFillNvSciBufAttrs
NvMediaIJPDNvSciSyncGetVersion
NvMediaIJPDFillNvSciSyncAttrList
NvMediaIJPDRegisterNvSciSyncObj
NvMediaIJPDUnregisterNvSciSyncObj
NvMediaIJPDSetNvSciSyncObjforEOF
NvMediaIJPDInsertPreNvSciSyncFence
NvMediaIJPDGetEOFNvSciSyncFence
NvMediaIJPDSetNvSciSyncObjforSOF
NvMediaIJPDGetSOFNvSciSyncFence

DRIVE OS 6.0 introduces new APIs for
synchronization that are analogous to 5.2 NvMedia
|[EP synchronization APls. The 6.0 APIs are
mandatory when the NvMedia JPEG Decoder is
used in a pipeline scenario

Table 20.

NvMedia IJPEG Encode

Module: NvMedia IJPEG Encode

Header File and API

Comments

Header File:

nvmedia ijpe.h

API:
NvMediaIJPE *
NvMediaIJPECreate (

const NvMediaDevice *device,

NvMediaSurfaceType
inputFormat,

uint8 t maxOutputBuffering,
uint32 t

NvMediaJPEGInstanceId
instancelId

) 7

maxBitstreamBytes,

NvMediaDevice is deprecated in 6.0 and the
argument is removed from the API
NvMediaJPEGInstanceId parameter is added
with Orin. DRIVE 0S 6.0 supports two instances of
NVJPEG hardware

An analogous type replaces the
NvMediaSurfaceType parameter

Header File:

nvmedia ijpe.h

NvMediaImage is deprecated and replaced by
NvSciBufObj

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 56

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia IJPEG Encode

Header File and API Comments

NvMediaJPEGInstanceId parameteris added
API: with Orin. Drive 0S 6.0 supports two instances of

NvMediaStatus NVJPEG hardware

NvMediaIJPEFeedFrameQuant (
const NvMediaIJPE *encoder,
NvMediaImage *frame,
uint8 t *lumaQuant,
uint8 t *chromaQuant,

NvMediaJPEGInstanceId
instanceId

)7

Header File: NvMediaImage is deprecated and replaced by
NvSciBufObj

nvmedia ijpe.h
NvMediaJPEGInstanceId parameter is added
with Orin. DRIVE 0S 6.0 supports two instances of
NVJPEG hardware

API:

NvMediaStatus

NvMediaIJPEFeedFrame (
const NvMediaIJPE *encoder,
NvMediaImage *frame,
uint8 t quality,

NvMediaJPEGInstanceId
instanceId

)7

Header File: NvMediaImage is deprecated and replaced by
NvSciBufObj

nvmedia ijpe.h
NvMediaJPEGInstanceId parameter is added
with Orin. DRIVE 0S 4.0 supports two instances of

API: NVJPEG hardware

NvMediaStatus
NvMediaIJPEFeedFrameRateControl (
const NvMediaIJPE *encoder,
NvMediaImage *frame,
uint8 t *lumaQuant,
uint8 t *chromaQuant,
uint32 t targetImageSize,

NvMediaJPEGInstanceId
instanceld

) 7

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 57

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia IJPEG Encode

Header File and API

Comments

Header File:

nvmedia ijpe nvscisync.h

API:

NvMediaIJPEFillNvSciBufAttrs
NvMediaIJPENvSciSyncGetVersion
NvMediaIJPEFillNvSciSyncAttrList
NvMediaIJPERegisterNvSciSyncObj
NvMediaIJPEUnregisterNvSciSyncObj
NvMediaIJPESetNvSciSyncObjforEOF
NvMediaIJPEInsertPreNvSciSyncFence
NvMediaIJPEGetEOFNvSciSyncFence
NvMediaIJPESetNvSciSyncObjforSOF
NvMediaIJPEGetSOFNvSciSyncFence

DRIVE 0S 6.0 introduces new APlIs for
synchronization that are analogous to 5.2 NvMedia
|EP synchronization APls. The 6.0 APIs are
mandatory when the NvMedia JPEG Encoder is
used in a pipeline scenario

Table 21. NvMedia VPI

Module: NvMedia VPI

Header File and API

Comments

Header File:
nvmedia vpi.h

nvmedia vpi nvscisync.h

API:
NvMediaVPI*

In NVIDIA DRIVE 0S 5.2, NvMedia VPIs use PVA
engines to perform fixed computer vision
functions.In 6.0, NvMedia VPIs are removed. To use
the PVA engine, use DriveWorks or cuPVA

Module: NvMedia Image Pyramid

Header File and API

Comments

Header File:
nvmedia image pyramid.h

nvmedia image pyramid nvscisync.h

API:
NvMediaVPI*

NvMedia Image Pyramid, which is only used by
NvMedia VPI, is removed in DRIVE 0S 6.0

Module: NvMedia Array

Header File and API

Comments

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 58

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia VPI

Header File and API

Comments

Header File:

nvmedia array.h

API:

NvMediaArray*

nvmedia array nvscibuf.h

NvMedia Array, which is only used by NvMedia VPI,
is removed in DRIVE 0S 6.0.

Header File:

nvmedia array.h

API:
NvMediaArray*

nvmedia arraymetadata.h

nvmedia array nvscibuf.h

NvMedia Array, which is only used by NvMedia VPI,
is removed in DRIVE OS 6.0.

Table 22. Camera/SIPL APl Changes

Several APls and structures were updated.

File

NvSIPLCamera.hpp

NvSIPLCamera.hpp

NVIDIA CONFIDENTIAL

Current API or Structure that will
Change

virtual SIPLStatus
INvSIPLCamera: :GetImageAttri
butes (

uint32 t index,

INvSIPLClient: :ConsumerDesc:
:OutputType const outType,

NvSIPLImageAttr &imageAttr)
= 0;

virtual SIPLStatus
INvSIPLCamera: :RegisterImage
Groups (uint32 t index,

const
std: :vector<NvMediaImageGrou
pP*> &imageGroups) = 0;

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Change Description and Notes

virtual SIPLStatus
nvsipl::INvSIPLCamera: :Ge
tImageAttributes (

uint32 t index,

INvSIPLClient: :ConsumerDe
sc::OutputType const
outType,

NvSciBufAttrList &
imageAttr

)

virtual SIPLStatus
nvsipl::INvSIPLCamera: :Re
gisterImages (uint32 t
const index,

SWE-SWDOCDRV-017-PGRF | 59

NVIDIA DRIVE 0S 6.0 Migration Guide

File

NvSIPLCamera.hpp

NvSIPLCamera.hpp

NvSIPLCamera.hpp

NvSIPLCamera.hpp

NVIDIA CONFIDENTIAL

Current API or Structure that will
Change

virtual SIPLStatus
INvSIPLCamera: :RegisterImage
s (

uint32 t index,

INVSIPLClient: :ConsumerDesc:
:OutputType const outType,

const
std: :vector<NvMediaImage*>
&images) = 0;

virtual SIPLStatus
INvSIPLCamera: :FillNvSciSync
AttrList (

uint32 t index,
INvVSIPLClient: :ConsumerDesc:
:OutputType const outType,

NvSciSyncAttrList const
attrList,

NvMediaNvSciSyncClientType
const clientType) = 0;

NvSiplNvSciSyncClientType::S
IPL SIGNALER WAITER

NvSiplNvSciSyncObjType: :NVSI
PL_EOF PRESYNCOBJ
NvSiplNvSciSyncObjType: :NVSI
PL_SOF PRESYNCOBJ
NvSiplNvSciSyncObjType: :NVSI
PL_SOFSYNCOBJ

virtual SIPLStatus
INvSIPLCamera: :RegisterNvSci
SyncObj (

uint32 t index,

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Change Description and Notes
INVSIPLClient: :ConsumerDe
sc::0utputType const
outType,

const std::vector<
NvSciBufObj > & images

)

virtual SIPLStatus
nvsipl::INvSIPLCamera: :Re
gisterImages (uint32 t
const index,

INvVSIPLClient: :ConsumerDe
sc::0utputType const
outType,

const std::vector<
NvSciBufObj > & images

virtual SIPLStatus
nvsipl::INvSIPLCamera: :Fi
1INvSciSyncAttrList (
uint32 t index,

INvVSIPLClient: :ConsumerDe
sc::0utputType const
outType,
NvSciSyncAttrList const
attrlist,
NvSiplNvSciSyncClientType
const clientType

)

These symbals are deprecated

virtual SIPLStatus
nvsipl::INvSIPLCamera: :Re
gisterNvSciSyncObj (uint32
_t index,

SWE-SWDOCDRV-017-PGRF | 60

NVIDIA DRIVE 0S 6.0 Migration Guide

File Current API or Structure that will
Change Change Description and Notes
INvSIPLClient: :ConsumerDesc: INvSIPLClient: :ConsumerDe
:OutputType const outType, sc::0utputType const
NvMediaNvSciSyncObjType outType,
const syncobjtype, NvSiplNvSciSyncObjType
NvSciSyncObj const syncobij) const syncobjtype,
= 0; NvSciSyncObj const
syncobj
)
NvSIPLPipelineMgr. | NvSIPLImageGroupWriter::RawB NvSciBufObj image;
hpp uffer::NvMediaImageGroup uint32 t ulndex;
* G ; N o
tmagebroup bool discontinuity;
bool dropBuffer;
uint64 t frameCaptureTSC;
uint64 t
frameCaptureStartTSC;
}i
NvSIPLPipelineMgr. | NvSIPLImageAttr The structure will be removed.
hpp Stop using it and migrate to the
newly provided NvSciBuf
attribute
NvSIPLPipelineMgr. | NvSIPLDownscaleCropCfg: :NvMe NvSIPLDownscaleCropCfg::N
hpp diaRect ispInputCrop; vSIPLRect ispInputCrop;

NvSIPLDownscaleCropCfg: :NvMe
diaRect ispOOutputCrop;

NvSIPLDownscaleCropCfg::N
vSIPLRect ispOOutputCrop;

NvSIPLDownscaleCropCfg: :NvMe
diaRect isplOutputCrop;

NvSIPLDownscaleCropCfg::N
vSIPLRect isplOutputCrop;

NvSIPLClient.hpp INVSIPLClient::INvSIPLClient
::ImageMetaData: :NvMediaISPB
adPixelStatsData

badPixelStats

INvSIPLClient::INvVSIPLC1i
ent::ImageMetaData::
NvSiplISPBadPixelStatsDat
a badPixelStats

INvSIPLClient::INvSIPLClient
::ImageMetaData: :NvMediaISPH
istogramStatsData
histogramStats[2];

INvSIPLClient::INvVSIPLC1i
ent::ImageMetaData::
NvSiplISPHistogramStatsDa
ta histogramStats[2];

INvSIPLClient::INvSIPLClient
::ImageMetaData: :NvMediaISPH
istogramStats
histogramSettings([2];

INvSIPLClient::INvVSIPLC1i
ent::ImageMetaData::
NvSiplISPHistogramStats
histogramSettings[2];

NVIDIA CONFIDENTIAL

NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 61

NVIDIA DRIVE 0S 6.0 Migration Guide

File

NvSiplControlAutoD
ef.hpp

NvSIPLDeviceBlockI
nfo.hpp

NVIDIA CONFIDENTIAL

Current API or Structure that will
Change

INVSIPLClient::INvSIPLClient
::ImageMetaData: :NvMediaISPL
ocalAvgClipStatsData
localAvgClipStats|[2];

INVSIPLClient::INvSIPLClient
::ImageMetaData: :NvMediaISPL
ocalAvgClipStats
localAvgClipSettings[2];

INVSIPLClient::INvSIPLClient
::ImageMetaData: :NvSiplGloba
1Time
captureGlobalTimeStamp;

INvSIPLClient::INvSIPLClient
: :ImageMetaData::
NvSiplTimeBase timeBase;

SiplControllIspStatsSetting::
NvMediaISPLocalAvgClipStats
lac[2];

SiplControllIspStatsSetting::
NvMediaISPHistogramStats
histl;

SiplControllIspStatsSetting::
NvMediaISPFlickerBandStats
fbStats;

SensorInfo::VirtualChannellIn
fo::NvMediaICPInputFormatTyp
e inputFormat

DeviceBlockInfo::isSimulator
ModeEnabled

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Change Description and Notes

INvSIPLClient::INVSIPLC11i
ent::ImageMetaData::
NvSiplISPLocalAvgClipStat
sData
localAvgClipStats|[2];

INvSIPLClient::INVSIPLC11i
ent::ImageMetaData: :NvMed
iaISPLocalAvgClipStats
localAvgClipSettings([2];

Removed in 6.0.6.0

Removed in 6.0.6.0

SiplControlIspStatsSettin
g::
NvSiplISPLocalAvgClipStat
s lac([2];

SiplControlIspStatsSettin
g::
NvSiplISPHistogramStats
histl;

SiplControlIspStatsSettin
g::
NvSiplISPFlickerBandStats
fbStats;

SensorInfo::VirtualChanne
lInfo::
NvSiplCapInputFormatType
inputFormat

DeviceBlockInfo: :CameraMo
duleInfo::isSimulatorMode
Enabled

SWE-SWDOCDRV-017-PGRF | 62

NVIDIA DRIVE 0S 6.0 Migration Guide

File

CNvMDeviceBlockInf
o.hpp

devblk cdi.h

CNvMDeserializer.h
rp

NVIDIA CONFIDENTIAL

Current API or Structure that will
Change

DeviceBlockInfo: :NvMediaICPI
nterfaceType csiPort

DeviceBlockInfo: :NvMediaICPC
siPhyMode phyMode

DevB1kCDIPWL: :NvMediaPointDo
uble
kneePoints [DEVBLK CDI MAX PW
L KNEEPOINTS]

CNvMCameraModuleCommon: : Sens
orConnectionProperty: :NvMedi
aICPInputFormat inputFormat

CNvMCameraModule: : CameraModu
leConfig: :NvMediaICPInterfac
eType eInterface;

CNvMCameraModule: : Property::
SensorProperty: :NvMediaICPIn
putFormat inputFormat;

CNvMCameraModule: : Property::
SensorProperty: :NvMediaSurfa
ceType surfaceType;

CNvMDeserializer::Deserializ
erParams: :NvMediaICPInterfac
eType elnterface;

CNvMDeserializer::Deserializ
erParams: :NvMediaICPCsiPhyMo
de ePhyMode;

CNvMDeserializer: :NvMediaICP
InterfaceType m elnterface;

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Change Description and Notes

DeviceBlockInfo::
NvSiplCapInterfaceType
csiPort

DeviceBlockInfo::
NvSiplCapCsiPhyMode
phyMode

DevB1kCDIPWL: :
NvSiplPointDouble
kneePoints [DEVBLK CDI MAX
_PWL KNEEPOINTS]

CNvMCameraModuleCommon: : S
ensorConnectionProperty::
NvSiplCapInputFormat
inputFormat

CNvMCameraModule: :CameraM
oduleConfig: :NvSiplICapIn
terfaceType elnterface;

CNvMCameraModule: : Propert
y::SensorProperty: :NvSipl
CapInputFormat
inputFormat;

CNvMCameraModule: : Propert
y::SensorProperty: :NvSipl
CapInputFormat
inputFormat;

CNvMDeserializer: :Deseria
lizerParams: :NvSiplCapInt
erfaceType elInterface;

CNvMDeserializer: :Deseria
lizerParams: :NvSiplCapCsi
PhyMode ePhyMode;

CNvMDeserializer::
NvSiplCapCsiPhyMode
m_ePhyMode;

SWE-SWDOCDRV-017-PGRF | 63

NVIDIA DRIVE 0S 6.0 Migration Guide

File Current API or Structure that will
Change Change Description and Notes
CNvMDeserializer: :NvMediaICP
CsiPhyMode m_ePhyMode;
nvmedia_icp_struct | Header file changes Internals will be redefined
s.h
Stop using the header file; a new
header file, NvSIPLCapStructs.h,
with updated structures and
enumeration will be provided. This
header contains structures and
enumerations mentioned earlier in
this document
nvmedia_isp stat.h | Header file changes Internals will be redefined

Stop using the header file; a new
header file, NvSIPLISPStat.hpp,
with updated structures and
enumeration will be provided. This
header contains structures and
enumerations mentioned earlier in
this document

NvMediaTensor APIs that take NvMediaDevice as input parameters were updated.

The NvMediaDevice struct is typedef to void, and the APIs, NvMediaDeviceCreate()
and NvMediaDeviceDestroy(), are marked deprecated and will be removed in 6.0.5.0
along with the libraries that contain them -- libnvmedia.so and libnvmedia_core.so.

The updated versions of the following NvMediaTensor APIs will require a NULL value
to be passed as input, instead of a valid NvMediaDevice pointer.

« NvMediaTensorCreateFromNvSciBuf() and
« NvMediaTensorFillNvSciBufAttrs()
A recommendation for NvMediaTensor clients is to remove the use of

NvMediaDeviceCreate() and NvMediaDeviceDestroy() APIs in their applications. Clients
should also stop using libnvmedia.so and libnvmedia_core.so in their liner/makefiles.

The API signature has not changed for any of these NvMediaTensor APls, but the
implementation has changed. You must use the recompiled library.

The nvm_dlaSample application, which is part of the PDK/SDK, is updated to remove
NvMediaDevice APIs and NULL value is passed as input for the above NvMedia Tensor
APIs, where a NvMediaDevice handle is expected.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 64

NVIDIA DRIVE 0S 6.0 Migration Guide

Table 23. NvMediaTensor APl Changes
Module: NvMedia Tensor
Header File and API Comments
Header File: e NvMediaDevice is deprecated in 6.0 and the

nvmedia tensor nvscibuf.h

API:

NvMediaStatus

NvMediaTensorCreateFromNvSciBuf (
NvMediaDevice *device,

NvSciBufObj
nvSciBufObjInstance,

NvMediaTensor **nvmTensor

)7

dependency has been removed.

