AI Inference
Inference can be deployed in many ways, depending on the use-case. Offline processing of data is best done at larger batch sizes, which can deliver optimal GPU utilization and throughput. However, increasing throughput also tends to increase latency. Generative AI and Large Language Models (LLMs) deployments seek to deliver great experiences by lowering latency. So developers and infrastructure managers need to strike a balance between throughput and latency to deliver great user experiences and best possible throughput while containing deployment costs.
When deploying LLMs at scale, a typical way to balance these concerns is to set a time-to-first token limit, and optimize throughput within that limit. The data presented in the Large Language Model Low Latency section show best throughput at a time limit of one second, which enables great throughput at low latency for most users, all while optimizing compute resource use.
Click here to view other performance data.
MLPerf Inference v4.1 Performance Benchmarks
Offline Scenario, Closed Division
Network | Throughput | GPU | Server | GPU Version | Target Accuracy | Dataset |
---|---|---|---|---|---|---|
Llama2 70B | 11,264 tokens/sec | 1x B200 | NVIDIA B200 | NVIDIA B200-SXM-180GB | rouge1=44.4312, rouge2=22.0352, rougeL=28.6162 | OpenOrca |
34,864 tokens/sec | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB-CTS | rouge1=44.4312, rouge2=22.0352, rougeL=28.6162 | OpenOrca | |
24,525 tokens/sec | 8x H100 | NVIDIA DGX H100 | NVIDIA H100-SXM-80GB | rouge1=44.4312, rouge2=22.0352, rougeL=28.6162 | OpenOrca | |
4,068 tokens/sec | 1x GH200 | NVIDIA GH200 NVL2 Platform | NVIDIA GH200 Grace Hopper Superchip 144GB | rouge1=44.4312, rouge2=22.0352, rougeL=28.6162 | OpenOrca | |
Mixtral 8x7B | 59,335 tokens/sec | 8x H200 | GIGABYTE G593-SD1 | NVIDIA H200-SXM-141GB | rouge1=45.4911, rouge2=23.2829, rougeL=30.3615, (gsm8k)Accuracy=73.78, (mbxp)Accuracy=60.12) | OpenOrca, GSM8K, MBXP |
52,818 tokens/sec | 8x H100 | SMC H100 | NVIDIA H100-SXM-80GB | rouge1=45.4911, rouge2=23.2829, rougeL=30.3615, (gsm8k)Accuracy=73.78, (mbxp)Accuracy=60.12) | OpenOrca, GSM8K, MBXP | |
8,021 tokens/sec | 1x GH200 | NVIDIA GH200 NVL2 Platform | NVIDIA GH200 Grace Hopper Superchip 144GB | rouge1=45.4911, rouge2=23.2829, rougeL=30.3615, (gsm8k)Accuracy=73.78, (mbxp)Accuracy=60.12) | OpenOrca, GSM8K, MBXP | |
Stable Diffusion XL | 18 samples/sec | 8x H200 | Dell PowerEdge XE9680 | NVIDIA H200-SXM-141GB | FID range: [23.01085758, 23.95007626] and CLIP range: [31.68631873, 31.81331801] | Subset of coco-2014 val |
16 samples/sec | 8x H100 | SYS-421GE-TNHR2-LCC | NVIDIA H100-SXM-80GB | FID range: [23.01085758, 23.95007626] and CLIP range: [31.68631873, 31.81331801] | Subset of coco-2014 val | |
2.3 samples/sec | 1x GH200 | NVIDIA GH200 NVL2 Platform | NVIDIA GH200 Grace Hopper Superchip 144GB | FID range: [23.01085758, 23.95007626] and CLIP range: [31.68631873, 31.81331801] | Subset of coco-2014 val | |
ResNet-50 | 768,235 samples/sec | 8x H200 | Dell PowerEdge XE9680 | NVIDIA H200-SXM-141GB | 76.46% Top1 | ImageNet (224x224) |
710,521 samples/sec | 8x H100 | SYS-421GE-TNHR2-LCC | NVIDIA H100-SXM-80GB | 76.46% Top1 | ImageNet (224x224) | |
95,105 samples/sec | 1x GH200 | NVIDIA GH200-GraceHopper-Superchip | NVIDIA GH200 Grace Hopper Superchip 96GB | 76.46% Top1 | ImageNet (224x224) | |
RetinaNet | 15,015 samples/sec | 8x H200 | ThinkSystem SR685a V3 | NVIDIA H200-SXM-141GB | 0.3755 mAP | OpenImages (800x800) |
14,538 samples/sec | 8x H100 | SYS-421GE-TNHR2-LCC | NVIDIA H100-SXM-80GB | 0.3755 mAP | OpenImages (800x800) | |
1,923 samples/sec | 1x GH200 | NVIDIA GH200-GraceHopper-Superchip | NVIDIA GH200 Grace Hopper Superchip 96GB | 0.3755 mAP | OpenImages (800x800) | |
BERT | 73,791 samples/sec | 8x H200 | Dell PowerEdge XE9680 | NVIDIA H200-SXM-141GB | 90.87% f1 | SQuAD v1.1 |
72,876 samples/sec | 8x H100 | SYS-421GE-TNHR2-LCC | NVIDIA H100-SXM-80GB | 90.87% f1 | SQuAD v1.1 | |
9,864 samples/sec | 1x GH200 | NVIDIA GH200-GraceHopper-Superchip | NVIDIA GH200 Grace Hopper Superchip 96GB | 90.87% f1 | SQuAD v1.1 | |
GPT-J | 20,552 tokens/sec | 8x H200 | ThinkSystem SR680a V3 | NVIDIA H200-SXM-141GB | rouge1=42.9865, rouge2=20.1235, rougeL=29.9881 | CNN Dailymail |
19,878 tokens/sec | 8x H100 | ESC-N8-E11 | NVIDIA H100-SXM-80GB | rouge1=42.9865, rouge2=20.1235, rougeL=29.9881 | CNN Dailymail | |
2,804 tokens/sec | 1x GH200 | GH200-GraceHopper-Superchip_GH200-96GB_aarch64x1_TRT | NVIDIA GH200 Grace Hopper Superchip 96GB | rouge1=42.9865, rouge2=20.1235, rougeL=29.9881 | CNN Dailymail | |
DLRMv2 | 639,512 samples/sec | 8x H200 | GIGABYTE G593-SD1 | NVIDIA H200-SXM-141GB | 80.31% AUC | Synthetic Multihot Criteo Dataset |
602,108 samples/sec | 8x H100 | SYS-421GE-TNHR2-LCC | NVIDIA H100-SXM-80GB | 80.31% AUC | Synthetic Multihot Criteo Dataset | |
86,731 samples/sec | 1x GH200 | NVIDIA GH200 NVL2 Platform | NVIDIA GH200 Grace Hopper Superchip 144GB | 80.31% AUC | Synthetic Multihot Criteo Dataset | |
3D-UNET | 55 samples/sec | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | 0.863 DICE mean | KiTS 2019 |
52 samples/sec | 8x H100 | AS-4125GS-TNHR2-LCC | NVIDIA H100-SXM-80GB | 0.863 DICE mean | KiTS 2019 | |
7 samples/sec | 1x GH200 | GH200-GraceHopper-Superchip_GH200-96GB_aarch64x1_TRT | NVIDIA GH200 Grace Hopper Superchip 96GB | 0.863 DICE mean | KiTS 2019 |
Server Scenario - Closed Division
Network | Throughput | GPU | Server | GPU Version | Target Accuracy | MLPerf Server Latency Constraints (ms) |
Dataset |
---|---|---|---|---|---|---|---|
Llama2 70B | 10,756 tokens/sec | 1x B200 | NVIDIA B200 | NVIDIA B200-SXM-180GB | rouge1=44.4312, rouge2=22.0352, rougeL=28.6162 | TTFT/TPOT: 2000 ms/200 ms | OpenOrca |
32,790 tokens/sec | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB-CTS | rouge1=44.4312, rouge2=22.0352, rougeL=28.6162 | TTFT/TPOT: 2000 ms/200 ms | OpenOrca | |
23,700 tokens/sec | 8x H100 | AS-4125GS-TNHR2-LCC | NVIDIA H100-SXM-80GB | rouge1=44.4312, rouge2=22.0352, rougeL=28.6162 | TTFT/TPOT: 2000 ms/200 ms | OpenOrca | |
3,884 tokens/sec | 1x GH200 | NVIDIA GH200 NVL2 Platform | NVIDIA GH200 Grace Hopper Superchip 144GB | rouge1=44.4312, rouge2=22.0352, rougeL=28.6162 | TTFT/TPOT: 2000 ms/200 ms | OpenOrca | |
Mixtral 8x7B | 57,177 tokens/sec | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | rouge1=45.4911, rouge2=23.2829, rougeL=30.3615, (gsm8k)Accuracy=73.78, (mbxp)Accuracy=60.12) | TTFT/TPOT: 2000 ms/200 ms | OpenOrca, GSM8K, MBXP |