A NULL value Is passed as inputinstead of a
valid NvMediaDevice pointer.

Example:
NvMediaStatus status;
NvSciBufObj bufObj;

NvMediaTensor *tensor;

status =
NvMediaTensorCreateFromNvSciBuf (

NULL,bufobj, &tensor);

Header File:

nvmedia tensor nvscibuf.h

API:

NvMediaStatus

NvMediaTensorFillNvSciBufAttrs (
const NvMediaDevice *device,

const NvMediaTensorAttr
*attrs,

uint32 t numAttrs,

uint32 t flags,

NvSciBufAttrList attr h
):

» NvMediaDevice is being deprecated in 6.0 and the
dependency on it has been removed.

A NULL value isto be passed as inputinstead of
a valid NvMediaDevice pointer.

Example:
NvMediaStatus status;

NVM_TENSOR_DEFINE_ATTR(tensorAttr);
uint32 t numTensorAttr;
NvSciBufAttrList attrlist;

status =
NvMediaTensorFillNvSciBufAttrs (

NULL, tensorAttr, numTensorAttr, 0,
attrlist);

NvMedialmage to NvSciBuf Migration

In NVIDIA DRIVE 6.0, NvMediaImage type is deprecated and replaced by Nvscibuf. All client
applications using NvMediaImage structure must migrate to NvsciBuf. NvMedia Engine APls

will also use NvSciBuf.

In NVIDIA DRIVE 0S 5.2, explicit engine synchronization using NvSciSync objects was optional

but in NVIDIA DRIVE 6.0, it is mandatory.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF |

https://tegra-sw-opengrok.nvidia.com/source/s?defs=NvMediaStatus&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=NvMediaTensorCreateFromNvSciBuf&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=NvMediaDevice&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=device&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=NvSciBufObj&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=nvSciBufObjInstance&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=nvSciBufObjInstance&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=NvMediaTensor&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=nvmTensor&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=NvMediaStatus&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=NvMediaTensorFillNvSciBufAttrs&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=NvMediaDevice&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=device&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=NvMediaTensorAttr&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=attrs&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=uint32_t&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=numAttrs&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=uint32_t&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=flags&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=NvSciBufAttrList&project=stage-main_automotive
https://tegra-sw-opengrok.nvidia.com/source/s?defs=attr_h&project=stage-main_automotive

NVIDIA DRIVE 0S 6.0 Migration Guide

Table 24. Deprecated NvMedialmage APls

Deprecated NvMedialmage-Related APls

NvMediaSurfaceGetVersion

NvMediaSurfaceFormatGetType

NvMediaSurfaceFormatGetAttrs

NvMediaImageGetVersion

NvMediaImageCreateNew

NvMediaImageDestroy

NvMediaImageGetEmbeddedData

NvMediaImageGetStatus

NvMediaImageSetTag

NvMediaImageGetTag

NvMediaImageGetTimeStamp

NvMediaImageGetGlobalTimeStamp

NvMediaImageGetTimeBase

NvMediaImageLock

NvMediaImageUnlock

NvMediaImagePutBits

NvMediaImageGetBits

Table 25. Migration from NvMedialmage to NvSciBuf

NvSciBuf has a similar model of allocating buffers. It is based on attributes, and the following
table gives an overview of how to migrate NvMediaImage attributes to NvSciBuf.

NvMedialmage Attributes

NvSciBuf Attributes

NVM_SURF_ATTR WIDTH

NvSciBufImageAttrKey PlaneWidth

NVM_SURF_ATTR HEIGHT

NvSciBufImageAttrKey PlaneHeight

NVM_SURF_ATTR MIN EMB LINES TO
P

NvSciBufImageAttrKey TopPadding

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF

66

NVIDIA DRIVE 0S 6.0 Migration Guide

NvMedialmage Attributes

NvSciBuf Attributes

NVM_SURF_ATTR MIN EMB LINES BO
TTOM

NvSciBufImageAttrKey BottomPadding

NVM_SURF_ATTR CPU_ACCESS

NvSciBufGeneralAttrKey NeedCpuAccess

NvSciBufGeneralAttrKey EnableCpuCache

NvSciBufGeneralAttrKey CpuNeedSwCacheCohe

rency
NVM_SURF_ATTR ALLOC_TYPE N/A
NVM_SURF_ATTR PEER VM ID N/A

NVM_SURF_ATTR SCAN TYPE

NvSciBufImageAttrKey ScanType

NVM_SURF_ATTR COLOR_STD TYPE

NvSciBufImageAttrKey PlaneColorStd

NVM_SURF_ATTR_SURF TYPE

NvSciBufImageAttrKey PlaneColorFormat

NVM_SURF_ATTR _LAYOUT

NvSciBufImageAttrKey Layout

NVM_SURF ATTR DATA TYPE

NvSciBufImageAttrKey PlaneDatatype

NVM_SURF ATTR MEMORY

NvSciBufImageAttrKey PlaneCount

NVM_SURF ATTR SUB SAMPLING TYP
E

NvSciBufImageAttrKey PlaneCount
NvSciBufImageAttrKey PlaneColorFormat

NvSciBufImageAttrKey PlaneBitsPerPixel

NVM SURF ATTR BITS PER COMPONE
NT

NvSciBufImageAttrKey PlaneBitsPerPixel

NVM_SURF_ATTR COMPONENT ORDER

NvSciBufImageAttrKey PlaneColorFormat

Not all NvMedialmage attributes map directly to NvSciBuf attributes. Refer to the
NvSciBuf documentation.

NvMedia EGL Stream to NvSciStreams Migration

In NVIDIA DRIVE 0S 5.2, NvMedia APIs natively support sending and receiving
NvMediaVideoSurface and NvMedialImage type surfaces over an EGL Stream connection both

as a producer and a consumer.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF

| 67

NVIDIA DRIVE OS 6.0 Migration Guide
In NVIDIA DRIVE 6.0, NvMediaVideoSurface and NvMediaImage types, and NvMedia EGL

Stream support are deprecated. NvMediavVideoSurface and NvMediaImage types are
replaced by NvsciBuf, EGL Stream support is replaced by NvSciStreams.

Table 26. Deprecated NvMedia EGL Stream APIs in NVIDIA DRIVE 6.0

Deprecated NvMedia EGL Stream APlIs

NvMediaEglStreamGetVersion

NvMediaEglStreamProducerCreate

NvMediaEglStreamProducerSetAttributes

NvMediaEglStreamProducerDestroy

NvMediaEglStreamProducerPostSurface

NvMediaEglStreamProducerGetSurface

NvMediaEglStreamConsumerCreate

NvMediaEglStreamConsumerDestroy

NvMediaEglStreamConsumerAcquireSurface

NvMediaEglStreamConsumerReleaseSurface

NvMediaEglStreamProducerPostImage

NvMediaEglStreamProducerGetImage

NvMediaEglStreamConsumerAcquireImage

NvMediaEglStreamConsumerReleaseImage

NvMediaEglStreamProducerPostMetaData

NvMediaEglStreamConsumerAcquireMetaData

EGL Stream and NvSciStreams are both based on a producer/consumer model. When a
stream connection is established between a producer and a consumer, the producer posts
buffer objects to the stream, which is received by the consumer. Refer to the NvSciStreams
documentation regarding establishing stream communication between a producer and
consumer.

The following table shows a typical high-level NvMedia Producer programming sequence and
the corresponding NvSciStreams equivalent. This sequence does not provide details regarding
the transfer of synchronization objects.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 68

NVIDIA DRIVE 0S 6.0 Migration Guide

Table 27. NvMedia Producer and NvSciStreams Programming Sequences
NvMedia EGL Stream Producer NvSciStreams Producer
// Generate Image // Query event

NvSciStreamBlockEventQuery ()

// Post Image to EGL Stream // Get packet to get index to Image
NvMediaEglStreamProducerPostImage () NvSciStreamProducerPacketGet ()

// Get the Image back from EGL // Generate Image

Stream

NvMediaEglStreamProducerGetImage () // Post Image to NvSciStreams

NvSciStreamProducerPacketPresent ()

The following table shows a typical high-level NvMedia Consumer programming sequence and
the corresponding NvSciStreams equivalent. This sequence does not provide details regarding
the transfer of synchronization objects.

Table 28. NvMedia Consumer and NvSciStreams Programming
Sequences
NvMedia EGL Stream Consumer NvSciStreams Consumer
// Get frame status // Wait for event
eglQueryStreamKHR () NvSciStreamBlockEventQuery ()
// Receive Image from EGL Stream // Receive packet to get index to
Image

NvMediaEglStreamConsumerAcquireImage ()

NvSciStreamConsumerPacketAcquire ()
// Process Image

// Process Image

// Release Image back to EGL Stream
// Release Image back to

NvMediaEglStreamConsumerReleaseImage ()
NvSciStreams

NvSciStreamConsumerPacketRelease ()

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 69

NVIDIA DRIVE 0S 6.0 Migration Guide

NvMedia Image Processing Pipeline (IPP) Changes
Introduced in DRIVE 05 5.1.15.0

NvMedia Image Processing Pipeline (IPP] APIs are deprecated after the 5.1.15.0 release.
Instead, use NvMedia SIPL APIs. The deprecated APIs and the associated sample applications
will be removed in the (5.2.0.0] release.

In NVIDIA DRIVE™ QS 5.1, the NvMedia Image Processing Pipeline (IPP) framework provides
the interface to capture RAW images from camera sensors and process them using the
NVIDIA DRIVE AGX Xavier™ hardware Image Signal Processing (ISP).

The framework provides various APls to set up image capture and processing pipelines.
NvMedia IPP APls are typically used in conjunction with ExtiImgDev APIs to setup the complete
image capture and processing pipelines. ExtimgDev APIs provide interfaces to program the
external image devices like image sensors, serializers and de-serializers.

NVIDIA DRIVE™ 0OS 5.1 platforms have been supporting a new camera framework called SIPL
designed for safety use cases. The SIPL framework provides a single set of C++ interfaces to

instantiate imaging pipeline(s]) in Xavier-based platforms. It supports both raw image capture
and ISP processed output.

This section includes a comparison of APl sequences for typical image processing use cases.

All unused or unsupported legacy components, such as ISC and VMP, are deprecated.

Capture and Process from a Live Camera

This section details the APl call sequence comparison for capturing and processing of frames
from a live camera.

Table 29. NvMedia IPP and SIPL API Call Sequence Comparison
Phase NvMedia IPP API NvMedia SIPL API
See nvmipp_raw source for details. See nvsipl_camera source for
details.
Initialization 1. Set up ExtimgDev params 1. Create INVSIPLCamera

NVIDIA CONFIDENTIAL

ExtImgDevInit
NvMediaIPPManagerCreate
NvMediaIPPPipelineCreate

2. Create sensor control component.

NvMediaIPPComponentCreate
New (ISC)

3. Create capture component using
ExtlmgDev properties

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

instance

INvSIPLCamera: :GetIn
stance

2. Set up Platform config data
structure to describe the
camera. INVSIPLQuery
interfaces can be used to fetch
one of the supported platform
configurations

SWE-SWDOCDRV-017-PGRF | 70

NVIDIA DRIVE 0S 6.0 Migration Guide

Phase NvMedia IPP API

See nvmipp_raw source for details.

NvMediaIPPComponentCreate
New (ICP)
NvMediaIPPComponentAddToP
ipeline

4. Specify the buffer pool properties
and ISP output properties

NvMediaIPPComponentCreate
New (ISP

5. Specify the algorithm configuration

NvMediaIPPComponentCreate
New (ALG)

6. Create the output component

NvMediaIPPComponentCreate
New (OUTPUT)

7. Use multiple
NvMediaIPPComponentAttach to
attach components

Start 1. Start the pipeline.
NvMediaIPPPipelineStart

2. Start ExtimgDev.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

NvMedia SIPL API

See nvsipl_camera source for
details.

INvSIPLCamera: :SetPl
atformCfg

3. Set pipeline config
describing what outputs are
needed. Get back queues to
receive the output images

INvSIPLCamera: :SetPi
pelineCfg

4. Initialize the camera

INvSIPLCamera::Init

5. Get the image attributes.

INvSIPLCamera: :GetIm
ageAttributes

6. Allacate buffers using
NvSciBuf APIs

Register the buffers with SIPL

INvSIPLCamera: :Regis
terImages

7. Get NvSciSync attributes

INvSIPLCamera::FillN
vSciSyncAttrList

8. Allocate NvSciSyncObjs
using NvSciSync APls. Register
NvSciSyncObjs with SIPL

INvSIPLCamera: :Regis
terNvSciSyncObj

9. Register the Auto Control
plugin and ISP calibration data
to use

INvSIPLCamera: :Regis
terAutoControlPlugin

1. Start the camera.

INvSIPLCamera: :Start

SWE-SWDOCDRV-017-PGRF

71

NVIDIA DRIVE 0S 6.0 Migration Guide

Phase NvMedia IPP API

See nvmipp_raw source for details.

ExtImgDevStart

Runtime 1. Inan application thread:

Ta. Get the output from NvMedia IPP.
NvMediaIPPComponentGetOut
put

Tb. Consume the output

1c. Return the consumed buffer back
to IPP

NvMediaIPPComponentReturn
Output

NvMedia SIPL API

See nvsipl_camera source for
details.

1. 1n an application thread:

Ta. Get the output buffer from
the queuel(s) returned in the
SetPipelineCfg AP!I

INvSIPLFrameCompleti
onQueue: :Get

Tb. Get the post-fence of the
buffer

INvSIPLBuffer::
GetEOFNvSciSyncFence

Tc. Wait on the returned on the
post-fence and consume the
buffer

1d. Add pre-fences to the
buffer [(if any)

INvSIPLBuffer::
AddNvSciSyncPrefence

Te. Release the reference.

INvSIPLBuffer::Relea
se

This section details the API call sequence comparison for reprocessing a RAW file using

hardware ISP.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF

72

NVIDIA DRIVE 0S 6.0 Migration Guide

Table 30. Reprocessing a RAW File using Hardware ISP
Phase NvMedia IPP API NvMedia SIPL API
See nvmipp_raw source for details. See nvsipl_camera source for
details.
Initialization 1. Set up ExtimgDev params 1. Create INVSIPLCamera

NVIDIA CONFIDENTIAL

ExtImgDevInit
NvMediaIPPManagerCreate
NvMediaIPPPipelineCreate

2. Create the sensor control
component.

NvMediaIPPComponentCreate
New (ISC)

3. Create file reader component.

NvMediaIPPComponentCreate
New (FILE READER)

4. Specify buffer pool properties and
ISP output properties.

NvMediaIPPComponentCreate
New (ISP)

5. Specify algorithm configuration.

NvMediaIPPComponentCreate
New (ALG)

6. Create output component.
NvMediaIPPComponentCreate
New (OUTPUT)

7. Use multiple
NvMediaIPPComponentAttach to
attach components

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

instance

INvSIPLCamera: :GetIn
stance

2. Set up Platform config data
structure to describe the
camera. INvSIPLQuery
interfaces can be used to fetch
one of the supported platform
canfigurations

INvSIPLCamera: :SetPl
atformCfg

3. Set pipeline config
describing what outputs are
needed and image group writer
callback. Get back queues to
receive the output images

INvSIPLCamera: :SetPi
pelineCfg

4. Initialize the camera.

INvVSIPLCamera::Init

5. Get the image attributes

INvSIPLCamera: :GetIm
ageAttributes

6. Allocate buffers using
NvSciBuf APls

Register the buffers with SIPL

INvSIPLCamera: :Regis
terImages

7. Get NvSciSync attributes.

INvSIPLCamera: :FillN
vSciSyncAttrList

SWE-SWDOCDRV-017-PGRF

NVIDIA DRIVE 0S 6.0 Migration Guide

Phase NvMedia IPP API NvMedia SIPL API
See nvmipp_raw source for details. See nvsipl_camera source for
details.
8. Allocate NvSciSyncObjs
using NvSciSync APls. Register
NvSciSyncObjs with SIPL.
INvSIPLCamera: :Regis
terNvSciSyncObj
9. Register the Auto Control
plugin and ISP calibration data
to use
INvSIPLCamera: :Regis
terAutoControlPlugin
Start 1. Start the pipeline. 1. Start the camera.
NvMediaIPPPipelineStart INvVSIPLCamera::Start
2. Start ExtimgDev.
ExtImgDevStart
Runtime 1. In an application thread: 1. Populate the image with

NVIDIA CONFIDENTIAL

Ta. Get the output from NvMedia IPP.

NvMediaIPPComponentGetOut
put

Tb. Consume the output.

1c. Return the consumed buffer back
to IPP.

NvMediaIPPComponentReturn
Output

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

RAW data in the image group
writer callback implemented
by the app and register with
the SIPL

2.In an application thread:

2a. Get the output buffer from
the queuels) returned in the
SetPipelineCfg API.

INVSIPLFrameCompleti
onQueue: :Get

1h. Get the post-fence of the
buffer

INvSIPLBuffer::
GetEOFNvSciSyncFence

1c. Wait on the returned on the
post-fence and consume the
buffer

SWE-SWDOCDRV-017-PGRF

74

NVIDIA DRIVE 0S 6.0 Migration Guide

Phase NvMedia IPP API NvMedia SIPL API
See nvmipp_raw source for details. See nvsipl_camera source for
details.

1d. Add pre-fences to the
buffer (if any).

INVSIPLBuffer::
AddNvSciSyncPrefence

Te. Release the reference.