51,028 tokens/sec | 8x H100 | SYS-421GE-TNHR2-LCC | NVIDIA H100-SXM-80GB | rouge1=45.4911, rouge2=23.2829, rougeL=30.3615, (gsm8k)Accuracy=73.78, (mbxp)Accuracy=60.12) | TTFT/TPOT: 2000 ms/200 ms | OpenOrca, GSM8K, MBXP | |
7,450 tokens/sec | 1x GH200 | NVIDIA GH200 NVL2 Platform | NVIDIA GH200 Grace Hopper Superchip 144GB | rouge1=45.4911, rouge2=23.2829, rougeL=30.3615, (gsm8k)Accuracy=73.78, (mbxp)Accuracy=60.12) | TTFT/TPOT: 2000 ms/200 ms | OpenOrca, GSM8K, MBXP | |
Stable Diffusion XL | 17 samples/sec | 8x H200 | ThinkSystem SR680a V3 | NVIDIA H200-SXM-141GB | FID range: [23.01085758, 23.95007626] and CLIP range: [31.68631873, 31.81331801] | 20 s | Subset of coco-2014 val |
16 samples/sec | 8x H100 | SYS-421GE-TNHR2-LCC | NVIDIA H100-SXM-80GB | FID range: [23.01085758, 23.95007626] and CLIP range: [31.68631873, 31.81331801] | 20 s | Subset of coco-2014 val | |
2.02 samples/sec | 1x GH200 | NVIDIA GH200 NVL2 Platform | NVIDIA GH200 Grace Hopper Superchip 144GB | FID range: [23.01085758, 23.95007626] and CLIP range: [31.68631873, 31.81331801] | 20 s | Subset of coco-2014 val | |
ResNet-50 | 681,328 queries/sec | 8x H200 | GIGABYTE G593-SD1 | NVIDIA H200-SXM-141GB | 76.46% Top1 | 15 ms | ImageNet (224x224) |
634,193 queries/sec | 8x H100 | SYS-821GE-TNHR | NVIDIA H100-SXM-80GB | 76.46% Top1 | 15 ms | ImageNet (224x224) | |
77,012 queries/sec | 1x GH200 | NVIDIA GH200-GraceHopper-Superchip | NVIDIA GH200 Grace Hopper Superchip 96GB | 76.46% Top1 | 15 ms | ImageNet (224x224) | |
RetinaNet | 14,012 queries/sec | 8x H200 | GIGABYTE G593-SD1 | NVIDIA H200-SXM-141GB | 0.3755 mAP | 100 ms | OpenImages (800x800) |
13,979 queries/sec | 8x H100 | SYS-421GE-TNHR2-LCC | NVIDIA H100-SXM-80GB | 0.3755 mAP | 100 ms | OpenImages (800x800) | |
1,731 queries/sec | 1x GH200 | GH200-GraceHopper-Superchip_GH200-96GB_aarch64x1_TRT | NVIDIA GH200 Grace Hopper Superchip 96GB | 0.3755 mAP | 100 ms | OpenImages (800x800) | |
BERT | 58,091 queries/sec | 8x H200 | Dell PowerEdge XE9680 | NVIDIA H200-SXM-141GB | 90.87% f1 | 130 ms | SQuAD v1.1 |
58,929 queries/sec | 8x H100 | SYS-421GE-TNHR2-LCC | NVIDIA H100-SXM-80GB | 90.87% f1 | 130 ms | SQuAD v1.1 | |
7,103 queries/sec | 1x GH200 | GH200-GraceHopper-Superchip_GH200-96GB_aarch64x1_TRT | NVIDIA GH200 Grace Hopper Superchip 96GB | 90.87% f1 | 130 ms | SQuAD v1.1 | |
GPT-J | 20,139 queries/sec | 8x H200 | Dell PowerEdge XE9680 | NVIDIA H200-SXM-141GB | rouge1=42.9865, rouge2=20.1235, rougeL=29.9881 | 20 s | CNN Dailymail |
19,811 queries/sec | 8x H100 | AS-4125GS-TNHR2-LCC | NVIDIA H100-SXM-80GB | rouge1=42.9865, rouge2=20.1235, rougeL=29.9881 | 20 s | CNN Dailymail | |
2,513 queries/sec | 1x GH200 | NVIDIA GH200 NVL2 Platform | NVIDIA GH200 Grace Hopper Superchip 144GB | rouge1=42.9865, rouge2=20.1235, rougeL=29.9881 | 20 s | CNN Dailymail | |
DLRMv2 | 585,209 queries/sec | 8x H200 | GIGABYTE G593-SD1 | NVIDIA H200-SXM-141GB | 80.31% AUC | 60 ms | Synthetic Multihot Criteo Dataset |
556,101 queries/sec | 8x H100 | SYS-421GE-TNHR2-LCC | NVIDIA H100-SXM-80GB | 80.31% AUC | 60 ms | Synthetic Multihot Criteo Dataset | |
81,010 queries/sec | 1x GH200 | NVIDIA GH200 NVL2 Platform | NVIDIA GH200 Grace Hopper Superchip 144GB | 80.31% AUC | 60 ms | Synthetic Multihot Criteo Dataset |
Power Efficiency Offline Scenario - Closed Division
Network | Throughput | Throughput per Watt | GPU | Server | GPU Version | Dataset |
---|---|---|---|---|---|---|
Llama2 70B | 25,262 tokens/sec | 4 tokens/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | OpenOrca |
Mixtral 8x7B | 48,988 tokens/sec | 8 tokens/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | OpenOrca, GSM8K, MBXP |
Stable Diffusion XL | 13 samples/sec | 0.002 samples/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | Subset of coco-2014 val |
ResNet-50 | 556,234 samples/sec | 112 samples/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | ImageNet (224x224) |
RetinaNet | 10,803 samples/sec | 2 samples/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | OpenImages (800x800) |
BERT | 54,063 samples/sec | 10 samples/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | SQuAD v1.1 |
GPT-J | 13,097 samples/sec | 3. samples/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | CNN Dailymail |
DLRMv2 | 503,719 samples/sec | 84 samples/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | Synthetic Multihot Criteo Dataset |
3D-UNET | 42 samples/sec | 0.009 samples/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | KiTS 2019 |
Power Efficiency Server Scenario - Closed Division
Network | Throughput | Throughput per Watt | GPU | Server | GPU Version | Dataset |
---|---|---|---|---|---|---|
Llama2 70B | 23,113 tokens/sec | 4 tokens/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | OpenOrca |
Mixtral 8x7B | 45,497 tokens/sec | 7 tokens/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | OpenOrca, GSM8K, MBXP |
Stable Diffusion | 13 queries/sec | 0.002 queries/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | Subset of coco-2014 val |
ResNet-50 | 480,131 queries/sec | 96 queries/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | ImageNet (224x224) |
RetinaNet | 9,603 queries/sec | 2 queries/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | OpenImages (800x800) |
BERT | 41,599 queries/sec | 8 queries/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | SQuAD v1.1 |
GPT-J | 11,701 queries/sec | 2 queries/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | CNN Dailymail |
DLRMv2 | 420,107 queries/sec | 69 queries/sec/watt | 8x H200 | NVIDIA H200 | NVIDIA H200-SXM-141GB | Synthetic Multihot Criteo Dataset |
MLPerf™ v4.1 Inference Closed: Llama2 70B 99.9% of FP32, Mixtral 8x7B 99% of FP32 and 99.9% of FP32, Stable Diffusion XL, ResNet-50 v1.5, RetinaNet, RNN-T, BERT 99% of FP32 accuracy target, 3D U-Net 99.9% of FP32 accuracy target, GPT-J 99.9% of FP32 accuracy target, DLRM 99% of FP32 accuracy target: 4.1-0005, 4.1-0021, 4.1-0027, 4.1-0037, 4.1-0038, 4.1-0043, 4.1-0044, 4.1-0046, 4.1-0048, 4.1-0049, 4.1-0053, 4.1-0057, 4.1-0060, 4.1-0063, 4.1-0064, 4.1-0065, 4.1-0074. MLPerf name and logo are trademarks. See https://mlcommons.org/ for more information.
NVIDIA B200 is a preview submission
Llama2 70B Max Sequence Length = 1,024
Mixtral 8x7B Max Sequence Length = 2,048
BERT-Large Max Sequence Length = 384.