INvSIPLBuffer::Relea
se

NvMedia Array and NvMedia CVScratchPad

Deprecation

In NVIDIA DRIVE 6.0, NvMedia Array and NvMedia CVScratchPad APls are deprecated. These
APls are intended for use with Legacy NvMedia IOFST(Array) and NvMedia VPI(Array and
CVScratchPad] components, which are not are not part of NVIDIA DRIVE 6.0..

NvMedia ISC Deprecation

In NVIDIA DRIVE 6.0, NvMedia ISC APIs are deprecated. These APIs were intended for use with
Legacy NvMedia IPP component, which is not part of NVIDIA DRIVE 6.0..

NvMedia Core Deprecation

In NVIDIA DRIVE 6.0, NvMediaDeviceCreate and NvMediaDeviceDestroy APIs are marked as
deprecated and will be removed in 6.0.5.0 along with the libraries that contain them -
libnvmedia.so and libnvmedia core.so. [he NvMediaDevice handle did not carry valuable
information and was retained in NVIDIA DRIVE 5.2 for legacy reasons.

Clients should remove the use of NvMediaDeviceCreate and NvMediaDeviceDestroy APls in
applications. Additionally, clients should stop using 1ibnvmedia.so and
libnvmedia core.so in linker/makefiles.

NvMediaCoreGetVersion and NvMediaReleaseVersion APIs are deprecated and removed.
These APIs don't add value because the changes to NvMedia Core are minimal and only reflect
the state of the headers.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 75

NVIDIA DRIVE 0S 6.0 Migration Guide

Unused structs and enums such as NvMediaPoint, NvMediaPointFloat,
NvMediaPointDouble, NvMediaColorStandard, NvMediaTimeBase and

NvMediaGlobalTime are removed.

NvMedia 2D: Migrating from 5.2 to 6.0

Table 31.

DRIVE OS 5.2

/* Initialization */

NvMedia2D* handle =
NvMedia2DCreate (device) ;
NvMedia2DImageRegister (handle,
&srclmg,
NVMEDIA ACCESS MODE READ) ;
NvMedia2DImageRegister (handle,
&dstImg,

NVMEDIA ACCESS MODE READ WRITE) ;

/* Runtime */
NvMedia2z2DBlitParameters p;
p.validFields =

NVMEDIA 2D BLIT PARAMS FILTER |
NVMEDIA 2D BLIT PARAMS DST TRANSFO
RM;

p.filter = filter;
p.dstTransform = transform;
NvMedia2DBlitEx (handle, &dstImg,
&dstRect, &srcImg, &srcRect, &p,
NULL) ;

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Possible Sequences for AP| Calls

DRIVE OS 6.0

/* Initialization */
NvMedia2DCreate (&handle, NULL) ;
NvMedia2DFillNvSciBufAttrList (hand
le, srcBufAttrList);
NvMedia2DFillNvSciBufAttrList (hand
le, dstBufAttrList);
NvMedia2DFillNvSciSyncAttrList (han
dle, preSyncObjAttrsList,

NVMEDIA PRESYNCOBJ) ;
NvMedia2DFillNvSciSyncAttrList (han
dle, eofSyncObjAttrsList,
NVMEDIA_EOFSYNCOBJ);
NvMedia2DRegisterNvSciBufObj (handl
e, srcBuf);
NvMedia2DRegisterNvSciBufObj (handl
e, dstBuf);
NvMedia2DRegisterNvSciSyncObj (hand
le, NVMEDIA PRESYNCOBJ,
preSyncObj) ;
NvMedia2DRegisterNvSciSyncObj (hand
le, NVMEDIA EOFSYNCOBJ,
eofSyncObj) ;

/* Runtime */
NvMediaz2DComposeParameters params;
NvMedia2DGetComposeParameters (hand
le, ¶ms);
NvMedia2DInsertPreNvSciSyncFence (h
andle, params, &preFence);
NvMedia2DSetNvSciSyncObjforEOF (han
dle, params, eofSyncObj);
NvMedia2DSetSrcNvSciBufObj (handle,
params, 0, srcBuf);
NvMedia2DSetDstNvSciBufObj (handle,
params, dstBuf);
NvMedia2DSetSrcGeometry (handle,
params, 0, &srcRect, &dstRect,
transform) ;
NvMedia2DSetSrcFilter (handle,
params, 0, filter);

SWE-SWDOCDRV-017-PGRF

76

NVIDIA DRIVE 0S 6.0 Migration Guide

DRIVE OS 5.2 DRIVE OS 6.0

NvMedia2DComposeResult result;
NvMedia2DCompose (handle, params,
&result);
NvMedia2DGetEOFNvSciSyncFence (hand
le, &result, &eofFence);

/* De-initialization */
NvMediazDUnregisterNvSciBufObj (han
dle, srcBuf);
NvMedia2DUnregisterNvSciBufObj (han
dle, dstBuf);
NvMedia2DUnregisterNvSciSyncObj (ha
ndle, preSyncObj);
NvMedia2DUnregisterNvSciSyncObij (ha
ndle, eofSyncObj);
NvMedia2DDestroy (handle) ;

/* De-initialization */
NvMedia2DImageUnRegister (handle,
&srclImg) ;
NvMedia2DImageUnRegister (handle,
&dstImg) ;

NvMedia2DDestroyEx (handle) ;

Table 32. NvMedia 2D

Module: NvMedia 2D

Header File and API Comments
Header File: Function signature is changed to:
nvmedia vpi.h Header File:
HeaderFﬁé: nvmedia_2d.h
nvmedia 2d.h APL:
NvMediaStatus
API: NvMedia2DCreate (
NvMedia2D * NvMedia2D **handle,
NvMedia2DCreate NvMedia2DAttributes const * const
NvMediaDevice *device attr

)) ;

The NvMedia2D* return value is changed to be
delivered to caller through an out parameter, and
the function now returns an error code.

NvMediaDevice is no longer required to create
NvMedia 2D context.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia 2D

Header File and API

Header File:

nvmedia 2d.h
API:

NvMediaStatus
NvMedia2DDestroyEx (

NvMedia2D *i2d

Header file:
nvmedia 2d.h

API:
NvMediaStatus
NvMedia2DImageRegister (

const NvMedia2D *iZ2d,
const NvMediaImage *image,
NvMediaAccessMode accessMode

NVIDIA CONFIDENTIAL
NVIDIA DRIVE OS 6.0 SDK Migration Guide

Comments

A possibility to pass attributes controlling memory
allocation for NvMedia 2D context is added.

Function signature is changed to:

Header File:
nvmedia 2d.h

API:

NvMediaStatus

NvMedia2DDestroy (
NvMedia2D *handle

) ;

The function name has changed. Function
NvMediaZ2DDestroy () was deprecated inb5.2. Its
name is now reused in the function replacing
NvMedia2DDestroyEx () in 6.0.

NvMediaImage is no longer used. Instead,
NvSciBufObj is used for image data and
NvSciSyncObj for synchronizing NvMedia 2D
operations with other tasks.

NvSciBufObjs need to be registered with
NvMedia 2D before they are used with function

Header File:
nvmedia 2d sci.h

API:
NvMediaZ2DRegisterNvSciBufObj ()

The attribute lists used to create the registered
NvSciBufObjs need to have NvMedia 2D
mandatory attributes set with function

Header File:
nvmedia 2d sci.h

SWE-SWDOCDRV-017-PGRF

78

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia 2D

Header File and API

Header file:
nvmedia 2d.h

API:

NvMediaStatus

NvMedia2DImageUnRegister (
const NvMedia2D *iZ2d,
const NvMediaImage *image

);

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Comments

API:
NvMedia2DFillNvSciBufAttrList ()

NvSciSyncObjs need to be registered with
NvMedia 2D before they are used with function

Header File:
nvmedia 2d sci.h

API:
NvMedia2DRegisterNvSciSyncObj ()

The attribute lists used to create the registered
NvSciSyncObjs need to have NvMedia 2D
mandatory attributes set with function

Header File:
nvmedia 2d sci.h

API:
NvMedia2DFillNvSciSyncAttrList ()

NvMediaImage is no longer used. Instead,
NvSciBufObj is used for image data and
NvSciSyncObj for synchronizing NvMedia 2D
operations with other tasks

NvSciBufObjs need to be unregistered with
NvMedia 2D after they are no longer used with
function

Header File:
nvmedia 2d sci.h

API:
NvMediazDUnregisterNvSciBufObj ()

SWE-SWDOCDRV-017-PGRF

79

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia 2D

Header File and API

Header File:
nvmedia 2d.h

API:

NvMediaStatus

NvMedia2DBlitEx (
const NvMedia2D *i2d,
const NvMediaImage *dstSurface,
const NvMediaRect *dstRect,
const NvMediaImage *srcSurface,
const NvMediaRect *srcRect,

const NvMedia2DBlitParameters
params,

NvMedia2DBlitParametersOut
*paramsOut

)7

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Comments

NvSciSyncObjs need to be unregistered with
NvMedia 2D after they are no longer used with
function

Header File:
nvmedia 2d sci.h

API:
NvMedia2DUnregisterNvSciSyncObij ()

NvMediaImage is no longer used. Instead,
NvSciBufObj is used for image data and
NvSciSyncObj for synchronizing NvMedia 2D
operations with other tasks.

The parameters of an NvMedia 2D operation are no
longer passed directly to the function triggering the
processing, but instead they are now configured to
a separate parameters object. New parameters
object needs to be acquired for each frame with
function

Header File:
nvmedia 2d.h

API:
NvMedia2DGetComposeParameters ()

The source and destination surfaces are configured
to the parameters object with functions

Header File:
nvmedia 2d sci.h

API:
NvMedia2DSetSrcNvSciBufObj ()
NvMedia2DSetDstNvSciBufObj ()

SWE-SWDOCDRV-017-PGRF

80

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia 2D

Header File and API

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Comments

The source and destination rectangles, and the 2D
rotation/transformation to apply are configured to
the parameters object with function

Header File:
nvmedia 2d.h

API:
NvMedia2DSetSrcGeometry ()

The filtering is configured to the parameters object
with function

Header File:
nvmedia 2d.h

API:
NvMedia2DSetSrcFilter ()

If there is a need to wait for some other task (for
example another HW engine providing input frame
to NvMedia 2D in an image processing pipeline] to
camplete before starting the NvMedia 2D operation,
a pre-fence can be configured to the parameters
object with function

Header File:
nvmedia 2d sci.h

API:
NvMedia2DInsertPreNvSciSyncFence ()

If there is a need to wait for the NvMedia 2D
operation to complete, an end-of-frame fence can
be requested to be generated by the operation. This
Is done by canfiguring an end-of-frame
NvSciSyncObj to the parameters object with
function

SWE-SWDOCDRV-017-PGRF

81

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia 2D

Header File and API

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Comments

Header File:
nvmedia 2d sci.h

API:
NvMedia2DSetNvSciSyncObjforEQOF ()

The end-of-frame fence can be retrieved after
triggering the operation with function

Header File:
nvmedia 2d sci.h

API:
NvMedia2DGetEOFNvSciSyncFence ()

Triggering a new NvMedia 2D operation using a
parameters object is dane with function

Header File:
nvmedia 2d.h

API:
NvMedia2DCompose ()

As a new feature, there’'s now a possibility to use
multiple source surfaces for a single NvMedia 2D
operation. This is done by identifying the different
surfaces with an index parameter passed to the
functions with “Src” in their name.

As a new feature, there's now a possibility to
configure the blending mode to use with each
source surface to the parameters object. This is
done with function

Header File:
nvmedia 2d.h

SWE-SWDOCDRV-017-PGRF

82

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia 2D

Header File and API

NvMedia Lens Distortion Correction (LDC): Migrating

from 5.2 to 6.0

Table 33.

DRIVE OS 5.2

/* Initialization */
NvMedialLDCInitParams initParams;

initParams.ldcMode =
NVMEDIA LDC MODE GEOTRANS;

initParams.geoTransParams.geoTransMod
e =
NVMEDIA GEOTRANS MODE FEED MAPPING;

initParams.geoTransParams.filter =
filter;

initParams.geoTransParams.bitMaskEnab
le = NVMEDIA TRUE;

initParams.geoTransParams.bitMaskMap
= maskMap;
NvMediaLDCCreateNew (

device,

&handle,

srcW,

srcH,

&srcRect,

dstWw,

dstH,

&dstRect,

&initParams
);
NvMediaLDCFeedSparseWarpMap (handle,
&warpMap) ;

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Comments

API:

NvMedia2DSetSrcBlendMode ()

Possible Sequences for API Calls

DRIVE OS 6.0

/* Initialization */

NvMedialLdcCreate (&handle, NULL);
NvMedialLdcFillNvSciBufAttrList (handle
, srcBufAttrList);
NvMedialLdcFillNvSciBufAttrList (handle
, dstBufAttrList);
NvMedialLdcFillNvSciBufAttrList (handle
, xsobelDstBufAttrList);
NvMedialLdcFillNvSciBufAttrList (handle
, XsobelDsDstBufAttrList);
NvMediaLdcFillNvSciSyncAttrList (handl
e, preSyncObjAttrsList,

NVMEDIA PRESYNCOBJ) ;
NvMediaLdcFillNvSciSyncAttrList (handl
e, eofSyncObjAttrsList,

NVMEDIA EOFSYNCOBJ) ;
NvMedialLdcRegisterNvSciBufObj (handle,
srcBuf) ;
NvMedialdcRegisterNvSciBufObj (handle,
dstBuf) ;
NvMedialdcRegisterNvSciBufObj (handle,
xsobelDstBuf) ;
NvMedialLdcRegisterNvSciBufObj (handle,
xsobelDsDstBuf) ;
NvMediaLdcRegisterNvSciSyncObj (handle
, NVMEDIA PRESYNCOBJ, preSyncObj);

SWE-SWDOCDRV-017-PGRF

83

NVIDIA DRIVE 0S 6.0 Migration Guide

DRIVE OS 5.2

/* Runtime */
NvMedialLDCCtrlParams ctrlParams;

ctrlParams.xSobelMode =

NVMEDIA GEOTRANS ENABLE XSOBEL ENABLE
_DS;

NvMedialLDCProcess (handle, NULL,
srcImg, dstImg, xsobellmg,
xsobelDsImg, &ctrlParams);

/* De—-initialization */
NvMediaLDCDestroy (handle) ;

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

DRIVE OS 6.0

NvMedialdcRegisterNvSciSyncObj (handle
, NVMEDIA EOFSYNCOBJ, eofSyncObj);
NvMedialLdcParameters params;
NvMedialdcCreateParameters (handle,
¶msAttrs, ¶ms);

NvMedialLdcSetNvSciSyncObjforEOF (handl
e, params, eofSyncObj);

NvMedialLdcSetFilter (handle, params,
filter);
NvMedialdcSetGeometry (handle, params,
&srcRect, &dstRect);

NvMedialLdcSetWarpMapParameters (handle
, params, &warpMapParams) ;
NvMedialLdcSetMaskMapParameters (handle
, params, &maskMapParams) ;

/* Runtime */
NvMedialdcInsertPreNvSciSyncFence (han
dle, params, preFence);
NvMedialLdcSetSrcNvSciBufObj (handle,
params, srcBuf);
NvMediaLdcSetDstNvSciBufObj (handle,
params, dstBuf);
NvMedialdcSetXSobelDstSurface (handle,
params, xsobelDstBuf) ;
NvMedialdcSetDownsampledXSobelDstSurf
ace (handle, params, xsobelDsDstBuf);
NvMedialLdcResult result;
NvMedialdcProcess (handle,
&result) ;
NvMedialdcGetEOFNvSciSyncFence (handle
, &result, &eofFence);

params,

/* De-initialization */
NvMedialLdcDestroyParameters (handle,
params) ;
NvMedialLdcUnregisterNvSciBufObj (handl
e, srcBuf);
NvMedialdcUnregisterNvSciBufObj (handl
e, dstBuf);
NvMedialdcUnregisterNvSciBufObj (handl
e, xsobelDstBuf);
NvMedialLdcUnregisterNvSciBufObj (handl
e, xsobelDsDstBuf) ;
NvMediaLdcUnregisterNvSciSyncObj (hand
le, preSyncObj);

SWE-SWDOCDRV-017-PGRF

84

NVIDIA DRIVE 0S 6.0 Migration Guide

DRIVE OS 5.2 DRIVE OS 6.0

NvMedialdcUnregisterNvSciSyncObj (hand
le, eofSyncObj);

NvMediaLdcDestroy (handle) ;

Table 34. NvMedia Lens Distortion Correction

Module: NvMedia LDC
Header File and API

Header File:
nvmedia_ldc.h

API:

NvMediaStatus

NvMediaLDCCreateNew (
const NvMediaDevice *device,
NvMedialLDC **pldc,
const uintl6 t srcWidth,
const uintl6 t srcHeight,
const NvMediaRect *srcRect,
const uintl6 t dstwidth,
const uintl6 t dstHeight,
const NvMediaRect *dstRect,
const NvMediaLDCInitParams *initParams

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Comments

NvMediaDevice is no longer required to create
NvMedia LDC context. The context is created
with function

Header File:
nvmedia ldc.h

API:

NvMediaStatus

NvMedialLdcCreate (
NvMedialLdc **const handle,

NvMedialLdcAttributes const *const
attr

)7

The NvMedialLdcAttributes parameter
cantrols the amount of memory allocated for the
context.

The surface dimensions, rectangles, filtering,
regions, matrix coefficients etc. are no longer
passed to the context creation function. Instead,
they are now configured to a separate
parameters object created with the function

Header File:
nvmedia ldc.h

API:
NvMediaStatus
NvMedialLdcCreateParameters (

SWE-SWDOCDRV-017-PGRF

85

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia LDC

Header File and API Comments

NvMedialLdc *const handle,

NvMedialLdcParametersAttributes
const *const attr,

NvMedialLdcParameters *const
params

) 7

The NvMedialdcParametersAttributes
parameter controls which features [such as
TNR3 and mask map.] can be used with the
allocated parameters object and how much
memory is allocated for them.

The pixel interpolation filter is configured to the
parameters object with function

Header File:
nvmedia ldc.h

API:
NvMedialLdcSetFilter ()

The rectangles are configured to the
parameters object with function

Header File:
nvmedia ldc.h

API:
NvMedialdcSetGeometry ()

The IPT (perspective) matrix and related region
configuration are configured to the parameters
object with function

Header File:
nvmedia ldc.h

API:

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 86

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia LDC

Header File and API

Header file:
nvmedia ldc.h

API:

NvMediaStatus
NvMediaLDCDestroy (
NvMediaLDC *1dc

);

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Comments

NvMedialLdcSetIptParameters ()

The warp map and related region configuration
are configured to the parameters object with
function

Header File:
nvmedia ldc.h

API:
NvMedialdcSetWarpMapParameters ()

The mask map is configured to the parameters
object with function

Header File:
nvmedia ldc.h

API:
NvMedialLdcSetMaskMapParameters ()

The TNR3 parameters are configured to the
parameters object with function

Header File:
nvmedia ldc.h

API:
NvMedialLdcSetTnrParameters ()

Any created parameters objects need to be
destroyed with function

Header File:
nvmedia ldc.h

API:

SWE-SWDOCDRV-017-PGRF

87

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia LDC

Header File and API

Header File:
nvmedia ldc.h

API:
NvMediaStatus
NvMediaLDCFeedSparseWarpMap (
NvMedialLDC *1ldc,
const NvMedialLDCSparseWarpMap *map
);

Header file:
nvmedia ldc.h

API:

NvMediaStatus

NvMediaLDCMappingGen (
NvMediaLDC *1dc

);

Header file:

nvmedia ldc.h

API:
NvMediaStatus

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Comments

NvMedialLdcDestroyParameters ()

before destroying the NvMedia LDC context. The
context is destroyed with function

Header File:
nvmedia ldc.h

API:
NvMediaLdcDestroy () ;

The warp map is now configured to a
parameters object with function

Header File:
nvmedia ldc.h

API:
NvMedialdcSetWarpMapParameters ()

Anly floating point format is supported for the
map control points.

Generating a warp map based on a lens model
is now done with function

Header File:
nvmedia ldc util.h

API:
NvMedialLdcGenWarpMap ()

TNR2 is no longer supported

SWE-SWDOCDRV-017-PGRF

88

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia LDC

Header File and API

NvMediaLDCUpdateTNR2Params (
NvMediaLDC *1ldc,
const NvMediaTNR2Params *tnr2Params
)7

Header file:
nvmedia ldc.h

API:
NvMediaStatus
NvMediaLDCUpdateTNR3Params (

const NvMedialDC *1ldc,

const NvMediaTNR3Params *tnr3Params

)7

Header File:
nvmedia ldc.h

API:
NvMediaStatus
NvMediaLDCProcess (
const NvMediaLDC *1ldc,
NvMediaImage *prevSurface,
NvMediaImage *curSurface,
NvMediaImage *outputSurface,
*xSobel,
NvMediaImage *downSample,
const NvMediaLDCCtrlParams
*ldcCtrlParams

)7

NvMediaImage

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Comments

The TNR3 parameters are configured to a
parameters object with function

Header File:
nvmedia ldc.h

API:
NvMediaLdcSetTnrParameters ()

NvMediaImage is no longer used. Instead,
NvSciBufObj is used for image data and
NvSciSyncObj for synchronizing NvMedia LDC
operations with other tasks.

NvSciBufObjs need to be registered with
NvMedia LDC before they are used with function

Header File:
nvmedia ldc_sci.h

API:
NvMedialLdcRegisterNvSciBufObj ()

The attribute lists used to create the registered
NvSciBufObjs need to have NvMedia LDC
mandatory attributes set with function

Header File:
nvmedia ldc_sci.h

API:
NvMedialLdcFillNvSciBufAttrList ()

SWE-SWDOCDRV-017-PGRF

89

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia LDC

Header File and API

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Comments

NvSciSyncObjs need to be registered with
NvMedia LDC before they are used with function

Header File:
nvmedia ldc _sci.h

API:
NvMedialLdcRegisterNvSciSyncObj ()

The attribute lists used to create the registered
NvSciSyncObjs need to have NvMedia LDC
mandatory attributes set with function

Header File:
nvmedia ldc_sci.h

API:
NvMediaLdcFillNvSciSyncAttrList ()

The surfaces are no longer passed directly to
the function triggering the processing of a
frame, but instead they are now configured to a
separate parameters object. The surfaces are
configured to the parameters object with
functions

Header File:
nvmedia ldc sci.h

API:

NvMedialdcSetSrcSurface ()
NvMediaLdcSetDstSurface ()
NvMedialLdcSetPreviousSurface ()
NvMedialLdcSetXSobelDstSurface ()

NvMedialLdcSetDownsampledXSobelDstSu
rface()

No separate parameter controls the XSobel
working mode, but it is instead determined

SWE-SWDOCDRV-017-PGRF

90

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia LDC

Header File and API

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Comments

based on the surfaces configured for an
operation.

If there is a need to wait for another task (for
example another HW engine providing input
frame to NvMedia LDC in an image processing
pipeline] to complete before starting the
NvMedia LDC operation, a pre-fence can be
canfigured to the parameters object with
function

Header File:
nvmedia ldc_sci.h

API:
NvMedialLdcInsertPreNvSciSyncFence ()

If there is a need to wait for the NvMedia LDC
operation to complete, an end-of-frame fence
can be requested to be generated by the
operatian. This is done by configuring an end-of-
frame NvSciSyncObj to the parameters object
with function

Header File:
nvmedia ldc_sci.h

API:
NvMedialdcSetNvSciSyncObjforEOF ()

The end-of-frame fence can be retrieved after
triggering the operation with function

Header File:
nvmedia ldc sci.h

API:
NvMediaLdcGetEOFNvSciSyncFence ()

SWE-SWDOCDRV-017-PGRF

91

NVIDIA DRIVE 0S 6.0 Migration Guide

Module: NvMedia LDC

Header File and API

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Comments

The same parameters object (with same warp
map, TNR3 etc. configuration) can be used for
multiple frames, but the surfaces and pre-
fences need to be configured separately for
each frame.

Triggering a new NvMedia LDC operation using
a parameters object is done with function

Header File:
nvmedia ldc.h

API:
NvMediaLdcProcess ()

NvSciBufObjs need to be unregistered with
NvMedia LDC after they are no longer used with
function

Header File:
nvmedia ldc_sci.h

API:
NvMedialLdcUnregisterNvSciBufObj ()

NvSciSyncObjs need to be unregistered with
NvMedia LDC after they are no longer used with
function

Header File:
nvmedia ldc_sci.h

API:
NvMedialLdcUnregisterNvSciSyncObj ()

SWE-SWDOCDRV-017-PGRF

92

NVIDIA DRIVE 0S 6.0 Migration Guide

Camera SIPL GPIO and Interrupt Localization
Changes Introduced in DRIVE 0S 6.0.6.0

Camera SIPL GPIO control is now consolidated in the CDAC (6.0.7.0 and prior) or CamGPIO
Resource Managers on QNX, and cdi-mgr on Linux. All Camera GPIO functionalities should be
accessed through the SIPL CDI GPIO APIs from device drivers (CDD]:
DevBlkCDIRootDeviceSetGPIOPinLevel()
DevBlkCDIRootDeviceGetGPIOPinLevel()
DevBlkCDIRootDeviceCheckAndClearIntr()*

(

L

vV v vy

DevBlkCDIRootDeviceWaitForError()*
» DevBlkCDIRootDeviceAbortWaitForError()*

(The recommendation for CDD drivers is to use asynchronous SIPL interrupt localization
rather than handling interrupts directly.]

Interrupt Localization

Camera error interrupt localization from external hardware sources is introduced in Camera
SIPL for Orin in 6.0.6.0. Each camera group has a pair of falling- and rising-edge triggered
interrupt lines to Tegra, to which all corresponding interrupt signals in all devices within that
group are muxed together.

SIPL Interrupt Localization is a Device Driver Interface (DDI) implemented in device drivers
(CDD] triggered and supervised by SIPL Core upon receiving an interrupt, to determine the
origins of a muxed interrupt signal, and to propagate the appropriate error interrupt event
signals to the client within a time limit (such as FTTI). An optional timeout value is configurable
in the SIPL Platform Configuration. A timeout error notification is dispatched to the client if
error localization is not completed within the duration.

Interrupt localization is enabled by setting the enableGetstatus flag in the SIPL Platform
Configuration for the GPIO pin. If not enabled, interrupts are propagated to the client
notification queue immediately, which was the legacy behavior.

Device Tree Configuration

Under the new GPIO regime in Orin, all Tegra GPIO pins used by camera hardware should be
configured in the Device Tree under the new /sipl devblk X/tegra/gpios node [x is the
12C bus number of the Camera Group).

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 93

NVIDIA DRIVE 0S 6.0 Migration Guide

Table 35. Device Tree Configuration

Iltem Format Description

index Non-negative integer unigue in this Identifier unique in the scope of a Camera
scope Group, used for matching with the SIPL

Platform Configuration.

nvgpio- phandle to NvGpio Device Tree Node Reference to the underlying NvGpio node.

line

Interrupt | Any single instance of {"input”, Type of Camera Interrupt, must be compatible

type “output’, Tintr-level-low’, Tintr-level- [with the NvGPIQ Device Tree node
high™, “intr-edge-any", “intr-edge- configuration (checked at CamGPIO
rising”, “intr-edge-falling"} initialization at system boot].

By default, the falling- and rising-edge triggered interrupts are present in the device tree.

Under °/°
sipl devblk 0 {
tegra {
gpios {
DEVBLKO DSER CAM PWR SHARED GPIO: gpio@0 ({
index = <0>;
nvgpio-line = <&nvgpio errb lock err a>;
intr-edge-falling;
}i

gpio@l {
index = <1>;
nvgpio-line = <&nvgpio cam err a>;

intr-edge-rising;
bi
bi
bi

The SIPL Platform Configuration is extended to support interrupt localization and interrupt
localization timeout. The errGpios attribute accepts a list of Camera GPIO interrupt GPIOs to
monitor.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 94

NVIDIA DRIVE 0S 6.0 Migration Guide

Table 36. Platform Configuration
Attribute Format Description
1dx Non-negative integer | Identifier unique in the scope of a Camera Group, used
unique in this scope for matching with the SIPL Device Tree configuration.
enableGetStatus | True or False Interrupt Localization enablement. Default: false
timeout_ms Non-negative integer | Interrupt Localization timeout in millisecands, no effect if
“enableGetStatus” is false. Default: 0 (disabled).

Example
"deserializers": [
{
"errGpios": [
{ "idx": "0", "enableGetStatus": true, "timeout ms": 0 }

1,
"pWeriO": ["'7"] ,
s

SIPL Event Deprecation
With NVIDIA DRIVE 0S 6.0.8.1, SIPL will no longer send the following pipeline events:

» NOTIF INFO ISP PROCESSING DONE
» NOTIF INFO ACP PROCESSING DONE

These events are marked as deprecated in the SIPL header and will be removed in future
releases. To avoid compilation failure, do not use these APlIs.

NvStreams APl Changes

About NvStreams

NvStreams is a family of technologies related to communicating information between different
interconnected hardware domains and software partitions. It provides software with the
flexibility in constructing different execution pipelines between applications independent of

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 95

NVIDIA DRIVE 0S 6.0 Migration Guide

actual system configuration and topology. NvStreams implements three specific technologies:
NvSciBuf, NvSciSync, and NvSciStream.

This section summarizes the APl changes that users of NvStreams can expect to see moving
from NVIDIA DRIVE 0S 5.2 to 6.0, keeping in mind that NVIDIA DRIVE 6.0 is still in development
and functionality is subject to change.

About the NvStreams Migration

The API changes fall into a few general categories, briefly described here. The details and
examples of how to make the transition, are in the following sections.

In 5.x, our approach for transmitting data through the stream was that every time data was
provided on one block, it was immediately transmitted through the stream to the other blocks,
where it would arrive as an event. Each type of data had its own event type, which applications
needed to recognize and know how to handle. Starting with 6.0, we will organize different types
of data into groups. Data will be held in the block where it is specified until the user indicates it
Is done with the relevant group. Then the date will be transmitted through the stream at once,
resulting in a single event at each recipient. The recipient can then query and handle the data
at a time of its choosing, possibly restricting its queries to a subset of the data it needs. This
allows applications to organize themselves into different setup operations, and smoothly
transition to streaming when setup is complete. It also allows for future expansion of
NvSciStream to support optional features.

In 5.x, the producer and consumer(s] each provided a global list of sync objects to coordinate
their use of the buffers. The intent was for different engines, which operated on separate
buffers, to use different sync objects. Nothing in the API, however, made it clear which sync
objects were relevant to the data in each buffer or engine. In 6.0, rather than specifying a
global list of sync objects, endpoints will specify a single sync object for each element in the
packets.

In 6.0, when IPC blocks are destroyed, they will also close associated channels. Previously, the
channels were left active, and applications that were fully cleaned up would have to close
them themselves. These applications must be updated or they will free the channels twice.

6.0 will introduce error codes to allow for easier debugging if anything goes wrong. Any
applications that check for specific error codes will need to be updated to include the new
ones.

NvStreams Examples

For most of the changed APIs, examples of how to perform the transition are provided. The
examples assume a relatively simple case with two packet elements: one accessed
synchronously, and one accessed asynchronously. In this code, all consumers use both
elements, but comments are provided to describe how they might take advantage of the new
APls if they only access a subset. The following symbols are used to name the two elements:

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 96

NVIDIA DRIVE 0S 6.0 Migration Guide

#define MY ELEMENT TYPE BASE 0x1234
#define MY ELEMENT TYPE SYNC (MY ELEMENT TYPE BASE+0)
#define MY ELEMENT TYPE ASYNC (MY ELEMENT TYPE BASE+1)

For many operations, the producer and consumer code would be very similar. In these cases,
to avoid duplicating large blocks of code with minor differences, only the producer version is
shown, and the differences for the consumer are indicated by comments.

For simplicity, error handling has been omitted from most of the examples.

Application-specific operations to generate data to pass to NvSciStream and process data
received from it is referenced by a function of the form Application SomeOperation () ;

General Changes

Some of the new functions will require the producer application to iterate over the list of
consumers. Simple applications with fixed configurations may already know the number of
consumers. For more generally configurable applications, this information will now be
available through the producer and pool blocks once the stream is fully connected via a new
query:

NvSciError

NvSciStreamBlockConsumerCountGet (

NvSciStreamBlock const block,
uint32 t* const numConsumers) ;

For the functions where iteration over consumers is performed, the queries will include a
parameter to specify the block index. When querying information about consumers, this index
should be that of the consumer. When querying information about producers, this index should
always be 0.

SomeFunction(.. , uint32 t const queryBlockIndex, ..);

Some queries on the pool block can obtain information about either the producer or
consumer(s). These functions include a new parameter to specify the source of the
information being queried
typedef enum {

NvSciStreamBlockType Producer,

NvSciStreamBlockType Consumer,

NvSciStreamBlockType Pool
} NvSciStreamBlockType;

SomeFunction(.. , NvSciStreamBlockType const queryBlockType, ..);

Various setup operations will be broken up into key groups. Rather than transmitting every
piece of data through the stream as it arrives, required and optional data for each group is
gathered and sent all at once when the application indicates that it is done with the setup. This
completion is signaled with a new function with the use described further in the following

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 97

NVIDIA DRIVE 0S 6.0 Migration Guide

sections. The <completed> parameter to this function is provided for future support for
dynamically modifying streams (outside of safety systems) and currently must always be true.

typedef enum { .. } NvSciStreamSetup;

NvSciError

NvSciStreamBlockSetupStatusSet (
NvSciStreamBlock const block,
NvSciStreamSetup const setupType,
bool const completed) ;

IPC Setup

Applications that stream between processes must call NvSciIpcResetEndpointSafe () on
any channel endpoint they open before using it to create an NvSciStream IpcSrc or IpcDst
block, regardless of whether they perform communication over the channel before passing
ownership.

Connection

Creation and connection of the stream is performed as in 5.2. After the stream is fully
connected, the producer and pool can query the number of consumers, as described above.

Example

Unmodified Code
//

// All block creation and connection functions are as in 5.2

//

New Code

// In producer process:

// After connection, query the number of consumers.

// This is not necessary for simple applications where the producer
// always knows how many consumers there will be.

uint32 t numConsumers;

NvSciStreamBlockConsumerCountGet (producerBlock, &numConsumers) ;

Event Handling

The event query function will no longer return an event structure. Instead, it will just return an
event type. The data previously returned in this structure will be available to query at any time

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 98

NVIDIA DRIVE 0S 6.0 Migration Guide

after the event is received using new functions described below. Applications receiving events
can process the event data in any order they choose. Events will also be consolidated, so a
single event will be received for groups of related data.

NvSciError

NvSciStreamBlockEventQuery (
NvSciStreamBlock const block,
int64 t const timeoutUsec,

NizS o1 Q4 T Nt XKoo ot Nt
nNnvVoCTo T ottt T TS T T

NvSciStreamEventType *const eventType) ;

Motivation for Change: With the previous model, we required separate events for every piece
of information received at a block. Adding new features, particularly optional ones, becomes
difficult because we must add new event types, requiring application updates to recognize, and
potentially grow, the data structure, requiring recompilation of applications even if they do not
need to support the new event. The new model reduces the number of events to a smaller set
of events indicating various types of data are ready. New features simply add to the set of data
available, but older applications, which are not interested in the new data, will not have to be
modified or recompiled to accommodate changes in the data structure.