For MLPerf™ various scenario data, click here
For MLPerf™ latency constraints, click here
LLM Inference Performance of NVIDIA Data Center Products
H200 Inference Performance - High Throughput
Model | PP | TP | Input Length | Output Length | Throughput | GPU | Server | Precision | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|
Llama v3.1 405B | 1 | 8 | 128 | 128 | 3,953 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 405B | 1 | 8 | 128 | 2048 | 5,974 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 405B | 1 | 8 | 128 | 4096 | 4,947 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 405B | 8 | 1 | 2048 | 128 | 764 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.14a | NVIDIA H200 |
Llama v3.1 405B | 1 | 8 | 5000 | 500 | 679 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 405B | 1 | 8 | 500 | 2000 | 5,066 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 405B | 1 | 8 | 1000 | 1000 | 3,481 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 405B | 1 | 8 | 2048 | 2048 | 2,927 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 405B | 1 | 8 | 20000 | 2000 | 482 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.14.0 | NVIDIA H200 |
Llama v3.1 70B | 1 | 1 | 128 | 128 | 3,924 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.13.0 | NVIDIA H200 |
Llama v3.1 70B | 1 | 2 | 128 | 2048 | 7,939 total tokens/sec | 2x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 70B | 1 | 2 | 128 | 4096 | 6,297 total tokens/sec | 2x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 70B | 1 | 1 | 2048 | 128 | 460 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.13.0 | NVIDIA H200 |
Llama v3.1 70B | 1 | 1 | 5000 | 500 | 560 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 70B | 1 | 2 | 500 | 2000 | 6,683 total tokens/sec | 2x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 70B | 1 | 1 | 1000 | 1000 | 2,704 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 70B | 1 | 2 | 2048 | 2048 | 3,835 total tokens/sec | 2x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 70B | 1 | 2 | 20000 | 2000 | 633 total tokens/sec | 2x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 128 | 128 | 28,126 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.13.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 128 | 2048 | 24,158 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 128 | 4096 | 16,460 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 2048 | 128 | 3,661 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 5000 | 500 | 3,836 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 500 | 2000 | 20,345 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 1000 | 1000 | 16,801 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 2048 | 2048 | 11,073 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.13.0 | NVIDIA H200 |
Llama v3.1 8B | 1 | 1 | 20000 | 2000 | 1,741 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Mixtral 8x7B | 1 | 1 | 128 | 128 | 16,796 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Mixtral 8x7B | 1 | 1 | 128 | 2048 | 14,830 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Mixtral 8x7B | 1 | 2 | 128 | 4096 | 21,520 total tokens/sec | 2x H200 | DGX H200 | FP8 | TensorRT-LLM 0.14.0 | NVIDIA H200 |
Mixtral 8x7B | 1 | 1 | 2048 | 128 | 1,995 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Mixtral 8x7B | 1 | 1 | 5000 | 500 | 2,295 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Mixtral 8x7B | 1 | 1 | 500 | 2000 | 11,983 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Mixtral 8x7B | 1 | 1 | 1000 | 1000 | 10,254 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Mixtral 8x7B | 1 | 2 | 2048 | 2048 | 14,018 total tokens/sec | 2x H200 | DGX H200 | FP8 | TensorRT-LLM 0.13.0 | NVIDIA H200 |
Mixtral 8x7B | 1 | 2 | 20000 | 2000 | 2,227 total tokens/sec | 2x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Mixtral 8x22B | 1 | 8 | 128 | 128 | 25,179 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.14.0 | NVIDIA H200 |
Mixtral 8x22B | 1 | 8 | 128 | 2048 | 32,623 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Mixtral 8x22B | 1 | 8 | 128 | 4096 | 25,531 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Mixtral 8x22B | 1 | 8 | 2048 | 128 | 3,095 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Mixtral 8x22B | 1 | 8 | 5000 | 500 | 4,209 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Mixtral 8x22B | 1 | 8 | 500 | 2000 | 27,396 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Mixtral 8x22B | 1 | 8 | 1000 | 1000 | 20,097 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.15.0 | NVIDIA H200 |
Mixtral 8x22B | 1 | 8 | 2048 | 2048 | 13,796 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.14.0 | NVIDIA H200 |
Mixtral 8x22B | 1 | 8 | 20000 | 2000 | 2,897 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.14.0 | NVIDIA H200 |
TP: Tensor Parallelism
PP: Pipeline Parallelism
For more information on pipeline parallelism, please read Llama v3.1 405B Blog
Output tokens/second on Llama v3.1 405B is inclusive of time to generate the first token (tokens/s = total generated tokens / total latency)
H100 Inference Performance - High Throughput
Model | PP | TP | Input Length | Output Length | Throughput | GPU | Server | Precision | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|
Llama v3.1 70B | 1 | 2 | 128 | 128 | 6,399 total tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 0.15.0 | H100-SXM5-80GB |
Llama v3.1 70B | 1 | 2 | 128 | 4096 | 3,581 total tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 0.15.0 | H100-SXM5-80GB |
Llama v3.1 70B | 1 | 2 | 2048 | 128 | 774 total tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 0.15.0 | H100-SXM5-80GB |
Llama v3.1 70B | 1 | 2 | 500 | 2000 | 4,776 total tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 0.15.0 | H100-SXM5-80GB |
Llama v3.1 70B | 1 | 2 | 1000 | 1000 | 4,247 total tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 0.15.0 | H100-SXM5-80GB |
Llama v3.1 70B | 1 | 4 | 2048 | 2048 | 5,166 total tokens/sec | 4x H100 | DGX H100 | FP8 | TensorRT-LLM 0.15.0 | H100-SXM5-80GB |
Llama v3.1 70B | 1 | 4 | 20000 | 2000 | 915 total tokens/sec | 4x H100 | DGX H100 | FP8 | TensorRT-LLM 0.15.0 | H100-SXM5-80GB |
Mixtral 8x7B | 1 | 2 | 128 | 128 | 27,156 total tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 0.15.0 | H100-SXM5-80GB |
Mixtral 8x7B | 1 | 2 | 128 | 2048 | 23,010 total tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 0.15.0 | H100-SXM5-80GB |
Mixtral 8x7B | 1 | 8 | 128 | 4096 | 47,834 total tokens/sec | 8x H100 | DGX H100 | FP8 | TensorRT-LLM 0.15.0 | H100-SXM5-80GB |
Mixtral 8x7B | 1 | 2 | 2048 | 128 | 3,368 total tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 0.15.0 | H100-SXM5-80GB |
Mixtral 8x7B | 1 | 2 | 5000 | 500 | 3,592 total tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 0.15.0 | H100-SXM5-80GB |
Mixtral 8x7B | 1 | 2 | 500 | 2000 | 18,186 total tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 0.14.0 | H100-SXM5-80GB |
Mixtral 8x7B | 1 | 2 | 1000 | 1000 | 15,932 total tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 0.14.0 | H100-SXM5-80GB |
Mixtral 8x7B | 1 | 2 | 2048 | 2048 | 10,465 total tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 0.15.0 | H100-SXM5-80GB |
Mixtral 8x7B | 1 | 2 | 20000 | 2000 | 1,739 total tokens/sec | 2x H100 | DGX H100 | FP8 | TensorRT-LLM 0.15.0 | H100-SXM5-80GB |
TP: Tensor Parallelism
PP: Pipeline Parallelism
L40S Inference Performance - High Throughput
Model | PP | TP | Input Length | Output Length | Throughput | GPU | Server | Precision | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|
Llama v3.1 8B | 1 | 1 | 128 | 128 | 8,983 total tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
Llama v3.1 8B | 1 | 1 | 128 | 2048 | 5,297 total tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
Llama v3.1 8B | 1 | 1 | 128 | 4096 | 2,989 total tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
Llama v3.1 8B | 1 | 1 | 2048 | 128 | 1,056 total tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
Llama v3.1 8B | 1 | 1 | 5000 | 500 | 972 total tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
Llama v3.1 8B | 1 | 1 | 500 | 2000 | 4,264 total tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
Llama v3.1 8B | 1 | 1 | 1000 | 1000 | 4,014 total tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
Llama v3.1 8B | 1 | 1 | 2048 | 2048 | 2,163 total tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
Llama v3.1 8B | 1 | 1 | 20000 | 2000 | 326 total tokens/sec | 1x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
Mixtral 8x7B | 4 | 1 | 128 | 128 | 15,278 total tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
Mixtral 8x7B | 2 | 2 | 128 | 2048 | 9,087 total tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
Mixtral 8x7B | 1 | 4 | 128 | 4096 | 5,655 total tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
Mixtral 8x7B | 4 | 1 | 2048 | 128 | 2,098 total tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