Example

This example illustrates the transition required for a generic (non-existent] array of “Foo”
data. Specific examples are provided for each real data type. For brevity, those examples omit
the outer loop and just show the case statement in the event switch.

Old Code

// Main event loop
while (<not done>) {

NvSciStreamEvent event;

if (NvSciError Success !=
NvSciStreamBlockEventQuery (block, timeout, &event)) {
switch (event.type) {

case NvSciStreamEventType FooCount:
// Handle the count received in the event
Application FooArraySetup (event.count);
break;

case NvSciStreamEventType SingleFoo:
// Handle the individual indexed foo received in the event
Application FooHandler (event.index, event.fooValue);
break;

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 99

NVIDIA DRIVE 0S 6.0 Migration Guide

New Code

// Main event loop
while (<not done>) {

NvSciStreamEventType eventType;

if (NvSciError Success !=
NvSciStreamBlockEventQuery (block, timeout,
switch (eventType) {

case NvSciStreamEventType AllFoos:
// Query and handle the count
uint32 t fooCount;

&eventType)) {

NvSciStreamBlockFooCountGet (block, &fooCount) ;

Application FooArraySetup (fooCount) ;

// Query and handle each indexed value

for (uint32 t j; j<fooCount; j++) {
FooType fooValue;
NvSciStreamBlockFooValueGet (block,

J, &fooValue) ;

Application FooHandler (j, fooValue):;

}

break;

Error Events

If an error event (NvSciStreamEventType Error)occurs on any block, the associated error

value can be queried with a new function:

NvSciError

NvSciStreamBlockErrorGet (
NvSciStreamBlock const block,
NvSciError* const status);

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF

100

NVIDIA DRIVE 0S 6.0 Migration Guide

Element Support

Specifying Element Support

There will be a minor change in how the producer and consumer(s) specify the types of packet
elements they support, and how the pool specifies the final element layout. Instead of
specifying the number of elements up front and then each element by index, the elements will
be passed without an index. After specifying all of the elements, the application will indicate it
Is done with the element setup by calling NvScistreamBlockSetupStatusSet () with a value
of NvSciStreamSetup ElementExport. [heindices and count will be determined
automatically by NvSciStream.

Motivation for Change: Elimination of the count and index provides a more natural means of
specifying the support, particularly for simple applications that only provide a single element.
The addition of the completion signal after the elements are specified also allows for future
features that specify optional support along with the list of elements.

The synchronization mode parameter will also be eliminated from the element specification.
Instead, this will be covered by the specification of synchronization object attributes, described
below.

Motivation for Change: The original interfaces had redundant and potentially conflicting,
methods for specifying whether data is written and read synchronously or asynchronously. We
are consolidating on a single method to eliminate confusion.

NvSciError

NizCS o2 Q4+ A D] alrDA 1 #7\##1/-(
nNnvVoCTo oI CaittoT Koy EASENEEE

NvSciStreamBlockElementAttrSet (
NvSciStreamBlock const block,

133D L Ao
oIt S TotT

SR
THC 7

uint32:t const userType,

NizCS o2 Qt AT] mantNMAA o ot axzn ~NMA A
NnVoCTo ot Caott - CiChtraot TS T o yrcrict

NvSciBufAttrList const bufAttrList);

Producer (and Consumer) Example

Old Code
// Set up the attributes for each buffer type we generate
// (For consumers, obtain read attributes instead of write)

NvSciBufAttrList elemAttrs[2];
Application ElementWriteAttrs (elemAttrs);

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 101

NVIDIA DRIVE 0S 6.0 Migration Guide

// Inform NvSciStream there are 2 elements and send each of them

NvSciStreamBlockPacketElementCount (block, 2);

NvSciStreamBlockPacketAttr (block, 0, MY ELEMENT TYPE SYNC,
NvSciStreamElementMode Immediate,
elemAttrs[0]) ;

NvSciStreamBlockPacketAttr (block, 1, MY ELEMENT TYPE ASYNC,
NvSciStreamElementMode Asynchronous,
elemAttrs([1l]);

New Code
// Set up the attributes for each buffer type we generate
// (For consumers, obtain read attributes instead of write)

NvSciBufAttrList elemAttrs[2];

Application ElementWriteAttrs (elemAttrs);

// Inform NvSciStream of each element

// (If a consumer doesn’t need one of these, it just skips it)

NvSciStreamBlockElementAttrSet (block, MY ELEMENT TYPE SYNC,
elemAttrs[0]);

NvSciStreamBlockElementAttrSet (block, MY ELEMENT TYPE ASYNC,
elemAttrs[1l]);

// Inform NvSciStream that element specification is done

NvSciStreamBlockSetupStatusSet (block,
NvSciStreamSetup ElementExport,
true) ;

Pool Example

Refer to the next section for the combined receive and send example.

Receiving Element Support

Previously, the number of elements and individual element types arrived as separate events on
each block. Now, the pool, producer, and consumer will each receive a single
NvSciStreamEvent Elements event. The pool will receive this event after the producer and
all consumers finish specifying their element support. After the pool has finished specifying
the final packet element layout, the producer and consumers receive this event.

After receiving this event, the application queries the element information using new functions
instead of obtaining it as data in the event structure. The pool should use a
<queryBlockType> 0f NvSciStreamBlockType Producer Or

NvSciStreamBlockType Consumer to get the information from the producer or consumers,

respectively. The producer and consumer should use a <queryBlockType> of
NvSciStreamBlockType Pool.

When querying the elements, consumers can choose not to use all of them. A consumer can
inform NvSciStream that an element will not be used by calling
NvSciStreamBlockElementUsageSet () With <used> set to false. This will allow

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 102

NVIDIA DRIVE 0S 6.0 Migration Guide

NvSciStream to optimize by not sharing the relevant buffers with the consumer. This function

can be called with <used> set to true, but this is the default, and the call is not necessary.
Therefore, most existing applications will not need to add this call.

After querying element information and (for the consumer] indicating which elements they will

support, the producer and consumer(s] must call the new

NvSciStreamBlockSetupStatusSet () function with a value of

NvSciStreamSetup ElementImport. [his allows them to begin receiving packets from the

pool.

typedef enum {

s

R

s

Qg QN T Nt Tz Dol + 0] mont (a4
NvSei-StreambventType—PackethEtementCount
NxzQ a1 Q4+ o T Nt Tz Dol + 0] mont (a4
NvSei-StreambventType—PackethtementCount
NxzQ a1 Q4+ o T Nt Tz Dol + 0] mont (a4
NvSei-StreambventType—PackethtementCount
NxzQ a1 Q4+ o T Nt Tz Dol A+ + DA~
NvSeiStreambventType—PacketAttrProducer
NxzQ a1 Q4+ o T Nt Tz Dol A+t A o
NvSeiStreambventType—PacketAttrConsumer
NxzQ a1 Q4+ o T Nt Tz Dol + N+ +
NvSeiStreambventType—PacketAtEr
NvSciStreamEventType Elements

} NvSciStreamEventType;

NvSciError

NvSciStreamBlockElementCountGet (
NvSciStreamBlock const block,

NvSciStreamBlockType const queryBlockType,

uint32 t* const numElements) ;

NvSciError

NvSciStreamBlockElementAttrGet (
NvSciStreamBlock const block,

NvSciStreamBlockType const queryBlockType,
uint32 t const elemIndex,
uint32 t* const userType,

NvSciBufAttrList* const bufAttrList);

NvSciBufAttrList* const bufAttrList):;

NvSciError

NvSciStreamBlockElementUsageSet (
NvSciStreamBlock const block,

uint32 t const elemIndex,

bool const used);

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF

103

NVIDIA DRIVE 0S 6.0 Migration Guide

Pool Example

For simplicity, this code assumes that the producer and consumer express support for both
element types. A more generic pool application would use the received counts, check the list

of support indicated, and decide the subset of types to use for the final packet layout.

Old Pool Code

uint32 t prodElemFound = 0, consElemFound = 0;
NvSciBufAttrList supportElemAttr[2][2], packetElemAttr[2];
bool elemSetupDone = false;

case NvSciStreamEventType PacketElementCountProducer:
case NvSciStreamEventType PacketElementCountConsumer:
// For this simple example, expect count is always 2
assert (event.count == 2);
break;
case NvSciStreamEventType PacketAttrProducer:
// Save incoming producer attribute list
myIndex = event.userData - MY ELEMENT TYPE BASE;
supportElemAttr [myIndex] [0] = event.bufAttrList;
prodElemFound++;
break;
case NvSciStreamEventType PacketAttrConsumer:
// Save incoming consumer attribute list
myIndex = event.userData - MY ELEMENT TYPE BASE;
supportElemAttr [myIndex] [1] = event.bufAttrList;
consElemFound++;
break;

// After event-handling switch

// When all expected element attributes are received, set up the
// final packet layout
if (!elemSetupDone && (prodElemFound == 2) && (consElemFound == 2)) {
// Combine producer and consumer attributes
for (uint32 t j=0; j<3; ++3j) {
// Reconcile attributes
NvSciBufAttrList conflicts;
NvSciBufAttrListReconcile (supportElemAttr([j], 2,
&packetElemAttr[j], &conflicts);
}
// Specify final layout
NvSciStreamBlockPacketElementCount (pool, 2);
NvSciStreamBlockPacketAttr (pool, 0, MY ELEMENT TYPE SYNC,
NvSciStreamElementMode Immediate,
packetElemAttr[0]) ;
NvSciStreamBlockPacketAttr (pool, 1, MY ELEMENT TYPE ASYNC,
NvSciStreamElementMode Asynchronous,
packetElemAttr[1l]);

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF

104

NVIDIA DRIVE 0S 6.0 Migration Guide

// Mark setup done so we don’t do this again
elemSetupDone = true;

NvSciBufAttrList packetElemAttr[2];

// Handle all incoming element descriptions at once
case NvSciStreamEventType Elements:
// For this simple example, the counts are known to always be 2,

// so the queries could be skipped. They are done here solely to

// illustrate how to do them.

uint32 t elemCount;

NvSciStreamBlockElementCountGet (pool,
NvSciStreamBlockType Producer,
&elemCount) ;

assert (elemCount == 2);

NvSciStreamBlockElementCountGet (pool,
NvSciStreamBlockType Consumer,
&elemCount) ;

assert (elemCount == 2);

// Query the buffer attribute lists from both endpoints
NvSciBufAttrList supportElemAttr[2][2];
for (uint32 t j=0; j<2; ++3j) {
uint32 t userType;
NvSciBufAttrList attr;
NvSciStreamBlockElementAttrGet (pool,
NvSciStreamBlockType Producer,
j, &userType, &attr);
supportElemAttr [userType-MY ELEMENT TYPE BASE] [0] = attr;
NvSciStreamBlockElementAttrGet (pool,
NvSciStreamBlockType Consumer,
j, &userType, &attr);
supportElemAttr [userType-MY ELEMENT TYPE BASE] [1] = attr;
}
// Inform NvSciStream that element import is done
NvSciStreamBlockSetupStatusSet (pool,
NvSciStreamSetup ElementImport,
true);

// Combine and send producer and consumer attributes
for (uint32 t j=0; j<2; ++3j) {
NvSciBufAttrList conflicts;
NvSciBufAttrListReconcile (supportElemAttr([j], 2,
&packetElemAttr[j], &conflicts);
NvSciStreamBlockElementAttrSet (pool,
MY ELEMENT TYPE BASE+],
packetElemAttr([j]);

NVIDIA CONFIDENTIAL

NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF

105

NVIDIA DRIVE 0S 6.0 Migration Guide

}

// Inform NvSciStream that element specification is done
NvSciStreamBlockSetupStatusSet (pool,
NvSciStreamSetup ElementExport,
true) ;
break;

Producer and Consumer Example

In this and all subsequent examples, we assume that the pool has specified the
elements in an expected order, with the synchronous element first and the
asynchronous one second. In a more general application, where the set of
elements isn’t fixed, the producer and consumer need to keep track of the indices
for each type for use when querying sync and buffer data.

Old Producer/Consumer Code

NvSciBufAttrList packetElemAttr[2];

case NvSciStreamEventType PacketElementCount:
// For this simple example, expect count is always 2
assert (event.count == 2);
break;
case NvSciStreamEventType PacketAttr:
// Save the element info
myIndex = event.userData - MY ELEMENT TYPE BASE;

assert (myIndex == event.index);
packetElemAttr [myIndex] = event.bufAttrList;
break;

New Producer/Consumer Code

NvSciBufAttrList packetElemAttr[2];

case NvSciStreamEventType Elements:

// For this simple example, the count is known to always be 2,

// so the query could be skipped. It is done here solely to

// illustrate how to do it.

uint32 t elemCount;

NvSciStreamBlockElementCountGet (block,
NvSciStreamBlockType Pool,
&elemCount) ;

assert (elemCount == 2);

// Record the element info
for (uint32 t j=0; j<2; ++3j) {
uint32 t userType;

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 106

NVIDIA DRIVE 0S 6.0 Migration Guide

NvSciBufAttrList attr;
NvSciStreamBlockElementAttrGet (block,
NvSciStreamBlockType Pool,
Jj, &userType, é&attr);
// The consumer can skip any elements which it doesn’t use by
// adding the following call. This will not be needed in most
// existing applications, and is intentionally commented out here.
// NvSciStreamBlockElementUsageSet (block, J, false);
myIndex = userType - MY ELEMENT TYPE BASE;
assert (myIndex == 7Jj);
packetElemAttr [myIndex] = attr;
}

// Inform NvSciStream that element import is done
NvSciStreamBlockSetupStatusSet (block,
NvSciStreamSetup ElementImport,
true) ; break;

Element Sync Attributes

Instead of a list of global sync objects, sync objects will be specified on a per element basis. (It
will still be possible to use the same sync object with multiple elements.]) Because of this,
providing the sync attributes occurs after the endpoints receive the packet layout information.
Producers are required to generate data for all elements.

Motivation for Change: Having a list of multiple sync objects was intended to support the case
where the contents of some buffers were written or read by different engines operating
independently, each signaling their fence when they are done. However, because the sync
objects were defined globally, there was nothing to indicate for which buffers each one was
relevant. The other endpoint(s] would have to wait for all the fences, even if only one of them
pertained to the data they cared about. Per-element sync objects allow the original intention to
be achieved.

The NvScisStreamBlockSyncRequirements () function will be replaced with a new function
that provides the endpoint’s waiter requirements for that element. The <synchronousonly>
parameter is eliminated. If the endpoint requires the data to be generated synchronously, it

can pass NULL for the attribute list, or it can omit the call and NULL will be assumed.

If the consumer will not use an element, it is not necessary for it to provide a corresponding
waiter attribute list, but it is important that it informs NvSciStream that it will not use the
element, as described in the previous section. Otherwise, the producer will be told that sync
objects are not supported for the element even if the consumers that use it provide attribute
lists.

NvSciError
N A~ Qo mP] ~lrC neoR
el

NvSciStreamBlockElementWaiterAttrSet (
NvSciStreamBlock const block,

gyt romoant o
o ECHCHTS X

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 107

NVIDIA DRIVE 0S 6.0 Migration Guide

uint32 t const elemIndex,
I 1 ~

nat oxrnmeah v Ao
k> =E o T oy Cr oo sSoii—yy

NvSciSyncAttrList const waitSyncAttrList);

Example

This example just takes the sync attributes previously sent globally and associates them with
the single element used asynchronously. An application that uses more than one element
generated by the same engine can pass the same attribute list for each element, while one
that uses elements generated by different engines can pass separate attribute lists for each
element.

Old Code

// Obtain waiter attributes for engine used for asynchronous element
NvSciSyncAttrList waiterAttr;

Application GetEngineWaitAttrs (&waiterAttr);

// Send attributes

NvSciStreamBlockSyncRequirements (block, false, waiterAttr);

New Code

In practice, this code would probably be merged with that from the previous section, where the
list of packet elements is queried. An application would specify which elements it uses, and
the sync attributes for them as it receives the elements.

// Note that if a consumer doesn’t use one of the elements, it would
// skip the call that indicates support for it

// Indicate that the synchronous element will be used without any
// sync object by passing NULL for the attributes
// This call could be omitted since NULL is the default

NvSciStreamBlockElementWaiterAttrSet (block, 0, NULL);

// Obtain waiter attributes for engine used for asynchronous element
NvSciSyncAttrList waiterAttr;

Application GetEngineWaitAttrs (&waiterAttr);

// Indicate that the element will be used and provide the sync attrs
NvSciStreamBlockElementWaiterAttrSet (block, 1, waiterAttr):;

// Inform NvSciStream that waiter attribute export is done
NvSciStreamBlockSetupStatusSet (block,
NvSciStreamSetup WaiterAttrExport,
true) ;

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 108

NVIDIA DRIVE 0S 6.0 Migration Guide

Packets

Specifying packets

After calling NvsciStreamBlockSetupStatusSet () to indicate it is done exporting the
element layout, the pool application can begin to define the packets. The functions to create
packets and insert buffers into them remain the same as in 5.2. However, there is a new
function which must be called to indicate a packet’s specification is complete and send it to
the rest of the stream. If the application previously waited for packet acceptance before
sending the buffers or for buffer acceptance before sending the next buffer, it should no longer
do so. The entire packet will now be sent at once.

NvSciError

NvSciStreamPoolPacketComplete (

NvSciStreamBlock const pool,
NvSciStreamPacket const handle) ;

As described below, the producer and consumer(s] will similarly accept or reject a packet and
all its buffers at once. When the producer and all consumers have provided status for a given
packet, the pool receives a single event, rather than separate events, for the packet and each
buffer. To determine the status, there are two new queries. The first quickly checks whether
the packet was accepted or rejected. If status has not yet been received for a packet, an error
that indicates this will be returned. The second retrieves the status values sent by each
endpoint, which can be used in the event the packet was rejected to learn more information.

Motivation for Change: Consolidating the events to send packets and receive status simplifies
application organization.

typedef enum {

P
I

Qg Q4 e T Nt Tz Pa~l + Q4+ oDy~
nvVoCTottECatss Ty P T totataS T ottt 7
NxzQ a1 Qo T Nt Tz Pa~l + O+ St oA o
nvVoCTottECatss Ty P T totattS FRaSp sy oy
NxzQ a1 Qo T Nt Tz | meant QO+ 41 oDy~ g~
nvVoCTottECatss Ty P ot hitcotatc S ottt 7
NxzQ a1 Q+ mi Nt Tz | mant Q4 S+ 11 o A ma
Vot ToO T CotttT TCTry P TTromCIrcotacao oottt T

NVSciStreamEventType:PacketStatus,

1

NvSciError
NvSciStreamPoolPacketStatusAcceptGet (
NvSciStreamBlock const pool,
NvSciStreamPacket const handle,

bool* const accepted);

NvSciError
NvSciStreamPoolPacketStatusValueGet (
NvSciStreamBlock const pool,

NvSciStreamPacket const handle,

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 109

NVIDIA DRIVE 0S 6.0 Migration Guide

NvSciStreamBlockType const queryBlockType,
uint32 t const queryBlockIndex,
NvSciError* const status);

After sending all packets, the application should indicate that packet setup is complete by
calling the new NvSciStreamBlockSetupStatusSet () function with a value of
NvSciStreamSetup PacketExport. After receiving the status for all packets, the application
should call this function with a value of NvSciStreamSetup_Packetimport. An application may
wait for status to be returned before indicating that packet export is finished, in case any of the
packets was rejected and it wants to adjust something. This is left to the developers to decide.

Example

Old Code

NvSciBufObj buffer[][] = ..

for (uint32 t p=0; p<packetCount; ++p) {
NvSciStreamPacket packet;
NvSciStreamPoolPacketCreate (pool, p+l, &packet);
for (uint32 t b=0; b<bufferCount; ++b) {
NvSciStreamPacketInsertBuffer (pool, packet, b, buffer[p][b]):;

}

bool packetFailure = false;

case NvSciStreamEventType PacketStatusProducer:
if (event.error != NvSciError Success) {
printf ("Producer rejected packet %x with error %x\n",
event.packetCookie, event.error);

packetFailure = true;
}
break;
case NvSciStreamEventType ElementStatusProducer:
if (event.error != NvSciError Success) {

printf ("Producer rejected buffer %d of packet %$x "
"with error %x\n",
event.index, event.packetCookie, event.error);
packetFailure = true;

}

break;
case NvSciStreamEventType PacketStatusConsumer:
if (event.error != NvSciError Success) {

printf ("A consumer rejected packet %x with error %$x\n",
event.packetCookie, event.error);
packetFailure = true;

}
break;
case NvSciStreamEventType ElementStatusConsumer:

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 110

NVIDIA DRIVE 0S 6.0 Migration Guide

if (event.error != NvSciError Success) {
printf ("A consumer rejected buffer %d of packet %x "
"with error %$x\n",
event.index, event.packetCookie, event.error);
packetFailure = true;
}

break;

There are multiple ways the status handling could be organized. In particular, waiting for

status could be interleaved with sending the packets instead. This is just one example that

illustrates all the new functions.

NvSciBufObj buffer[][] = ..

for (uint32 t p=0; p<packetCount; ++p) {
NvSciStreamPacket packet;
NvSciStreamPoolPacketCreate (pool, p+l, &packet);
for (uint32 t b=0; b<bufferCount; ++b) {

NvSciStreamPacketInsertBuffer (pool, packet, b, buffer[p][b]);

}
NvSciStreamPacketComplete (pool, packet);

NvSciStreamBlockSetupStatusSet (pool,
NvSciStreamSetup PacketExport,
true) ;

bool packetFailure = false;
uint32 t packetsReady = 0;

case NvSciStreamEventType PacketStatus:
// Wait until status has arrived for all packets
if (++tpacketsReady < packetCount) {
break;

// Check each packet
for (uint32 t p=0; p<packetCount; ++p) {
// Check packet acceptance
bool accept;
NvSciStreamPoolPacketStatusAcceptGet (pool, packet([p],
if (accept) {
continue;
}

packetFailure = true;

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

&accept) ;

SWE-SWDOCDRV-017-PGRF

RN

NVIDIA DRIVE 0S 6.0 Migration Guide

// On rejection, query and report details

NvError status;

NvSciStreamPoolPacketStatusValueGet (
pool, packet[p], NvSciStreamBlockType Producer, O,
&status) ;

if (status != NvSciError Success) {

printf ("Producer rejected packet %$x with error %$x\n",

packet[p], status);
}
for (uint32 t c¢=0; c<numConsumers; ++c) {
NvSciStreamPoolPacketStatusValueGet (
pool, packet[p], NvSciStreamBlockType Consumer,
&status) ;
if (status != NvSciError Success) {
printf ("Consumer %d rejected packet %x "
"with error %x\n",
c, packet[p], status);

// Inform NvSciStream that packet status import is done
NvSciStreamBlockSetupStatusSet (pool,

Cy

NvSciStreamSetup PacketImport,

true) ;
break;

Receiving Packets

Rather than receiving separate events for creating a packet and each of its buffers, the
producer and consumer(s] will receive a NvSciStreamEventType PacketCreate event for
each packet. They call a new function to dequeue the handle of the new packet and then
another new function to obtain the buffers for any elements in the packet that they use.

typedef enum {

NvSciStreamEventType PacketCreate,

NxzQ a1 Q+ mi Nt Tz
Vot ToO T CotttT TCTry P T

Dol +] mant
T T CIttCIr Ty

1

NvSciError

NvSciStreamBlockPacketNewHandleGet (
NvSciStreamBlock const block,
NvSciStreamPacket* const handle) ;

NvSciError
NvSciStreamBlockPacketBufferGet (
NvSciStreamBlock const block,

NVIDIA CONFIDENTIAL

NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF |

112

NVIDIA DRIVE 0S 6.0 Migration Guide

NvSciStreamPacket const handle,
uint32 t elemIndex),
NvSciBufObj* const bufObj);

After checking whether it can map in all the buffers for a given packet, the endpoint should
signal status back to the pool. Rather than sending separate status for the packet and each
buffer, only a single function is called.

NvSciError

NizCS o1 Qv amD 1 A~ Do A + N\ o n#(
NnvVoCTo T Cattto =T Koty Saes T

NvSciStreamBlockPacketStatusSet (
NvSciStreamBlock const block,
NvSciStreamPacket const handle,
NvSciStreamCookie const cookie,
NvSciError const status);

NizCS o1 Q4+ A D] ol] moant N oAt [
nNnvVoCTo oI CaoittoT T T CItC T CLY ISASIY
NizS 1 QA D] ol conat Wi ol
NvVoCTo o CaittoT T SRS SIS <7
NizS o1 Qv amD o A 0= conat Wh-an A7
NvVoCTo o Catttratcy = TS C o=ty
In+E?D = Aot 1A
IS = INTeNS =sangE 7
NazCS o1 Ty ~ Ay ot rr) .
NVoCITIoE tOT ITENS SEEsT,

After the pool has indicated that it is finished exporting all the packets, the endpoints will
receive a new NvSciStreamEventType PacketsComplete event. They can finish up any
setup related to packet resources and should then indicate they are done importing the

packets by calling the NvSciStreamBlockSetupStatusSet () function with a value of
NvSciStreamSetup PacketImport.

If a packet is deleted by the pool, when the producer or consumer receives the
NvSciStreamEventType PacketDelete event, it can determine the identify of the deleted
packet by calling a function which retrieves the cookie of a packet pending deletion. After this
function is called, the handle of the returned packet becomes invalid for subsequent function
calls.

NvSciError

NvSciStreamBlockPacketOldCookieGet (

NvSciStreamBlock const block,
NvSciStreamCookie* const cookie) ;

Example

Old Code

case NvSciStreamEventType PacketCreate:
// Create new application-specific data structure for packet
MyPacket* cookie = Application CreateNewPacket (event.packetHandle) ;
// Inform pool of success
NvSciStreamBlockPacketAccept (

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 113

NVIDIA DRIVE 0S 6.0 Migration Guide

block, cookie->packetHandle, cookie, NvSciError Success);

break;
case NvSciStreamEventType PacketElement:

// Retrieve application’s data structure for the packet
MyPacket* cookie = (MyPacket*)event.cookieHandle;
// Map buffer into application
Application MapPacketBuffer (cookie, event.index, event.bufObj):;
// Inform pool of success
NvSciStreamBlockElementAccept (

block, cookie->packetHandle, event.index, NvSciError Success);
break;

New Code

case NvSciStreamEventType PacketCreate:

// Retrieve handle for packet pending creation
NvSciStreamPacket packetHandle;
NvSciStreamBlockPacketHandleGet (block, &packetHandle) ;
// Create new application-specific data structure for packet
MyPacket* cookie = Application CreateNewPacket (packetHandle) ;
// Retrieve all buffers and map into application
// Consumers can skip querying elements that they don’t use
for (uint32 t j=0; j<2; ++j) {

NvSciBufObj bufObj;

NvSciStreamBlockPacketBufferGet (

block, packetHandle, j, &bufObj);

Application MapPacketBuffer (cookie, j, bufObj);
}
// Inform pool of success
NvSciStreamBlockPacketStatusSet (

block, packetHandle, cookie, NvSciError Success);
break;

case NvSciStreamEventType PacketsComplete:
// Note there is no corresponding operation in the old code because
// previously there was no way to inform the endpoints that the
// packet definition was done
Application FinalizePackets();
NvSciStreamBlockSetupStatusSet (pool,
NvSciStreamSetup PacketImport,
true);

break;

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 114

NVIDIA DRIVE 0S 6.0 Migration Guide

Sync Objects

Specifying Sync Objects

After indicating their waiter sync attributes for all elements they support, by calling
NvSciStreamBlockElementWaiterAttrSet (), the producer and consumer(s) must call the
new NvSciStreamBlockSetupStatusSet () function with a value of

NvSciStreamSetup WaiterAttrExport. [his sends the sync attributes to the opposing
endpoint(s), each receiving a single NvSciStreamEventType WaiterAttr event.

The endpoints should query the waiter sync attributes for each element they support using a
new function. [As in 5.2, if there are multiple consumers, their waiter sync attribute lists will
be combined before they arrive at the producer, but now there will be a separate list for each
element.) If NULL is received for any attribute list, it means one or more of the opposing
endpoints do not support sync objects for that element, and the data should be written or read
synchronously.

typedef enum {

NizCS o1 Q4 v T s Mila ey (QEF TOWANE i S
nNnvVoCTo ool e ypP oy it S

NvSciStreamEventType WaiterAttr,
}i

NvSciError
NvSciStreamBlockElementWaiterAttrGet (
NvSciStreamBlock const block,
uint32 t const elemIndex,
NvSciSyncAttrList* const waitSyncAttrList);

For each element, the endpoints should combine and reconcile the received waiter attribute
lists with their signaler attribute lists, and where appropriate, use them to create a sync object
that they will signal. This occurs in 5.2, except there now one sync object per element. The
function for sending global sync objects is replaced with a per-element function. It is no longer
necessary to send the number of sync objects. If this function is not called for an element, the
sync object is assumed to be NULL.

NxzQ@ ~1 Q4+ "D] Al Qs A~V Y NN
shestmsmemenly mem ot bFCeuntA
NxzQ e Q"D] ~1 coanat N ~1
Semles i masey] s
17 "N+ 4+ o naot PSP C LR S WY
S = P S
NvSciError
N A~ Qo AmD] ~l-C e ot
NerSetStreamRlockSyretks =

NvSciStreamBlockElementSignalObjSet (
NvSciStreamBlock const block,

Hant32 + st 2~
oIt S oo TS 7

uint32 t const elemIndex,

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 115

NVIDIA DRIVE 0S 6.0 Migration Guide

NvSciSyncObj const signalSyncObj) ;

After receiving all the sync attribute lists they care about, the endpoints should call the new
NvSciStreamBlockSetupStatusSet () function with a value of

NvSciStreamSetup WaiterAttrImport.After specifying all their sync objects, they should
call it with a value of NvSciStreamSetup SignalObjExport

Example

Old Code

case NvSciStreamEventType SyncAttr:
NvSciSyncAttrList inputAttrs[2], combined, conflicts;
// Obtain signaler attributes for engine
Application GetEngineSignalAttrs (&inputAttrs([0]);
// Combine and reconcile with incoming waiter attributes
inputAttrs[l] = event.syncAttrList;
NvSciSyncAttrListReconcile (inputAttrs, 2, &combined, &conflicts);
// Create new sync object
NvSciSyncObj syncObj;
NvSciSyncObjAlloc (combined, &syncObij) ;
// Pass sync object to other end of stream
NvSciStreamBlockSyncObjCount (block, 1);
NvSciStreamBlockSyncObject (block, 0, syncObj);

New Code

case NvSciStreamEventType WaiterAttr:
NvSciSyncAttrList inputAttrs[2], combined, conflicts;
// Retrieve waiter attribute for asynchronous element
NvSciStreamBlockElementWaiterAttrGet (block, 1 &inputAttrs[l]);
// Inform NvSciStream that sync attribute import is done
NvSciStreamBlockSetupStatusSet (block,
NvSciStreamSetup WaiterAttrImport,
true) ;
// Obtain signaler attributes for engine
Application GetEngineSignalAttrs (&inputAttrs([0]);
// Combine and reconcile
NvSciSyncAttrListReconcile (inputAttrs, 2, &combined, &conflicts);
// Create new sync object
NvSciSyncObj syncObj;
NvSciSyncObjAlloc (combined, &syncObj) ;
// Associate sync object with asynchronous element
NvSciStreamBlockElementSignalObjSet (block, 1, syncObj);
// Inform NvSciStream that sync object export is done
NvSciStreamBlockSetupStatusSet (block,

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 116

NVIDIA DRIVE 0S 6.0 Migration Guide

NvSciStreamSetup SignalObjExport,
true) ;
break;

Receiving Sync Objects

When the producer finishes specifying all its sync objects, the consumer(s) will receive a single
NvSciStreamEventType SignalObj event. Similarly, when all consumers have specified
their sync objects, the producer will receive a single NvSciStreamEventType SignalObj
event.

The endpoints can then query these sync objects and map them into their engines. The
producer will receive a separate sync object (or NULL] for each consumer.

typedef enum {

I TV

n
T ot
=)

NxzQ o~ 2
Vo eI

H

+
=

o]
ar qt

H
OB

r

h
t qr
p P
O D
il
dn

™

T
NxzQ o~ 2 ™
Vo eI T

B

I~
[ea—E= HCoCSCy

H

NVSciStreamEventType:Signalobj,
}i

NvSciError

NvSciStreamBlockElementSignalObjGet (
NvSciStreamBlock const block,
uint32 t const queryBlockIndex,
uint32 t const elemIndex,
NvSciSyncObj* const signalSyncObj) ;

After receiving and mapping all the sync objects they care about, the endpoints should call the
new NvSciStreamBlockSetupStatusSet () function with a value of
NvSciStreamSetup SignalObjImport

Example

Old Code

case NvSciStreamEventType SyncCount:
Application InitializeSyncList (event.count);
break;
case NvSciStreamEventType SyncDesc:
Application MapWaiterSync (event.index, event.syncObj);
break;

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 117

NVIDIA DRIVE 0S 6.0 Migration Guide

New Consumer Code

case NvSciStreamEventType SignalObj:
Application InitializeSyncList(1l);
NvSciSyncObj syncObj;
NvSciStreamBlockElementSignalObjGet (block, 0, 1 syncObj);
Application MapWaiterSync (0, syncObj) ;
break;

New Producer Code

case NvSciStreamEventType SignalObj:
Application InitializeSyncList (numConsumers) ;
for (uint32 t c¢=0; c<numConsumers; ++c) {
NvSciSyncObj syncObj;
NvSciStreamBlockElementSignalObjGet (block, ¢, 1 syncObj);
Application MapWaiterSync(c, syncObj) ;
}

break;

Phase Change

When the pool indicates it exported all the packets, and the endpoints indicate that they are
done importing the packets and importing and exporting the sync objects, all blocks will
receive a new event in the stream. This indicates that all necessary setup steps are complete.
Applications that divide their event handling into separate initialization and runtime phases
can use this to trigger the transition.

typedef enum {

NvSciStreamEventType SetupComplete,

i

Example

Previously, there was no specific mechanism to signal this to the application. It would not
know to transition until the first NvScistreamEventType PacketReady event arrived.

New Code

case NvSciStreamEventType SetupComplete:
Application PhaseTransition();

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 118

NVIDIA DRIVE 0S 6.0 Migration Guide

break;

Streaming Functions

The producer will continue to obtain packets to fill with NvSciStreamProducerPacketGet ()

and present them with NvSciStreamProducerPacketPresent (). Consumers will continue to
obtain packets to process with NvsciStreamConsumerPacketAcquire () and return them for

reuse with NvSciStreamConsumerPacketRelease (). However, the fence array parameters

will be eliminated from these functions. Instead, the pre-fences associated with a packet can

be queried one at a time after obtaining it, and post-fences can be specified one at a time

before presenting it, using new functions.