Mixtral 8x7B | 2 | 2 | 5000 | 500 | 1,558 total tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
Mixtral 8x7B | 2 | 2 | 500 | 2000 | 7,974 total tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
Mixtral 8x7B | 2 | 2 | 1000 | 1000 | 6,579 total tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
Mixtral 8x7B | 2 | 2 | 2048 | 2048 | 4,217 total tokens/sec | 4x L40S | Supermicro SYS-521GE-TNRT | FP8 | TensorRT-LLM 0.15.0 | NVIDIA L40S |
TP: Tensor Parallelism
PP: Pipeline Parallelism
H200 Inference Performance - High Throughput at Low Latency Under 1 Second
Model | Batch Size | TP | Input Length | Output Length | Time to 1st Token | Throughput/GPU | GPU | Server | Precision | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|---|
GPT-J 6B | 512 | 1 | 128 | 128 | 0.64 seconds | 25,126 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.9.0 | NVIDIA H200 |
GPT-J 6B | 64 | 1 | 128 | 2048 | 0.08 seconds | 7,719 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.9.0 | NVIDIA H200 |
GPT-J 6B | 32 | 1 | 2048 | 128 | 0.68 seconds | 2,469 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.9.0 | NVIDIA H200 |
GPT-J 6B | 32 | 1 | 2048 | 2048 | 0.68 seconds | 3,167 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.9.0 | NVIDIA H200 |
Llama v2 7B | 512 | 1 | 128 | 128 | 0.84 seconds | 19,975 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.9.0 | NVIDIA H200 |
Llama v2 7B | 64 | 1 | 128 | 2048 | 0.11 seconds | 7,149 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.9.0 | NVIDIA H200 |
Llama v2 7B | 32 | 1 | 2048 | 128 | 0.9 seconds | 2,101 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.9.0 | NVIDIA H200 |
Llama v2 7B | 32 | 1 | 2048 | 2048 | 0.9 seconds | 3,008 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.9.0 | NVIDIA H200 |
Llama v2 70B | 64 | 1 | 128 | 128 | 0.92 seconds | 2,044 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.9.0 | NVIDIA H200 |
Llama v2 70B | 64 | 1 | 128 | 2048 | 0.93 seconds | 2,238 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.9.0 | NVIDIA H200 |
Llama v2 70B | 4 | 1 | 2048 | 128 | 0.95 seconds | 128 total tokens/sec | 1x H200 | DGX H200 | FP8 | TensorRT-LLM 0.9.0 | NVIDIA H200 |
Llama v2 70B | 16 | 8 | 2048 | 2048 | 0.97 seconds | 173 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.9.0 | NVIDIA H200 |
Falcon 180B | 32 | 4 | 128 | 128 | 0.36 seconds | 365 total tokens/sec | 4x H200 | DGX H200 | FP8 | TensorRT-LLM 0.9.0 | NVIDIA H200 |
Falcon 180B | 64 | 8 | 128 | 2048 | 0.43 seconds | 408 total tokens/sec | 8x H200 | DGX H200 | FP8 | TensorRT-LLM 0.9.0 | NVIDIA H200 |
Falcon 180B | 4 | 4 | 2048 | 128 | 0.71 seconds | 43 total tokens/sec | 4x H200 | DGX H200 | FP8 | TensorRT-LLM 0.9.0 | NVIDIA H200 |
Falcon 180B | 4 | 4 | 2048 | 2048 | 0.71 seconds | 53 total tokens/sec | 4x H200 | DGX H200 | FP8 | TensorRT-LLM 0.9.0 | NVIDIA H200 |
TP: Tensor Parallelism
Batch size per GPU
Low Latency Target: Highest measured throughput with less than 1 second 1st token latency
H100 Inference Performance - High Throughput at Low Latency Under 1 Second
Model | Batch Size | TP | Input Length | Output Length | Time to 1st Token | Throughput/GPU | GPU | Server | Precision | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|---|
GPT-J 6B | 512 | 1 | 128 | 128 | 0.63 seconds | 24,167 total tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 0.9.0 | H100-SXM5-80GB |
GPT-J 6B | 120 | 1 | 128 | 2048 | 0.16 seconds | 7,351 total tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 0.9.0 | H100-SXM5-80GB |
GPT-J 6B | 32 | 1 | 2048 | 128 | 0.67 seconds | 2,257 total tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 0.9.0 | H100-SXM5-80GB |
GPT-J 6B | 32 | 1 | 2048 | 2048 | 0.68 seconds | 2,710 total tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 0.9.0 | H100-SXM5-80GB |
Llama v2 7B | 512 | 1 | 128 | 128 | 0.83 seconds | 19,258 total tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 0.9.0 | H100-SXM5-80GB |
Llama v2 7B | 120 | 1 | 128 | 2048 | 0.2 seconds | 6,944 total tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 0.9.0 | H100-SXM5-80GB |
Llama v2 7B | 32 | 1 | 2048 | 128 | 0.89 seconds | 1,904 total tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 0.9.0 | H100-SXM5-80GB |
Llama v2 7B | 32 | 1 | 2048 | 2048 | 0.89 seconds | 2,484 total tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 0.9.0 | H100-SXM5-80GB |
Llama v2 70B | 64 | 1 | 128 | 128 | 0.92 seconds | 1,702 total tokens/sec | 1x H100 | DGX H100 | FP8 | TensorRT-LLM 0.9.0 | H100-SXM5-80GB |
Llama v2 70B | 128 | 4 | 128 | 2048 | 0.73 seconds | 1,494 total tokens/sec | 4x H100 | DGX H100 | FP8 | TensorRT-LLM 0.9.0 | H100-SXM5-80GB |
Llama v2 70B | 4 | 8 | 2048 | 128 | 0.74 seconds | 105 total tokens/sec | 8x H100 | DGX H100 | FP8 | TensorRT-LLM 0.9.0 | H100-SXM5-80GB |
Llama v2 70B | 8 | 4 | 2048 | 2048 | 0.74 seconds | 141 total tokens/sec | 4x H100 | DGX H100 | FP8 | TensorRT-LLM 0.9.0 | H100-SXM5-80GB |
Falcon 180B | 64 | 4 | 128 | 128 | 0.71 seconds | 372 total tokens/sec | 4x H100 | DGX H100 | FP8 | TensorRT-LLM 0.9.0 | H100-SXM5-80GB |
Falcon 180B | 64 | 4 | 128 | 2048 | 0.7 seconds | 351 total tokens/sec | 4x H100 | DGX H100 | FP8 | TensorRT-LLM 0.9.0 | H100-SXM5-80GB |
Falcon 180B | 8 | 8 | 2048 | 128 | 0.87 seconds | 45 total tokens/sec | 8x H100 | DGX H100 | FP8 | TensorRT-LLM 0.9.0 | H100-SXM5-80GB |
Falcon 180B | 8 | 8 | 2048 | 2048 | 0.87 seconds | 61 total tokens/sec | 8x H100 | DGX H100 | FP8 | TensorRT-LLM 0.9.0 | H100-SXM5-80GB |
TP: Tensor Parallelism
Batch size per GPU
Low Latency Target: Highest measured throughput with less than 1 second 1st token latency
Inference Performance of NVIDIA Data Center Products
H200 Inference Performance
Network | Batch Size | Throughput | Efficiency | Latency (ms) | GPU | Server | Container | Precision | Dataset | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|---|
Stable Diffusion v2.1 (512x512) | 1 | 4.33 images/sec | - | 231.26 | 1x H200 | DGX H200 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0.26 | NVIDIA H200 |
4 | 6.8 images/sec | - | 588.08 | 1x H200 | DGX H200 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0.26 | NVIDIA H200 | |
Stable Diffusion XL | 1 | 0.86 images/sec | - | 1157.27 | 1x H200 | DGX H200 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA H200 |
ResNet-50v1.5 | 8 | 21,347 images/sec | 70 images/sec/watt | 0.37 | 1x H200 | DGX H200 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA H200 |
128 | 63,356 images/sec | 104 images/sec/watt | 2.02 | 1x H200 | DGX H200 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA H200 | |
BERT-BASE | 8 | 9,390 sequences/sec | 21 sequences/sec/watt | 0.85 | 1x H200 | DGX H200 | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | NVIDIA H200 |
128 | 25,341 sequences/sec | 38 sequences/sec/watt | 5.05 | 1x H200 | DGX H200 | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | NVIDIA H200 | |
BERT-LARGE | 8 | 4,034 sequences/sec | 6 sequences/sec/watt | 1.98 | 1x H200 | DGX H200 | 24.09-py3 | Mixed | Synthetic | TensorRT 10.4.0.26 | NVIDIA H200 |
128 | 8,374 sequences/sec | 13 sequences/sec/watt | 15.28 | 1x H200 | DGX H200 | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | NVIDIA H200 | |
EfficientNet-B0 | 8 | 16,634 images/sec | 76 images/sec/watt | 0.48 | 1x H200 | DGX H200 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA H200 |
128 | 56,960 images/sec | 122 images/sec/watt | 2.25 | 1x H200 | DGX H200 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA H200 | |
EfficientNet-B4 | 8 | 4,525 images/sec | 14 images/sec/watt | 1.77 | 1x H200 | DGX H200 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA H200 |
128 | 8,940 images/sec | 15 images/sec/watt | 14.32 | 1x H200 | DGX H200 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA H200 | |
HF Swin Base | 8 | 5,083 samples/sec | 11 samples/sec/watt | 1.57 | 1x H200 | DGX H200 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA H200 |
32 | 8,304 samples/sec | 12 samples/sec/watt | 3.85 | 1x H200 | DGX H200 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA H200 | |
HF Swin Large | 8 | 3,435 samples/sec | 6 samples/sec/watt | 2.33 | 1x H200 | DGX H200 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA H200 |
32 | 4,732 samples/sec | 7 samples/sec/watt | 6.76 | 1x H200 | DGX H200 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA H200 | |
HF ViT Base | 8 | 8,948 samples/sec | 19 samples/sec/watt | 0.89 | 1x H200 | DGX H200 | 24.12-py3 | FP8 | Synthetic | TensorRT 10.7.0 | NVIDIA H200 |
64 | 15,403 samples/sec | 23 samples/sec/watt | 4.16 | 1x H200 | DGX H200 | 24.12-py3 | FP8 | Synthetic | TensorRT 10.7.0 | NVIDIA H200 | |
HF ViT Large | 8 | 3,743 samples/sec | 6 samples/sec/watt | 2.14 | 1x H200 | DGX H200 | 24.12-py3 | FP8 | Synthetic | TensorRT 10.7.0 | NVIDIA H200 |
64 | 5,415 samples/sec | 8 samples/sec/watt | 11.82 | 1x H200 | DGX H200 | 24.12-py3 | FP8 | Synthetic | TensorRT 10.7.0 | NVIDIA H200 | |