NvSciError

NvSciStreamProducerPacketGet (
NvSciStreamBlock const producer,
NvSciStreamCookie *const cookie,

NizCS a2 Qirm ~Tarn ~ XKoot £ A~ \
NV Tt S

o o) .
T Tt TS PErCeTCTH S

NvSciError

NvSciStreamProducerPacketPresent (
NvSciStreamBlock const producer,
NvSciStreamPacket const handle,

NxzQ ~ o

NvSeiSyreFen St

NvSciError

NvSciStreamConsumerPacketAcquire (
NvSciStreamBlock const consumer,
NvSciStreamCookie *const cookie,

NxzS g Qizmn ~
Vo CTOoYICT STt

Ferece—*const—prefeneces);

NvSciError

NvSciStreamConsumerPacketRelease (
NvSciStreamBlock const consumer,
NvSciStreamPacket const handle,

NxzQ ~ 2
o

Taoan~ oo ot X ot + £
7St TSt =

Faon~ oon ot Xooarm ot d=dE
ST T (S5

ne
T

N +SyReFen rSt—Ppos

NvSciError

NvSciStreamBlockPacketFenceSet (
NvSciStreamBlock const block,
NvSciStreamPacket const handle,
uint32 t const elemIndex,

ne
T

NvSciSyncFence const *const postfence);

NvSciError

NvSciStreamBlockPacketFenceGet (
NvSciStreamBlock const block,
NvSciStreamPacket const handle,
uint32 t const queryBlockIndex,

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF

119

NVIDIA DRIVE 0S 6.0 Migration Guide

uint32 t const elemIndex,
NvSciSyncFence* const prefence) ;

Example

Only the producer is shown here. The consumer changes are analogous, except that there is

only one incoming fence from the producer, so no loop is required.

Old Producer Code

case NvSciStreamEventType PacketReady:
MyPacket* cookie;
NvSciSyncFence prefences[N], postfence;
// Retrieve the packet to use
NvSciStreamProducerPacketGet (

producer, (NvSciStreamCookie*)&cookie, prefences);

// Synchronize and generate the data
for (uint32 t j=0; j<syncCount; ++3j) {
Application EngineWaitForFence (prefences([]j]);
}
Application EngineGenerateData (cookie) ;
Application EngineSignalFence (&postfence) ;
// Insert the finished packet in the stream
NvSciStreamProducerPacketPresent (
producer, cookie->packetHandle, é&postfence);
break;

New Producer Code

case NvSciStreamEventType PacketReady:
MyPacket* cookie;
NvSciSyncFence fence;
// Retrieve the packet to use
NvSciStreamProducerPacketGet (
producer, (NvSciStreamCookie*) &cookie);
// Retrieve and wait for each consumer fence
for (uint32 t j=0; j<numConsumer; ++3j) {
NvSciStreamBlockPacketFenceGet (

producer, cookie->packetHandle, j, 1, &fence);

Application EngineWaitForFence (fence) ;
}
// Generate new data and signal fence
Application EngineGenerateData (cookie);
Application EngineSignalFence (&fence) ;
// Update postfence for packet

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF

120

NVIDIA DRIVE 0S 6.0 Migration Guide

NvSciStreamBlockPacketFenceSet (

Producer, cookie->packetHandle, 1, &fence);
// Insert the finished packet into the stream
NvSciStreamProducerPacketPresent (producer, cookie->packetHandle) ;
break;

NvScilpc APl Changes

Summary of the NvScilpc APIl Timeline

Release 6.0.2.0

» Safe APIs in the Deprecated APIs section are not available
» Migration is not required
> Affected platform: Linux and QNX

Release 6.0.3.0

» Both non-safe APIs and safe APIs in the Deprecated APIs section are available on standard
and safety builds

v

APIs in the Modified APIs section are available on standard and safety builds

v

Migration to safe APls is required
Affected platform: Linux and QNX

v

Release 6.0.4.0

» Non-safe APls are deprecated on standard and safety builds
» Ensure code doesn’t use non-safe APls in the Deprecated APIs section
> Affected platform: Linux and QNX

Release 6.0.5.0

> Stakeholders must ensure the Safety build does not use non-safe APIs identified in 6.0.4.0
> Affected platform: Linux and QNX

The NvScilpc Library

The NvScilpce library provides interfaces for any two entities in a system to communicate with
each other irrespective of where they are placed. Entities can be in:

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 121

NVIDIA DRIVE 0S 6.0 Migration Guide

» Different threads in the same process

» The same process

» Different processes in the same VM

» Different VMs on the same SoC

Each of these different boundaries will be abstracted by a library providing unified

communication (Read/Write) APIs to entities. The communication consists of two bi-directional
send/receive queues.

Differences Between DRIVE 05 5.2 and 6.0

In 6.0.3.0,

» New safe APIs replace APIs from 5.2 to handle error detection and propagation paths
more effectively. The move to safe APIs requires changes in the function signature, which
breaks existing code unless the migration does not occur when the APl is released.

» To support detection of write queue emptiness, a legacy API [NvSciIpcGetEvent] is
updated ,which helps producers know when to fill in the buffer

In 6.0.4.0,

> Interrupt unmasking can occur even when the interrupt is not masked. New APls enhance
the interrupt unmasking flow so that no interrupt, which is not masked, is unmasked
again. This new flow enhances performance

> Private pulse pool, introduced by ANX, prevents unprivileged processes from making
interference-like DDoS attacks. New APls support creating the channel with private pulse
pool and inspecting which events are turned into rogue ones

» An event handler is supported in the event notifier of NvSciEventService and calls
WaitForxxx () APls when the event arrives

» Version checking APIs check library compatibility

Deprecated and Modified APls

These APIs are replaced with safe versions, which strengthen error detection and the path to
the returning error.

Deprecated:

void NvSciIpcCloseEndpoint (NvSciIpcEndpoint handle)

Safe version:
NvSciError NvScilIpcCloseEndpointSafe (NvSciIpcEndpoint handle, bool clear)

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 122

NVIDIA DRIVE 0S 6.0 Migration Guide

Improved safety points:

» The safe APl checks bad parameters and returns an error if detected.

» The safe APl has an option parameter to clear tx queue buffer for security.

Porting guideline:

NvSciError err;
bool clear;

clear = true; /* if tx buffer in queue wants to be cleared for security reason
=/

err = NvSciIpcCloseEndpointSafe (handle, clear);

/* add codes to handle err here */

Platform: QNX and Linux
Released: 6.0.3.0

Deprecated:

void NvSciIpcResetEndpoint (NvSciIpcEndpoint handle)

Safe version:

NvSciError NvSciIpcResetEndpointSafe (NvSciIpcEndpoint handle)
Improved safety points:

» The safe APl checks for bad parameters and returns an error if detected.
Porting guideline:

NvSciError err;

err = NvSciIpcResetEndpointSafe (handle) ;
/* add codes to handle err here */

Platform: QNX and Linux
Released: 6.0.3.0

Deprecated:

NvSciError NvSciIpcRead(NvScilIpcEndpoint handle, void *buf, size t size, int32 t
*bytes)

Safe version:

NvScikError NvScilpcReadSafe (NvScilpcEndpoint handle, void *buf, uint32_t size,
uint32_t *bytes)

Improved safety points:

» The safe API limits the boundary of size and bytes parameter to unsigned integer 32bit

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 123

NVIDIA DRIVE 0S 6.0 Migration Guide

Porting guideline:

NvSciError err;
uint32 t size;
uint32 t bytes;

err = NvScilIpcReadSafe (handle, buf, size, bytes);
/* add codes to handle err here */

Platform: QNX and Linux
Released: 6.0.3.0

Deprecated:

NvSciError NvSciIpcWrite (NvSciIpcEndpoint handle, const void *buf, size t size,
int32 t *bytes)

Safe version:

NvSciError NvScilpcWriteSafe (NvSciIpcEndpoint handle, const void *buf, uint32_t
size, uint32_t *bytes)

Improved safety points:
The safe APl limits the boundary of size and bytes parameter to unsigned integer 32bit.

Porting guideline:

NvSciError err;
uint32 t size;
uint32 t bytes;

err = NvScilpcWriteSafe (handle, buf, size, bytes);
/* add codes to handle err here */

Platform: QNX and Linux
Released: 6.0.3.0

Deprecated:

NvSciError NvSciEventLoopServiceCreate(size t maxEventLoops,
NvSciEventLoopService** newEventLoopService)

Safe version:

NvSciError NvSciEventLoopServiceCreateSafe (
size t maxEventLoops,
void* config,
NvSciEventLoopService** newEventLoopService);

Improved safety points:

» For ANX, it creates a private pulse pool that prevents DDOS attacks on the global pulse
pool. The parameter config is passed to QNX API, ChannelCreatePulsePool(]. The API
depending on config sends semaphore event to a thread waiting the event when there is no

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 124

NVIDIA DRIVE 0S 6.0 Migration Guide

room in pulse pool. Then the thread can do something to block suspicious event strom
with the help of NvSciEventinspect()

» For Linux, the functionality is same as unsafe one

Porting guideline:

NvSciEventLoopService *eventLoopService;

sem t *sem noti;

NvSciError err;

/* Assume a thread handling there are no available pulses in the pool */
struct nto channel config config = {

.num_pulses = 5, /* number of pulses queue */

.rearm_threshold = 0, /* 0 fires once and never rearms the notification with
semaphore */

.options = NTO CHO CUSTOM EVENT; /* semaphore event will be sent to a
thread */

b

static void *priv_pulse error handler (void *arg)

{

NvSciError err;

while (true) {
sem wait (sem noti);
err = NvScilpcInspectEventQOnx(...) /* refer to the
NvSciIpcInspectEventQnx section */
/* handle err */

sem noti = sem open (SEM ANON, O ANON | O CREAT, 0777, 0);
SIGEV_SEM INIT (&config.event, sem noti);

err = NvSciEventLoopServiceCreateSafe(l, &config, &eventLoopService);
/* add codes to handle err here */

/*

* Create a thread waiting for sem noti semaphore and when wakes up by the
* semaphore, do something like calling NvSciEventInspect() to block
suspicious

* events which cause event storm

*/

phtread create(&tid, NULL, priv pulse error handle, NULL);
Defining num_pulses in nto_channel_config

» The process depends on the number of pulses that arrive simultaneously but are not
processed, in the worst case scenario.

» If the estimated pulse numberis 10, the recommendation is to have 12 with 20% margin

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 125

NVIDIA DRIVE 0S 6.0 Migration Guide

Defining rearm_threshold in nto_channel_config

» The process indicates the condition of the dropped-pulse notification with semaphore
» 0: Fires once and never rearms

» 1 through num_pulses fires and rearms when the pool utilization drops below the value of
rearm_threshold

» Greater than num_pulses: Permanently armed (be careful not to overwhelm the system)
For additional information, see nto_channel config

Platform: QNX and Linux

Released: 6.0.4.0

Deprecated:

NvSciError NvSciIpcSetQnxPulseParam (NvSciIpcEndpoint handle, int32 t coid,
intl6_t pulsePriority, intl6é t pulseCode, void *pulseValue)

Safe version:

NvSciError NvScilIpcSetQOnxPulseParamSafe (NvScilpcEndpoint handle,
int32 t coid, intl6_t pulsePriority, intlé6_t pulseCode);

Improved safety points:

The safe version does not support an application cookie input parameter with pulsevalue to
reroute unmasking interrupt.

Porting guideline:

Refer to the porting guidelines in MsgReceivePulse r ()

Platform: QNX

Released: 6.0.4.0

Deprecated:

NvSciError NvSciIpcGetEvent (NvSciIpcEndpoint handle, uint32 t *events)
Safe version:

NvSciError NvSciIpcGetEventSafe (NvSciIpcEndpoint handle, uint32 t *events)
Improved safety points:

It unmasks interrupt with the correct procedure from QNX manual

It enhances Inter-VM throughput by removing unnecessary QNX kernel calls
It supports QNX OS 7.2 muon kernel

v v vy

For Linux, the functionality remains the same
Porting guideline:

Refer to the porting guidelines in MsgReceivePulse r ()

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 126

http://www.qnx.com/developers/docs/7.1/#com.qnx.doc.neutrino.lib_ref/topic/c/channelcreate.html

NVIDIA DRIVE 0S 6.0 Migration Guide

Platform: QNX
Released: 6.0.4.0

Deprecated:

int MsgReceivePulse r (int chid, void * pulse, size t bytes, struct msg info *
info)

Safe version:

int32 t NvScilIpcWaitEventQnx(int32 t chid, int64 t microseconds, uint32 t bytes,
void *pulse)

Improved safety points:

» It unmasks interrupt with the correct procedure from QNX manual
» It supports timeout that is not blocked permanently

» This update is required only when MsgReceivePulse r () is used to block IVC notification
in D5.2

Porting guideline:

#define APP_PULSE_CODE 10

NvSciIpcEndpoint ipcEndpoint;

int32 t coid;

intl6 t priority = SIGEV_PULSE PRIO_ INHERIT;

intl6 t code = APP PULSE CODE; /* application-defined code value */
int64 t timeout = 10000; /* 10 msec */

NvSciError err;

/*
* Create channel and open endpoint
* coid and ipcEndpoint are initialized properly

*/

err = NvScilpcSetQnxPulseParamSafe (ipcEndpoint, coid, priority, code);
/* add codes to handle err here */

/*
* Get endpoint information and perform reset

*/

while (1) {
err = NvScilpcGetEventSafe (ipcEndpoint, &event);
if (err != NvSciError Success) {
goto fail;

if (event & NV_SCI IPC_EVENT WRITE) {

/* perform write operation */

} else if (event & NV_SCI IPC EVENT READ) {
/* perform read operation */

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 127

NVIDIA DRIVE 0S 6.0 Migration Guide

} else {
err = NvSciIpcWaitEventQnx (chid, timeout, sizeof (pulse), &pulse);
/* add codes to handle err here */

}

Platform: QNX

Released: 6.0.4.0

Modified API:

NvSciError NvSciIpcGetEvent (NvSciIpcEndpoint handle, uint32 t *events)

The APl adds one new event, which specifies that the remote endpoint receives all data that
the local endpoint sends.
New event:

NV_SCI_IPC_EVENT WRITE EMPTY 0x10U ; write fifo is empty

Porting guideline:

NvSciError err;
Uint32 t event;

err = NvSciIpcGetEvent (handle, &event);
/* add codes to handle err here */

If (event & NV_SCI IPC_EVENT WRITE EMPTY) ({
/* write buffer in queue becomes empty now it is time to fill in the
buffer or close connection */

}

This API is deprecated in 6.0.4.0. NvSciIpcGetEventSafe ()
supports the same event: NV_SCI_IPC_EVENT WRITE EMPTY

New API:

NvSciError NvSciEventService:: (*WaitForMultipleEventsExt) (NvSciEventService
eventService, NvSciEventNotifier const * eventNotifierArray, size t
eventNotifierCount, int64 t microseconds, bool* newEventArray)

The new APl is similar to NvSciEventLoopService: :WaitForMultipleEvents () but
functions differently, depending on microseconds when eventNotifierArray iS NULL.

1. microseconds > 0
Callbacks(event handler) continue to be served until the timeout occurs. If a callback is
longer than the timeout, other callbacks associated with events, which arrive before
timeout, are still served after timeout.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 128

NVIDIA DRIVE 0S 6.0 Migration Guide

2. microseconds = -1 (NV_SCI EVENT INFINITE WATIT)
Callbacks continue to be served and this APl never returns.

Porting guideline:

Refer to NvSciEventLoopService: :WaitForMultipleEvents ()
Platform: QNX and Linux

Released: 6.0.3.0 in Linux and 6.0.4.0 in QNX

New API:

NvSciError NvSciEventNotifier:: (*SetHandler) (NvSciEventNotifier*
thisEventNotifier, void (*callback) (void* cookie), void* cookie, uint32 t
priority)

It sets an event handler which is called in these functions when the pulse event associated
with the notifier is arrived.
NvSciEventlLoopService::WaitForEvent() or
NvSciEventLoopService::WaitForMultipleEvents() or
NvSciEventLoopService::WaitForMultipleEventsExt()

Porting guideline:

NvSciIpcEndpoint ipcEndpoint;
NvSciEventNotifier *eventNotifier;
NvSciError err;

void * cookie;

void eventHandler (void *cookie)

{

/* do something when it is called by the event */

}

/%
* Open endpoint with EventService

*/

err = NvScilpcGetEventNotifier (ipcEndpoint, &eventNotifier);
/* add codes to handle err here */

err = eventNotifier->SetHandler (eventNotifier, eventHandler, cookie, 0);
/* add codes to handle err here */

Platform: QNX and Linux
Released: 6.0.3.0 in Linux and 6.0.4.0 in QNX
New API:

NvSciError NvSciIpcInspectEventQOnx (int32 t chid, uint32 t numPulses, uint32 t
epCount, NvSciIpcEndpoint** epHandleArray)

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 129

NVIDIA DRIVE 0S 6.0 Migration Guide

It inspects events in queue, makes a decision on a rogue event and unregisters
the event.

Porting guideline:

#define MAX ENDPOINT /* It must be greater than all opened endpoint count in
application process */

int32_t chid;

uint32 t numPulses; /* A threshold to unregister event */

uint32 t epCount = MAX ENDPOINT;

NvSciIpcEndpoint epHandleArray[MAX ENDPOINT];

NvSciIpcEndpoint *ptr = epHandleArray;

NvSciError err;

/%
* Create channel and open endpoint
* chid is initialized properly

*/

/* In a thread which wakes up by event indicating private pulse pool is full */
err = NvScilIpcInspectEventQOnx (chid, numPulses, epCount, &epHandleArray)
/* add codes to handle err here */

Platform: QNX
Released: 6.0.4.0
New API:

NvSciError NvSciEventInspect (NvSciEventService *thisEventSerivce, uint32 t
numEvents, uint32 t eventNotifierCount, NvSciEventNotifier** eventNotifierArray)

The APl inspects events in queue associated with EventService, makes a decision on a rogue
event, and unregisters the event.