Megatron BERT Large QAT | 8 | 4,966 sequences/sec | 13 sequences/sec/watt | 1.61 | 1x H200 | DGX H200 | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | NVIDIA H200 |
128 | 12,481 sequences/sec | 18 sequences/sec/watt | 10.26 | 1x H200 | DGX H200 | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | NVIDIA H200 | |
QuartzNet | 8 | 6,780 samples/sec | 24 samples/sec/watt | 1.18 | 1x H200 | DGX H200 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA H200 |
128 | 33,906 samples/sec | 89 samples/sec/watt | 3.78 | 1x H200 | DGX H200 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA H200 | |
RetinaNet-RN34 | 8 | 2,967 images/sec | 9 images/sec/watt | 2.7 | 1x H200 | DGX H200 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA H200 |
512x512 image size, 50 denoising steps for Stable Diffusion v2.1
BERT Base: Sequence Length = 128 | BERT Large: Sequence Length = 128
HF Swin Base: Input Image Size = 224x224 | Window Size = 224x 224. HF Swin Large: Input Image Size = 224x224 | Window Size = 384x384
HF ViT Base: Input Image Size = 224x224 | Patch Size = 224x224. HF ViT Large: Input Image Size = 224x224 | Patch Size = 384x384
Megatron BERT Large QAT: Sequence Length = 128
QuartzNet: Sequence Length = 256
GH200 Inference Performance
Network | Batch Size | Throughput | Efficiency | Latency (ms) | GPU | Server | Container | Precision | Dataset | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|---|
Stable Diffusion v2.1 (512x512) | 1 | 4.27 images/sec | - | 234.4 | 1x GH200 | NVIDIA P3880 | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | GH200 96GB |
4 | 5.82 images/sec | - | 687.91 | 1x GH200 | NVIDIA P3880 | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | GH200 96GB | |
Stable Diffusion XL | 1 | 0.68 images/sec | - | 1149.44 | 1x GH200 | NVIDIA P3880 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | GH200 96GB |
ResNet-50v1.5 | 8 | 20,979 images/sec | 61 images/sec/watt | 0.38 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | GH200 96GB |
128 | 63,043 images/sec | 99 images/sec/watt | 2.03 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | GH200 96GB | |
BERT-BASE | 8 | 9,593 sequences/sec | 22 sequences/sec/watt | 0.83 | 1x GH200 | NVIDIA P3880 | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | GH200 96GB |
128 | 20,399 sequences/sec | 45 sequences/sec/watt | 6.27 | 1x GH200 | NVIDIA P3880 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0.26 | GH200 96GB | |
BERT-LARGE | 8 | 3,625 sequences/sec | 7 sequences/sec/watt | 2.21 | 1x GH200 | NVIDIA P3880 | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | GH200 96GB |
128 | 7,285 sequences/sec | 14 sequences/sec/watt | 17.57 | 1x GH200 | NVIDIA P3880 | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | GH200 96GB | |
EfficientNet-B0 | 8 | 16,695 images/sec | 67 images/sec/watt | 0.48 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | GH200 96GB |
128 | 56,674 images/sec | 113 images/sec/watt | 2.26 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | GH200 96GB | |
EfficientNet-B4 | 8 | 4,531 images/sec | 13 images/sec/watt | 1.77 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | GH200 96GB |
128 | 8,784 images/sec | 14 images/sec/watt | 14.57 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | GH200 96GB | |
HF Swin Base | 8 | 5,106 samples/sec | 10 samples/sec/watt | 1.57 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | GH200 96GB |
32 | 8,197 samples/sec | 12 samples/sec/watt | 3.9 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | GH200 96GB | |
HF Swin Large | 8 | 3,403 samples/sec | 6 samples/sec/watt | 2.35 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | GH200 96GB |
32 | 4,846 samples/sec | 6 samples/sec/watt | 6.6 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | GH200 96GB | |
HF ViT Base | 8 | 8,990 samples/sec | 18 samples/sec/watt | 0.89 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | FP8 | Synthetic | TensorRT 10.7.0 | GH200 96GB |
64 | 15,562 samples/sec | 21 samples/sec/watt | 4.11 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | FP8 | Synthetic | TensorRT 10.7.0 | GH200 96GB | |
HF ViT Large | 8 | 3,707 samples/sec | 6 samples/sec/watt | 2.16 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | FP8 | Synthetic | TensorRT 10.7.0 | GH200 96GB |
64 | 5,703 samples/sec | 7 samples/sec/watt | 11.22 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | FP8 | Synthetic | TensorRT 10.7.0 | GH200 96GB | |
Megatron BERT Large QAT | 8 | 4,927 sequences/sec | 12 sequences/sec/watt | 1.62 | 1x GH200 | NVIDIA P3880 | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | GH200 96GB |
128 | 10,896 sequences/sec | 19 sequences/sec/watt | 11.75 | 1x GH200 | NVIDIA P3880 | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | GH200 96GB | |
QuartzNet | 8 | 6,688 samples/sec | 22 samples/sec/watt | 1.2 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | GH200 96GB |
128 | 34,272 samples/sec | 85 samples/sec/watt | 3.73 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | GH200 96GB | |
RetinaNet-RN34 | 8 | 2,945 images/sec | 4 images/sec/watt | 2.72 | 1x GH200 | NVIDIA P3880 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | GH200 96GB |
512x512 image size, 50 denoising steps for Stable Diffusion v2.1
BERT Base: Sequence Length = 128 | BERT Large: Sequence Length = 128
HF Swin Base: Input Image Size = 224x224 | Window Size = 224x 224. HF Swin Large: Input Image Size = 224x224 | Window Size = 384x384
HF ViT Base: Input Image Size = 224x224 | Patch Size = 224x224. HF ViT Large: Input Image Size = 224x224 | Patch Size = 384x384
Megatron BERT Large QAT: Sequence Length = 128
QuartzNet: Sequence Length = 256
H100 Inference Performance
Network | Batch Size | Throughput | Efficiency | Latency (ms) | GPU | Server | Container | Precision | Dataset | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|---|
Stable Diffusion v2.1 (512x512) | 1 | 4.22 images/sec | - | 236.8 | 1x H100 | DGX H100 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0.26 | H100 SXM5-80GB |
4 | 6.41 images/sec | - | 624.6 | 1x H100 | DGX H100 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0.26 | H100 SXM5-80GB | |
Stable Diffusion XL | 1 | 0.83 images/sec | - | 1210.08 | 1x H100 | DGX H100 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | H100 SXM5-80GB |
ResNet-50v1.5 | 8 | 21,136 images/sec | 70 images/sec/watt | 0.38 | 1x H100 | DGX H100 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | H100-SXM5-80GB |
128 | 58,139 images/sec | 102 images/sec/watt | 2.2 | 1x H100 | DGX H100 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | H100-SXM5-80GB | |
BERT-BASE | 8 | 9,505 sequences/sec | 19 sequences/sec/watt | 0.84 | 1x H100 | DGX H100 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | H100-SXM5-80GB |
128 | 23,883 sequences/sec | 36 sequences/sec/watt | 5.36 | 1x H100 | DGX H100 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | H100-SXM5-80GB | |
BERT-LARGE | 8 | 3,979 sequences/sec | 8 sequences/sec/watt | 2.01 | 1x H100 | DGX H100 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | H100 SXM5-80GB |
128 | 7,999 sequences/sec | 12 sequences/sec/watt | 16 | 1x H100 | DGX H100 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | H100-SXM5-80GB | |
EfficientNet-B0 | 8 | 16,279 images/sec | 62 images/sec/watt | 0.49 | 1x H100 | DGX H100 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | H100-SXM5-80GB |
128 | 55,100 images/sec | 113 images/sec/watt | 2.32 | 1x H100 | DGX H100 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | H100-SXM5-80GB | |
EfficientNet-B4 | 8 | 4,542 images/sec | 13 images/sec/watt | 1.76 | 1x H100 | DGX H100 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | H100-SXM5-80GB |
128 | 8,519 images/sec | 15 images/sec/watt | 15.03 | 1x H100 | DGX H100 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | H100-SXM5-80GB | |
HF Swin Base | 8 | 5,055 samples/sec | 9 samples/sec/watt | 1.58 | 1x H100 | DGX H100 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | H100-SXM5-80GB |
32 | 7,819 samples/sec | 12 samples/sec/watt | 4.09 | 1x H100 | DGX H100 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | H100-SXM5-80GB | |
HF Swin Large | 8 | 3,313 samples/sec | 6 samples/sec/watt | 2.41 | 1x H100 | DGX H100 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | H100-SXM5-80GB |
32 | 4,446 samples/sec | 6 samples/sec/watt | 7.2 | 1x H100 | DGX H100 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | H100-SXM5-80GB | |
HF ViT Base | 8 | 9,027 samples/sec | 19 samples/sec/watt | 0.89 | 1x H100 | DGX H100 | 24.10-py3 | FP8 | Synthetic | TensorRT 10.5.0 | H100-SXM5-80GB |
64 | 14,992 samples/sec | 22 samples/sec/watt | 4.27 | 1x H100 | DGX H100 | 24.10-py3 | FP8 | Synthetic | TensorRT 10.5.0 | H100-SXM5-80GB | |
HF ViT Large | 8 | 3,707 samples/sec | 6 samples/sec/watt | 2.16 | 1x H100 | DGX H100 | 24.10-py3 | FP8 | Synthetic | TensorRT 10.5.0 | H100-SXM5-80GB |
64 | 5,348 samples/sec | 8 samples/sec/watt | 11.97 | 1x H100 | DGX H100 | 24.10-py3 | FP8 | Synthetic | TensorRT 10.5.0 | H100-SXM5-80GB | |
Megatron BERT Large QAT | 8 | 4,571 sequences/sec | 12 sequences/sec/watt | 1.75 | 1x H100 | DGX H100 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | H100-SXM5-80GB |
128 | 12,005 sequences/sec | 17 sequences/sec/watt | 10.66 | 1x H100 | DGX H100 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | H100-SXM5-80GB | |
QuartzNet | 8 | 6,697 samples/sec | 22 samples/sec/watt | 1.19 | 1x H100 | DGX H100 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | H100-SXM5-80GB |
128 | 34,597 samples/sec | 81 samples/sec/watt | 3.7 | 1x H100 | DGX H100 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | H100-SXM5-80GB | |
RetinaNet-RN34 | 8 | 2,780 images/sec | 8 images/sec/watt | 2.88 | 1x H100 | DGX H100 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | H100-SXM5-80GB |
512x512 image size, 50 denoising steps for Stable Diffusion v2.1
BERT Base: Sequence Length = 128 | BERT Large: Sequence Length = 128
HF Swin Base: Input Image Size = 224x224 | Window Size = 224x 224. HF Swin Large: Input Image Size = 224x224 | Window Size = 384x384
HF ViT Base: Input Image Size = 224x224 | Patch Size = 224x224. HF ViT Large: Input Image Size = 224x224 | Patch Size = 384x384
Megatron BERT Large QAT: Sequence Length = 128
QuartzNet: Sequence Length = 256
L40S Inference Performance
Network | Batch Size | Throughput | Efficiency | Latency (ms) | GPU | Server | Container | Precision | Dataset | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|---|
Stable Diffusion XL | 1 | 0.37 images/sec | - | 2678.19 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA L40S |
ResNet-50v1.5 | 8 | 23,472 images/sec | 78 images/sec/watt | 0.34 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L40S |
32 | 37,069 images/sec | 109 images/sec/watt | 0.86 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L40S | |
BERT-BASE | 8 | 8,412 sequences/sec | 26 sequences/sec/watt | 0.95 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L40S |
128 | 13,169 sequences/sec | 38 sequences/sec/watt | 9.72 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L40S | |
BERT-LARGE | 8 | 3,188 sequences/sec | 10 sequences/sec/watt | 2.51 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L40S |
24 | 4,034 sequences/sec | 12 sequences/sec/watt | 31.73 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L40S | |
EfficientDet-D0 | 8 | 4,716 images/sec | 17 images/sec/watt | 1.7 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | NVIDIA L40S |
EfficientNet-B0 | 8 | 20,534 images/sec | 106 images/sec/watt | 0.39 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L40S |
32 | 41,526 images/sec | 140 images/sec/watt | 0.77 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA L40S | |
EfficientNet-B4 | 8 | 5,149 images/sec | 17 images/sec/watt | 1.55 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L40S |
16 | 6,116 images/sec | 18 images/sec/watt | 2.62 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L40S | |
HF Swin Base | 8 | 3,825 samples/sec | 11 samples/sec/watt | 2.09 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | NVIDIA L40S |
16 | 4,371 samples/sec | 13 samples/sec/watt | 3.66 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.09-py3 | Mixed | Synthetic | TensorRT 10.4.0.26 | NVIDIA L40S | |
HF Swin Large | 8 | 1,932 samples/sec | 6 samples/sec/watt | 4.14 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.11-py3 | Mixed | Synthetic | TensorRT 10.6.0 | NVIDIA L40S |
16 | 2,141 samples/sec | 6 samples/sec/watt | 7.47 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.11-py3 | INT8 | Synthetic | TensorRT 10.6.0 | NVIDIA L40S | |
HF ViT Base | 8 | 5,799 samples/sec | 17 samples/sec/watt | 1.38 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.11-py3 | FP8 | Synthetic | TensorRT 10.6.0 | NVIDIA L40S |
HF ViT Large | 8 | 1,926 samples/sec | 6 samples/sec/watt | 4.15 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.11-py3 | FP8 | Synthetic | TensorRT 10.6.0 | NVIDIA L40S |
Megatron BERT Large QAT | 8 | 4,213 sequences/sec | 13 sequences/sec/watt | 1.9 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.11-py3 | INT8 | Synthetic | TensorRT 10.6.0 | NVIDIA L40S |
24 | 5,097 sequences/sec | 15 sequences/sec/watt | 4.71 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.11-py3 | INT8 | Synthetic | TensorRT 10.6.0 | NVIDIA L40S | |
QuartzNet | 8 | 7,643 samples/sec | 32 samples/sec/watt | 1.05 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L40S |
128 | 22,582 samples/sec | 65 samples/sec/watt | 5.67 | 1x L40S | Supermicro SYS-521GE-TNRT | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | NVIDIA L40S |
1,024 x 1,024 image size, 50 denoising steps for Stable Diffusion v2.1
BERT Base: Sequence Length = 128 | BERT Large: Sequence Length = 128
HF Swin Base: Input Image Size = 224x224 | Window Size = 224x 224. HF Swin Large: Input Image Size = 224x224 | Window Size = 384x384
HF ViT Base: Input Image Size = 224x224 | Patch Size = 224x224. HF ViT Large: Input Image Size = 224x224 | Patch Size = 384x384
Megatron BERT Large QAT: Sequence Length = 128
QuartzNet: Sequence Length = 256
L4 Inference Performance
Network | Batch Size | Throughput | Efficiency | Latency (ms) | GPU | Server | Container | Precision | Dataset | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|---|
Stable Diffusion v2.1 (512x512) | 1 | 0.82 images/sec | - | 1221.73 | 1x L4 | GIGABYTE G482-Z54-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA L4 |
Stable Diffusion XL | 1 | 0.11 images/sec | - | 9098.4 | 1x L4 | GIGABYTE G482-Z54-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA L4 |
ResNet-50v1.5 | 8 | 9,911 images/sec | 138 images/sec/watt | 0.81 | 1x L4 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L4 |
32 | 10,101 images/sec | 111 images/sec/watt | 16.27 | 1x L4 | GIGABYTE G482-Z54-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L4 | |
BERT-BASE | 8 | 3,323 sequences/sec | 46 sequences/sec/watt | 2.41 | 1x L4 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA L4 |
24 | 4,052 sequences/sec | 56 sequences/sec/watt | 5.92 | 1x L4 | GIGABYTE G482-Z54-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA L4 | |
BERT-LARGE | 8 | 1,081 sequences/sec | 15 sequences/sec/watt | 7.4 | 1x L4 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA L4 |
13 | 1,314 sequences/sec | 19 sequences/sec/watt | 9.9 | 1x L4 | GIGABYTE G482-Z54-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA L4 | |
EfficientNet-B4 | 8 | 1,831 images/sec | 25 images/sec/watt | 4.37 | 1x L4 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L4 |
HF Swin Base | 8 | 1,215 samples/sec | 17 samples/sec/watt | 6.58 | 1x L4 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA L4 |
HF Swin Large | 8 | 621 samples/sec | 9 samples/sec/watt | 12.88 | 1x L4 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L4 |
HF ViT Base | 16 | 1,899 samples/sec | 26 samples/sec/watt | 8.42 | 1x L4 | GIGABYTE G482-Z52-00 | 24.12-py3 | FP8 | Synthetic | TensorRT 10.7.0 | NVIDIA L4 |
HF ViT Large | 8 | 613 samples/sec | 9 samples/sec/watt | 13.06 | 1x L4 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L4 |
Megatron BERT Large QAT | 24 | 1,789 sequences/sec | 25 sequences/sec/watt | 13.42 | 1x L4 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA L4 |
QuartzNet | 8 | 4,063 samples/sec | 57 samples/sec/watt | 1.97 | 1x L4 | GIGABYTE G482-Z52-00 | 24.11-py3 | INT8 | Synthetic | TensorRT 10.6.0 | NVIDIA L4 |
128 | 6,083 samples/sec | 84 samples/sec/watt | 21.04 | 1x L4 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L4 | |
RetinaNet-RN34 | 8 | 364 images/sec | 5 images/sec/watt | 21.95 | 1x L4 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA L4 |
512x512 image size, 50 denoising steps for Stable Diffusion v2.1
BERT Base: Sequence Length = 128 | BERT Large: Sequence Length = 128
HF Swin Base: Input Image Size = 224x224 | Window Size = 224x 224. HF Swin Large: Input Image Size = 224x224 | Window Size = 384x384
HF ViT Base: Input Image Size = 224x224 | Patch Size = 224x224. HF ViT Large: Input Image Size = 224x224 | Patch Size = 384x384
Megatron BERT Large QAT: Sequence Length = 128
QuartzNet: Sequence Length = 256
A40 Inference Performance
Network | Batch Size | Throughput | Efficiency | Latency (ms) | GPU | Server | Container | Precision | Dataset | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|---|
ResNet-50v1.5 | 8 | 11,172 images/sec | 40 images/sec/watt | 0.72 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | A40 |
128 | 15,401 images/sec | 51 images/sec/watt | 8.31 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | A40 | |
BERT-BASE | 8 | 4,257 sequences/sec | 15 sequences/sec/watt | 1.88 | 1x A40 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA A40 |
128 | 5,667 sequences/sec | 19 sequences/sec/watt | 22.59 | 1x A40 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA A40 | |
BERT-LARGE | 8 | 1,573 sequences/sec | 5 sequences/sec/watt | 5.08 | 1x A40 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA A40 |