Porting guideline:

#define MAX NOTIFIER /* It must be greater than all created notifier in
application process */

NvSciEventLoopService *eventLoopService;

uint32 t numEvents; /* A threshold to unregister event */

uint32_t notiCount = MAX NOTIFIER;

NvSciEventNotifier *notiArray[MAX NOTIFIER];

NvSciError err;

/*
* Create EventLoopService and Notifiers
* eventLoopService is initialized properly

*/

/* In a thread which wakes up by event indicating private pulse pool is full */
err = NvSciEventInspect (&eventLoopServiceP->EventService, numEvents, notiCount,
¬iArray[0])

/* add codes to handle err here */

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 130

NVIDIA DRIVE 0S 6.0 Migration Guide

Platform: QNX
Released: 6.0.4.0
New API:

NvSciError NvSciIpcCheckVersionCompatibility(uint32 t majorVer, uint32 t
minorVer, bool* isCompatible)

The APl indicates if the loaded NvScilpc library is compatible with the given version.

Porting guideline:

bool compatible;
NvSciError err;

err = NvSciIpcCheckVersionCompatibility (NvSciIpcMajorVersion,
NvSciIpcMinorVersion, &compatible);
if ((err != NvSciError Success) || (compatible != true)) {
/* there is an error or the version is not compatible */

}

Platform: QNX and Linux
Released: 6.0.4.0

New API:

NvSciError NvSciEventCheckVersionCompatibility (uint32 t majorVer, uint32 t
minorVer, bool* isCompatible)

The APl indicates if the loaded NvSciEventService library is compatible with the given
version.

Porting guideline:

bool compatible;
NvSciError err;

err = NvSciEventCheckVersionCompatibility (NvSciEventMajorVersion,
NvSciEventMinorVersion, &compatible);
if ((retval != NvSciError Success) || (compatible != true)) {
/* there is an error or the version is not compatible */

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 131

NVIDIA DRIVE 0S 6.0 Migration Guide

PKCS#11 APl Changes

Table 37. Migrating PKCS#11 Library from 5.2 to 6.0
The following table describes PKCS#11 Library changes from Drive 0S 5.2 to 6.0

Header File and API Change Description
Update from PKCS11-Base-v2.40 to PKCS11-Base-v3.0 headers

Header File: Removed contents but retained files
nvpkcsll future.h
nvpkcsllf future.h

Header File: APls added as a result of updating from PKCS11-
pkcsllf.h Base-v2.40 to PKCS11-Base-v3.0 header

API:

ADDED

C _GetInterfacelist

C GetInterface
C_LoginUser
C_SessionCancel
C_MessageEncryptInit
C_EncryptMessage
C_EncryptMessageBegin
C_EncryptMessageNext
C_MessageEncryptFinal
C_MessageDecryptInit
C DecryptMessage
C_DecryptMessageBegin
C DecryptMessageNext
C_MessageDecryptFinal
C_SignMessageBegin
C_SignMessageNext

C _VerifyMessageBegin
C_VerifyMessageNext

Header File: Updated from PKCS11-Base-v2.40 to PKCS11-
pkcsllt.h Base-v3.0 header

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 132

NVIDIA DRIVE 0S 6.0 Migration Guide

Header File and API

Header File:
nvpkcsll.h

API:

REMOVED

C _NvGetFunctionList
MOVED

C MessageSignInit
C_SignMessage
C_MessageSignFinal

C MessageVerifyInit
C _VerifyMessage

C _MessageVerifyFinal

Header File:
nvpkcsll.h

API:

REMOVED
C_SignBatchMessage
C VerifyBatchMessage

Change Description

Moved version 3.0 message based APls from
NV_CK_FUNCTION_LIST as these are now
included in CK_FUNCTION_LIST_3_0.

PKCS#11 library supports 3 interfaces:

"PKCS 117: this interface name represents 2
interfaces, one which is associated with the Oasis
standards version 3.0 CK_FUNCTION_LIST 3 0

structure and the other with the Oasis standards
version 2.40 CK_FUNCTION_LIST structure.

“Vendor NVIDIA": this interface name is
associated with NV_CK_FUNCTION_LIST
structure that contains NVIDIA extension APls.

Removed batch message extension APls

PKCS#11 public APIs that changed in terms of signatures and parameters

C_UnwrapKey

C DeriveKey

NVIDIA CONFIDENTIAL

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Changed supported unwrap mechanism from
CKM_AES_CCMto CKM AES_ GCM.

Changes within key metadata storage layout and
content necessitate all keys prepared offline with
PKCS#11 Object Generation Tool to be revisited
using the tool aligned with the DRIVE OS release in
use.

CKA TOKEN determines if a key is a Token key
when unwrapped within a R/W session.

Changed fused base key CKA ID from
NV_OEM KEK2. Refer to PDK Documentation
aligned with the DRIVE OS release in use.

SWE-SWDOCDRV-017-PGRF | 133

NVIDIA DRIVE 0S 6.0 Migration Guide

Header File and API

C _FindObjectsInit

All APls associated with a template

Release 6.0.5.0

Header File:
nvpkcsll.h

API:

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Change Description

Fused base keys are GENERIC SECRET type
requiring the prf passed into

CKM SP800 108 COUNTER_KDF to be
SHA256 HMAC

Template attribute CKA_KEY TYPE mandatory for
the derive operation.

If the base key has its CKA_ NEVER_EXTRACTABLE
attribute set to CK_FALSE, then the derived key will
too. If the base key has its

CKA NEVER EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its

CKA NEVER EXTRACTABLE attribute set to the
opposite value from its CKA_EXTRACTABLE
attribute.

If the base key has its CKA_ ALWAYS SENSITIVE
attribute set to CK_FALSE, then the derived key will
as well. If the base key has its

CKA ALWAYS SENSITIVE attribute set to
CK_TRUE, then the derived key has its

CKA ALWAYS SENSITIVE attribute set to the
same value as its CKA_SENSITIVE attribute.

CKM SP800 108 COUNTER_KDF Input
Parameters: The byte 0x00 is not allowed within
Label or Context of the PRF input data fields

Template attribute CKA_CLASS is mandatory.

CKA CHECK_VALUE Is not supported
CKA UNIQUE 1IDis notsupported

NVIDIA extension AP| added in support of
committing persistent object changes to secure
storage

SWE-SWDOCDRV-017-PGRF | 134

NVIDIA DRIVE 0S 6.0 Migration Guide

Header File and API

ADDED
C NVIDIA CommitTokenObjects

Header File:
nvpkcsll.h

API:

RENAMED
C_EncryptGetIV

TO

C NVIDIA EncryptGetIV

Release 6.0.8

API:
C _FindObjectsInit

Release 6.0.8.1

Header File:
nvpkcsll.h

API:

RENAMED

CKM_AES GCM

TO

CKM NVIDIA AES GCM KEY UNWRAP

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Change Description

AlL NVIDIA extension APls shall start
‘C_NVIDIA .."

C_EncryptGetIVis still accepted for backwards
compatibility.

PKCS#11 Library supports finding token and
session objects--either all objects or with a
template to narrow the search. The template can
have up to one entry each for CKA_TOKEN,

CKA CLASS and CKA ID, but must have at least
one attribute specified (and none repeated)

A customer application provisioning keys using the
ariginal mechanism will still work with 6.0.8.1. The
PKCS#11 Library issues an advisory log to update to
the new vendor-specific mechanism naming
scheme for that use case.

SWE-SWDOCDRV-017-PGRF | 135

NVIDIA DRIVE 0S 6.0 Migration Guide

PKCS#11-Implementation Details

Release 6.0.5.0

Slots and Tokens

A PKCS#11 token represents a combination of persistent object storage and access to
cryptographic hardware. In releases prior to 6.0.5.0, the NVIDIA PKCS#11 implementation
supported a single token instance--a single persistent storage area (ID 2], and a single set of
hardware (CCPLEX]. In 6.0.5.0 and future releases, multiple tokens are supported.

Three types of hardware are supported--CCPLEX (the largest set of cryptographic hardware
support), TSEC (supports AES CMAC sign and verify exclusively), and FSI (key management
only, no crypto operations supported). These must be represented in different PKCS#11
tokens, because they represent different hardware.

There is a requirement for object access control for CCPLEX. This allows different applications
to use the same CCPLEX hardware, but with access to different sets of objects. For example,
an application can processes sensor data with a set of keys and a webstore application with a
different set of keys. Each application must not be able to access the other set of objects, but
must be able to execute operations on the same set of cryptographic hardware. This is
implemented by having multiple PKCS#11 tokens for CCPLEX hardware, each with their own
storage areas and access protection GIDs.

There is also a requirement to protect safety applications from changes to token objects while
they are running (UNECE 156a 7.2.2.1.3). There may also be other, non-safety critical
applications that need the ability to change token objects at runtime. Each configuration of
hardware and access control has a dynamic token view and a safety token view. The dynamic
token allows for token objects to be added, updated, and deleted, and once added can be used
immediately. The safety token has a static view of the content of the persistent storage as it
was at boot time--objects can be accessed, but not altered, added or deleted in this view.

To alter the objects in the safety view:

> Make the changes in the dynamic view of the same storage ID
» Callc NVIDIA CommitTokenObjects () with no PKCS#11 sessions open on any safety
token (this is to prevent safety-critical operations from stalling as the commit happens]

» Either reboot or go through an SC7 cycle (calling ¢c_Finalize () before suspending and
C Initialize () after resuming)

The changes from a single token to multiple tokens are introduced in stages. The 6.0.5.0
release supports four tokens.

Refer to the documentation accompanying Release 6.0.5.0 for further details regarding which
token to use; to view an example showing how to perform secure storage updates, and for
more information about isolation between safety and dynamic tokens.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 136

NVIDIA DRIVE 0S 6.0 Migration Guide

Release 6.0.6.0

Accessing and Choosing a Token

The existing client application code must be updated to choose a token explicitly, and to use

the new GIDs and custom abilities.

Refer to the documentation accompanying release 6.0.6 for further details.

Board Support Packages (BSP) APl Changes

Table 38. QNX BSP Driver

Device

NvGPIO

|2C Driver

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide

Change Description

The NvGpioOutputLoopbackDiag () APl is new and
supports Output loopback diagnostic testing for a safety-
critical output GPIO pin.

The NvGpio OutputLoopback Err returnvalueis new and

indicates failure of the Output loopback diagnostic test.

Customers can perform the Output loopback diagnostic test
for a safety-critical output GPIO pin using the
NvGpioOutputLoopbackDiag () AP

Note: Check the return value from the
NvGpioOutputloopbackDiag(] API.

DCMD I2C DRIVER_ INFO is deprecated and should be
removed

Operation mode of DCMD_I2C BUS RESET changed from
INIT/DEINIT to INIT/RUNTIME/DEINT.
DCMD_I2C BUS RESET is available anytime

The return values of QNXBSP 12C API changed.

Customers should be careful when checking for the return
value from the QNXBSP 12C driver

i2c.h is deprecated and replaced with nviZc_devctl.h.
Custmers should replace i2c.h with nviZc_devctl.h

SWE-SWDOCDRV-017-PGRF | 137

NVIDIA DRIVE 0S 6.0 Migration Guide

The following table describes Drive Update changes from Drive 5.1 to 6.0

Table 39. Drive Update Changes from 5.1 to 6.0
Header File and API Change Description
Header File: LCAPI has been deprecated since 5.2 and is
nvdriveupdate.h removed in 6.0. This applies to the following APls:
NvStartDeployPackage
API: NvCancelDeployPackage
lcapi NvGetDeployPackageProgress

NvSwitchBootChain
NvQueryBootChain
NvReadPartitionContent
NvQuerylsPartitionPresent
NvErasePartitionContent
NvQuerylsPartitionErased
NvSetRateGate

Check PDK documentation for migration from
LCAPI to new APIs

The following typedefs were removed:
NvPkgType
NvBootChain

NV_DU RATEGATE CB

The following table describes Drive Update changes from Drive 0S 5.2 to 6.0.

Table 40. Drive Update Changes from 5.2 to 6.0
Header File and API Change Description
Header File: The pBuf parameter is changing from void* to
dulink.h void const*

Following typedefs were removed

API: PDULINK ACL ENTRY
dulink PDULINK ATTR
Header File: The following typedefs will be removed

dutransport.h

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 138

NVIDIA DRIVE 0S 6.0 Migration Guide

Header File and API Change Description

API:

dutransport

>PDUTR_SEC_PARAM
>PDUTR_IVC_ PARAM
>PDUTR_SHMITC PARAM

>DUTR_SHMIPC PARAM,
PDUTR _SHMIPC PARAM

>PDUTR_TCP_IF PARAM
>PDUTR_TCP_ PARAM
>PDUTR TR PARAM

 The following enums were removed
>DUTR TR _TYPE SHM ITC

Metadata

A new optional parameter updates chain C or chain
D. There's no impact on the current update
package if you only plan to use chain A or chain B

TensorRT APl Changes

For changes to Tensor RT after TensorRT version 8.4 and DRIVE 0S
version 6.0.5, refer to the TensorRT Release Notes.

Table 41 API Changes
The following table describes changes for 6.0.1, 6.0.2, and 6.0.3.

implementations
of
ILogger::log.
Previous
documentation did
not require this.

Interface Affected Action Impact Impacted
Release
ILogger: :log Logging Thread safety is Custom lagging 6.0.3
interface now documented implementations of
as being required ILogger::log
for provided by

applications that
are not thread safe
must be rewritten
to be thread safe.

NVIDIA CONFIDENTIAL

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 139

NVIDIA DRIVE 0S 6.0 Migration Guide

Interface Affected Action Impact Impacted
Release

getPluginRegistr | Saferuntime Added Impacts user code. | 6.0.1
y getSafePluginR

egistry for safe

runtime.
REGISTER TENSORR | Safe runtime Renamed to Impacts user code. 6.0.1
T PLUGIN REGISTER SAFE

- TENSORRT_PLUGI

N.
IPluginChecker:: Standard and Renamed to Impacts user code. | 6.0.1
getPluginType safe runtimes getPluginName

for consistency.
IPluginRegistry: Standard and New method for No impact to 6.0.1
:deregisterCreat | saferuntimes deregistering existing code.
or plugins.
IPluginChecker Consistency Updated to inherit | Impacts user code 6.0.1

checker from

IPluginCreator
IPluginCheckerRe [Consistency Use Impacts user code | 6.0.1
gistry::register | checker IPluginRegistr
Plugin y::registerCre

ator.
IPluginCheckerRe [Consistency Use Impacts user code | 6.0.1
gistry: :getPlugi checker IPluginRegistr
nChecker y::getPluginCr

eator.
IPluginCheckerRe Consistency Removed. Impacts user code 6.0.1
gistry checker
NvInferRuntimeSe | Standardand Removed. Impacts user code 6.0.7
lect.h safe runtimes

NVIDIA CONFIDENTIAL

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 140

NVIDIA DRIVE 0S 6.0 Migration Guide

Interface Affected Action Impact Impacted
Release

NvInferConsisten | Consistency Updated to use No impact to user 6.0.7
cy.h checker pointer-to- code

implementation.
Proxy runtime split into Proxy runtime Proxy runtime split | Impacts user code 6.0.7
libnvinfer safe.so from (linking]

libnvinfer.so

to separate library
IBuilderConfig::ge [TensorRT New AP No impact to user | 6.0.2
tMemoryPoolLimit builder code
IBuilderConfig::se
tMemoryPoolLimit
ICaffeParser::pars [Caffe parser Type updated from [No impact to user 6.0.2

eBuffers

char* to
uint8 t*

code

NVIDIA CONFIDENTIAL

NVIDIA DRIVE 0S 6.0 SDK Migration Guide

SWE-SWDOCDRV-017-PGRF | 141

Appendix: Additional Resources

For information about NVIDIA products and resources, refer to the NVIDIA Documentation
Center and the NVIDIA DeveloperZone.

NVIDIA CONFIDENTIAL
NVIDIA DRIVE 0S 6.0 SDK Migration Guide SWE-SWDOCDRV-017-PGRF | 142

https://docs.nvidia.com/
https://docs.nvidia.com/
https://developer.nvidia.com/

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation ["NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained
in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information
or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver
any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer ["Terms of Sale”). NVIDIA hereby expressly objects to applying
any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are
formed either directly or indirectly by this document.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying
any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are
formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no Liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at
customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in
this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to
avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may
result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default,
damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or [iil
customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the
third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
[TOGETHER AND SEPARATELY, "MATERIALS"] ARE BEING PROVIDED "AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logoe, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Arm

Arm, AMBA and Arm Powered are registered trademarks of Arm Limited. Cortex, MPCore and Mali are trademarks of Arm Limited. All other brands or product
names are the property of their respective holders. "Arm" is used to represent Arm Holdings plc; its operating company Arm Limited; and the regional
subsidiaries Arm Inc.; Arm KK; Arm Korea Limited.; Arm Taiwan Limited; Arm France SAS; Arm Consulting (Shanghai] Co. Ltd.; Arm Germany GmbH; Arm
Embedded Technologies Pvt. Ltd.; Arm Norway, AS and Arm Sweden AB.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, NVIDIA DRIVE, CUDA, NVIDIA DRIVE Xavier, NVIDIA DRIVE AGX Orin, NVIDIA DRIVE AGX Pegasus, and TensorRT are trademarks and/or
registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies
with which they are associated.

Copyright
© 2023 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051

http://www.nvidia.com nVIDIA

http://www.nvidia.com/