128 | 1,966 sequences/sec | 7 sequences/sec/watt | 65.11 | 1x A40 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA A40 | |
EfficientNet-B0 | 8 | 11,142 images/sec | 59 images/sec/watt | 0.72 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A40 |
128 | 20,068 images/sec | 67 images/sec/watt | 6.38 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A40 | |
EfficientNet-B4 | 8 | 2,138 images/sec | 8 images/sec/watt | 3.74 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A40 |
128 | 2,700 images/sec | 9 images/sec/watt | 47.41 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A40 | |
HF Swin Base | 8 | 1,694 samples/sec | 6 samples/sec/watt | 4.72 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A40 |
32 | 1,838 samples/sec | 6 samples/sec/watt | 17.41 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A40 | |
HF Swin Large | 8 | 956 samples/sec | 3 samples/sec/watt | 8.37 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA A40 |
32 | 1,008 samples/sec | 3 samples/sec/watt | 31.76 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA A40 | |
HF ViT Base | 8 | 2,170 samples/sec | 7 samples/sec/watt | 3.69 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA A40 |
64 | 2,330 samples/sec | 8 samples/sec/watt | 27.47 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA A40 | |
HF ViT Large | 8 | 693 samples/sec | 2 samples/sec/watt | 11.54 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA A40 |
64 | 746 samples/sec | 2 samples/sec/watt | 85.78 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA A40 | |
Megatron BERT Large QAT | 8 | 2,059 sequences/sec | 7 sequences/sec/watt | 3.89 | 1x A40 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA A40 |
128 | 2,650 sequences/sec | 9 sequences/sec/watt | 48.31 | 1x A40 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA A40 | |
QuartzNet | 8 | 4,380 samples/sec | 21 samples/sec/watt | 1.83 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA A40 |
128 | 8,468 samples/sec | 29 samples/sec/watt | 15.12 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A40 | |
RetinaNet-RN34 | 8 | 705 images/sec | 2 images/sec/watt | 11.34 | 1x A40 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A40 |
BERT Base: Sequence Length = 128 | BERT Large: Sequence Length = 128
HF Swin Base: Input Image Size = 224x224 | Window Size = 224x 224. HF Swin Large: Input Image Size = 224x224 | Window Size = 384x384
HF ViT Base: Input Image Size = 224x224 | Patch Size = 224x224. HF ViT Large: Input Image Size = 224x224 | Patch Size = 384x384
Megatron BERT Large QAT: Sequence Length = 128
QuartzNet: Sequence Length = 256
A30 Inference Performance
Network | Batch Size | Throughput | Efficiency | Latency (ms) | GPU | Server | Container | Precision | Dataset | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|---|
ResNet-50v1.5 | 8 | 10,243 images/sec | 71 images/sec/watt | 0.8 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A30 |
128 | 16,633 images/sec | 101 images/sec/watt | 7.7 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A30 | |
BERT-BASE | 8 | 4,334 sequences/sec | 26 sequences/sec/watt | 1.85 | 1x A30 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA A30 |
128 | 5,820 sequences/sec | 35 sequences/sec/watt | 21.99 | 1x A30 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA A30 | |
BERT-LARGE | 8 | 1,500 sequences/sec | 10 sequences/sec/watt | 5.33 | 1x A30 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA A30 |
128 | 2,053 sequences/sec | 13 sequences/sec/watt | 62.34 | 1x A30 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA A30 | |
EfficientNet-B0 | 8 | 8,997 images/sec | 81 images/sec/watt | 0.9 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A30 |
128 | 17,252 images/sec | 106 images/sec/watt | 7.4 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A30 | |
EfficientNet-B4 | 8 | 1,877 images/sec | 13 images/sec/watt | 4.3 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A30 |
128 | 2,416 images/sec | 15 images/sec/watt | 53 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A30 | |
HF Swin Base | 8 | 1,647 samples/sec | 10 samples/sec/watt | 4.9 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A30 |
32 | 1,846 samples/sec | 11 samples/sec/watt | 17.3 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A30 | |
HF Swin Large | 8 | 910 samples/sec | 5 samples/sec/watt | 8.8 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA A30 |
32 | 1,003 samples/sec | 6 samples/sec/watt | 31.9 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A30 | |
HF ViT Base | 8 | 2,060 samples/sec | 12 samples/sec/watt | 3.9 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA A30 |
64 | 2,328 samples/sec | 14 samples/sec/watt | 27.5 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA A30 | |
HF ViT Large | 8 | 674 samples/sec | 4 samples/sec/watt | 11.9 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA A30 |
64 | 709 samples/sec | 4 samples/sec/watt | 90.2 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA A30 | |
Megatron BERT Large QAT | 8 | 1,802 sequences/sec | 12 sequences/sec/watt | 4.44 | 1x A30 | GIGABYTE G482-Z52-00 | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | NVIDIA A30 |
128 | 2,724 sequences/sec | 17 sequences/sec/watt | 46.99 | 1x A30 | GIGABYTE G482-Z52-00 | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | NVIDIA A30 | |
QuartzNet | 8 | 3,460 samples/sec | 30 samples/sec/watt | 2.3 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A30 |
128 | 9,998 samples/sec | 73 samples/sec/watt | 12.8 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A30 | |
RetinaNet-RN34 | 8 | 702 images/sec | 4 images/sec/watt | 11.4 | 1x A30 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A30 |
BERT Base: Sequence Length = 128 | BERT Large: Sequence Length = 128
HF Swin Base: Input Image Size = 224x224 | Window Size = 224x 224. HF Swin Large: Input Image Size = 224x224 | Window Size = 384x384
HF ViT Base: Input Image Size = 224x224 | Patch Size = 224x224. HF ViT Large: Input Image Size = 224x224 | Patch Size = 384x384
Megatron BERT Large QAT: Sequence Length = 128
QuartzNet: Sequence Length = 256
A10 Inference Performance
Network | Batch Size | Throughput | Efficiency | Latency (ms) | GPU | Server | Container | Precision | Dataset | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|---|
ResNet-50v1.5 | 8 | 8,562 images/sec | 57 images/sec/watt | 0.93 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A10 |
128 | 10,657 images/sec | 71 images/sec/watt | 12.01 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A10 | |
BERT-BASE | 8 | 3,109 sequences/sec | 21 sequences/sec/watt | 2.57 | 1x A10 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA A10 |
128 | 3,822 sequences/sec | 26 sequences/sec/watt | 33.49 | 1x A10 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.5.0 | NVIDIA A10 | |
BERT-LARGE | 8 | 1,086 sequences/sec | 7 sequences/sec/watt | 7.36 | 1x A10 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.6.0 | NVIDIA A10 |
128 | 1,265 sequences/sec | 8 sequences/sec/watt | 101.17 | 1x A10 | GIGABYTE G482-Z52-00 | 24.10-py3 | INT8 | Synthetic | TensorRT 10.6.0 | NVIDIA A10 | |
EfficientNet-B0 | 8 | 9,616 images/sec | 64 images/sec/watt | 0.83 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A10 |
128 | 14,494 images/sec | 97 images/sec/watt | 8.83 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A10 | |
EfficientNet-B4 | 8 | 1,625 images/sec | 11 images/sec/watt | 4.92 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A10 |
128 | 1,897 images/sec | 13 images/sec/watt | 67.49 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A10 | |
HF Swin Base | 8 | 1,223 samples/sec | 8 samples/sec/watt | 6.54 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A10 |
32 | 1,283 samples/sec | 9 samples/sec/watt | 24.93 | 1x A10 | GIGABYTE G482-Z52-00 | 24.09-py3 | INT8 | Synthetic | TensorRT 10.4.0.26 | NVIDIA A10 | |
HF Swin Large | 8 | 622 samples/sec | 4 samples/sec/watt | 12.86 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A10 |
32 | 668 samples/sec | 4 samples/sec/watt | 47.9 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A10 | |
HF ViT Base | 8 | 1,395 samples/sec | 9 samples/sec/watt | 5.74 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA A10 |
64 | 1,526 samples/sec | 10 samples/sec/watt | 41.93 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA A10 | |
HF ViT Large | 8 | 460 samples/sec | 3 samples/sec/watt | 17.38 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA A10 |
Megatron BERT Large QAT | 8 | 1,566 sequences/sec | 10 sequences/sec/watt | 5.11 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A10 |
128 | 1,801 sequences/sec | 12 sequences/sec/watt | 71.06 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A10 | |
QuartzNet | 8 | 3,851 samples/sec | 26 samples/sec/watt | 2.08 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | Mixed | Synthetic | TensorRT 10.7.0 | NVIDIA A10 |
128 | 5,924 samples/sec | 40 samples/sec/watt | 21.61 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A10 | |
RetinaNet-RN34 | 8 | 505 images/sec | 3 images/sec/watt | 15.83 | 1x A10 | GIGABYTE G482-Z52-00 | 24.12-py3 | INT8 | Synthetic | TensorRT 10.7.0 | NVIDIA A10 |
BERT Base: Sequence Length = 128 | BERT Large: Sequence Length = 128
HF Swin Base: Input Image Size = 224x224 | Window Size = 224x 224. HF Swin Large: Input Image Size = 224x224 | Window Size = 384x384
HF ViT Base: Input Image Size = 224x224 | Patch Size = 224x224. HF ViT Large: Input Image Size = 224x224 | Patch Size = 384x384
Megatron BERT Large QAT: Sequence Length = 128
QuartzNet: Sequence Length = 256
NVIDIA Performance with Triton Inference Server
H200 Triton Inference Server Performance
Network | Accelerator | Model Format | Framework Backend | Precision | Model Instances on Triton | Client Batch Size | Number of Concurrent Client Requests | Latency (ms) | Throughput | Triton Container Version |
---|---|---|---|---|---|---|---|---|---|---|
BERT Base Inference | NVIDIA H200 | tensorrt | TensorRT | Mixed | 4 | 1 | 4 | 0.77 | 3,182 inf/sec | 24.09-py3 |
BERT Large Inference | NVIDIA H200 | onnx | PyTorch | Mixed | 1 | 1 | 16 | 17.996 | 1,777 inf/sec | 24.09-py3 |
BERT Large Inference | NVIDIA H200 | onnx | PyTorch | Mixed | 1 | 2 | 32 | 35.862 | 1,784 inf/sec | 24.09-py3 |
DLRM | NVIDIA H200 | ts-trace | PyTorch | Mixed | 4 | 1 | 32 | 0.868 | 36,852 inf/sec | 24.02-py3 |
DLRM | NVIDIA H200 | ts-trace | PyTorch | Mixed | 1 | 2 | 32 | 1.504 | 72,006 inf/sec | 24.09-py3 |
FastPitch Inference | NVIDIA H200 | ts-trace | PyTorch | Mixed | 2 | 1 | 512 | 108.056 | 4,736 inf/sec | 24.09-py3 |
FastPitch Inference | NVIDIA H200 | ts-trace | PyTorch | Mixed | 2 | 2 | 256 | 108.477 | 4,717 inf/sec | 24.09-py3 |
GPUNet-0 | NVIDIA H200 | onnx | PyTorch | Mixed | 1 | 1 | 32 | 3.992 | 7,930 inf/sec | 24.09-py3 |
GPUNet-0 | NVIDIA H200 | onnx | PyTorch | Mixed | 2 | 2 | 64 | 11.55 | 11,011 inf/sec | 24.09-py3 |
GPUNet-1 | NVIDIA H200 | onnx | PyTorch | Mixed | 1 | 1 | 64 | 7.951 | 8,012 inf/sec | 24.09-py3 |
GPUNet-1 | NVIDIA H200 | onnx | PyTorch | Mixed | 1 | 2 | 64 | 14.269 | 8,943 inf/sec | 24.09-py3 |
ResNet-50 v1.5 | NVIDIA H200 | onnx | PyTorch | Mixed | 1 | 1 | 32 | 3.801 | 8,370 inf/sec | 24.09-py3 |
ResNet-50 v1.5 | NVIDIA H200 | onnx | PyTorch | Mixed | 2 | 2 | 64 | 7.482 | 17,037 inf/sec | 24.09-py3 |
TFT Inference | NVIDIA H200 | tensorrt | PyTorch | Mixed | 2 | 1 | 4 | 2.751 | 32,970 inf/sec | 24.09-py3 |
TFT Inference | NVIDIA H200 | tensorrt | PyTorch | Mixed | 1 | 2 | 512 | 42.754 | 40,098 inf/sec | 24.09-py3 |
GH200 Triton Inference Server Performance
Network | Accelerator | Model Format | Framework Backend | Precision | Model Instances on Triton | Client Batch Size | Number of Concurrent Client Requests | Latency (ms) | Throughput | Triton Container Version |
---|---|---|---|---|---|---|---|---|---|---|
BERT Base Inference | NVIDIA GH200 96GB | tensorrt | TensorRT | Mixed | 4 | 1 | 4 | 1.153 | 3,458 inf/sec | 24.09-py3 |
BERT Large Inference | NVIDIA GH200 96GB | onnx | PyTorch | Mixed | 2 | 1 | 64 | 41.714 | 1,534 inf/sec | 24.09-py3 |
BERT Large Inference | NVIDIA GH200 96GB | onnx | PyTorch | Mixed | 4 | 2 | 128 | 166.125 | 1,540 inf/sec | 24.09-py3 |
DLRM | NVIDIA GH200 96GB | ts-trace | PyTorch | Mixed | 2 | 1 | 64 | 1.241 | 51,529 inf/sec | 24.02-py3 |
DLRM | NVIDIA GH200 96GB | ts-trace | PyTorch | Mixed | 4 | 2 | 16 | 1.189 | 74,741 inf/sec | 24.09-py3 |
FastPitch Inference | NVIDIA GH200 96GB | ts-trace | PyTorch | Mixed | 2 | 1 | 1024 | 257.727 | 3,968 inf/sec | 24.09-py3 |
FastPitch Inference | NVIDIA GH200 96GB | ts-trace | PyTorch | Mixed | 2 | 2 | 1024 | 524.694 | 3,893 inf/sec | 24.09-py3 |
GPUNet-0 | NVIDIA GH200 96GB | onnx | PyTorch | Mixed | 4 | 1 | 32 | 2.489 | 12,701 inf/sec | 24.09-py3 |
GPUNet-0 | NVIDIA GH200 96GB | onnx | PyTorch | Mixed | 4 | 2 | 16 | 2.314 | 13,651 inf/sec | 24.09-py3 |
GPUNet-1 | NVIDIA GH200 96GB | onnx | PyTorch | Mixed | 2 | 1 | 32 | 2.746 | 11,560 inf/sec | 24.09-py3 |
GPUNet-1 | NVIDIA GH200 96GB | onnx | PyTorch | Mixed | 1 | 2 | 128 | 23.598 | 10,837 inf/sec | 24.09-py3 |
ResNet-50 v1.5 | NVIDIA GH200 96GB | onnx | PyTorch | Mixed | 4 | 1 | 512 | 61.929 | 8,262 inf/sec | 24.09-py3 |
ResNet-50 v1.5 | NVIDIA GH200 96GB | onnx | PyTorch | Mixed | 4 | 2 | 64 | 5.945 | 21,469 inf/sec | 24.09-py3 |
TFT Inference | NVIDIA GH200 96GB | ts-trace | PyTorch | Mixed | 4 | 1 | 256 | 12.583 | 20,330 inf/sec | 24.09-py3 |
TFT Inference | NVIDIA GH200 96GB | ts-trace | PyTorch | Mixed | 4 | 2 | 128 | 6.362 | 40,179 inf/sec | 24.09-py3 |
H100 Triton Inference Server Performance
Network | Accelerator | Model Format | Framework Backend | Precision | Model Instances on Triton | Client Batch Size | Number of Concurrent Client Requests | Latency (ms) | Throughput | Triton Container Version |
---|---|---|---|---|---|---|---|---|---|---|
BERT Base Inference | H100 SXM5-80GB | tensorrt | TensorRT | Mixed | 4 | 1 | 4 | 1.207 | 3,311 inf/sec | 24.02-py3 |
BERT Large Inference | H100 SXM5-80GB | tensorrt | PyTorch | Mixed | 4 | 1 | 16 | 14.784 | 1,082 inf/sec | 24.02-py3 |
BERT Large Inference | H100 SXM5-80GB | tensorrt | PyTorch | Mixed | 4 | 2 | 8 | 12.715 | 1,258 inf/sec | 24.02-py3 |
DLRM | H100 SXM5-80GB | ts-trace | PyTorch | Mixed | 1 | 1 | 32 | 0.94 | 34,027 inf/sec | 24.02-py3 |
DLRM | H100 SXM5-80GB | ts-trace | PyTorch | Mixed | 4 | 2 | 32 | 0.913 | 70,071 inf/sec | 24.02-py3 |
FastPitch Inference | H100 SXM5-80GB | ts-trace | PyTorch | Mixed | 2 | 1 | 512 | 119.531 | 4,281 inf/sec | 24.02-py3 |
FastPitch Inference | H100 SXM5-80GB | ts-trace | PyTorch | Mixed | 2 | 2 | 256 | 119.36 | 4,287 inf/sec | 24.02-py3 |
ResNet-50 v1.5 | H100 SXM5-80GB | tensorrt | PyTorch | Mixed | 4 | 1 | 16 | 1.977 | 8,090 inf/sec | 24.02-py3 |
ResNet-50 v1.5 | H100 SXM5-80GB | tensorrt | PyTorch | Mixed | 4 | 2 | 16 | 4.101 | 7,801 inf/sec | 24.02-py3 |
TFT Inference | H100 SXM5-80GB | ts-script | PyTorch | Mixed | 2 | 1 | 1024 | 33.027 | 30,996 inf/sec | 24.02-py3 |
TFT Inference | H100 SXM5-80GB | ts-script | PyTorch | Mixed | 2 | 2 | 512 | 25.522 | 40,114 inf/sec | 24.02-py3 |
H100 NVL Triton Inference Server Performance
Network | Accelerator | Model Format | Framework Backend | Precision | Model Instances on Triton | Client Batch Size | Number of Concurrent Client Requests | Latency (ms) | Throughput | Triton Container Version |
---|---|---|---|---|---|---|---|---|---|---|
BERT Base Inference | NVIDIA H100 NVL | tensorrt | TensorRT | Mixed | 4 | 1 | 4 | 1.365 | 2,919 inf/sec | 24.09-py3 |
BERT Large Inference | NVIDIA H100 NVL | onnx | PyTorch | Mixed | 1 | 1 | 32 | 25.76 | 1,242 inf/sec | 24.09-py3 |
BERT Large Inference | NVIDIA H100 NVL | onnx | PyTorch | Mixed | 2 | 2 | 32 | 50.884 | 1,257 inf/sec | 24.09-py3 |
DLRM | NVIDIA H100 NVL | ts-trace | PyTorch | Mixed | 2 | 1 | 32 | 0.804 | 39,745 inf/sec | 24.02-py3 |
DLRM | NVIDIA H100 NVL | ts-trace | PyTorch | Mixed | 2 | 2 | 32 | 1.071 | 59,691 inf/sec | 24.02-py3 |
FastPitch Inference | NVIDIA H100 NVL | ts-trace | PyTorch | Mixed | 2 | 1 | 256 | 70.915 | 3,609 inf/sec | 24.09-py3 |
FastPitch Inference | NVIDIA H100 NVL | ts-trace | PyTorch | Mixed | 2 | 2 | 256 | 149.333 | 3,426 inf/sec | 24.09-py3 |
GPUNet-0 | NVIDIA H100 NVL | onnx | PyTorch | Mixed | 1 | 1 | 32 | 4.218 | 7,492 inf/sec | 24.09-py3 |
GPUNet-0 | NVIDIA H100 NVL | onnx | PyTorch | Mixed | 2 | 2 | 32 | 5.585 | 11,355 inf/sec | 24.09-py3 |
GPUNet-1 | NVIDIA H100 NVL | onnx | PyTorch | Mixed | 1 | 1 | 64 | 7.851 | 8,105 inf/sec | 24.09-py3 |
GPUNet-1 | NVIDIA H100 NVL | onnx | PyTorch | Mixed | 1 | 2 | 32 | 6.647 | 9,561 inf/sec | 24.09-py3 |
ResNet-50 v1.5 | NVIDIA H100 NVL | onnx | PyTorch | Mixed | 1 | 1 | 64 | 6.673 | 9,546 inf/sec | 24.09-py3 |
ResNet-50 v1.5 | NVIDIA H100 NVL | onnx | PyTorch | Mixed | 2 | 2 | 64 | 7.446 | 17,116 inf/sec | 24.09-py3 |
TFT Inference | NVIDIA H100 NVL | ts-trace | PyTorch | Mixed | 2 | 1 | 512 | 16.846 | 30,387 inf/sec | 24.02-py3 |
TFT Inference | NVIDIA H100 NVL | ts-trace | PyTorch | Mixed | 4 | 2 | 256 | 21.733 | 23,544 inf/sec | 24.09-py3 |
L40S Triton Inference Server Performance
Network | Accelerator | Model Format | Framework Backend | Precision | Model Instances on Triton | Client Batch Size | Number of Concurrent Client Requests | Latency (ms) | Throughput | Triton Container Version |
---|---|---|---|---|---|---|---|---|---|---|
BERT Base Inference | NVIDIA L40S | tensorrt | TensorRT | Mixed | 4 | 1 | 4 | 1.398 | 2,853 inf/sec | 24.09-py3 |
BERT Large Inference | NVIDIA L40S | onnx | PyTorch | Mixed | 2 | 1 | 16 | 21.281 | 751 inf/sec | 24.09-py3 |
BERT Large Inference | NVIDIA L40S | onnx | PyTorch | Mixed | 1 | 2 | 8 | 20.42 | 783 inf/sec | 24.09-py3 |
DLRM | NVIDIA L40S | ts-trace | PyTorch | Mixed | 1 | 1 | 64 | 1.545 | 41,403 inf/sec | 24.02-py3 |
DLRM | NVIDIA L40S | ts-trace | PyTorch | Mixed | 1 | 2 | 32 | 0.929 | 68,867 inf/sec | 24.02-py3 |
FastPitch Inference | NVIDIA L40S | ts-trace | PyTorch | Mixed | 2 | 1 | 256 | 106.583 | 2,401 inf/sec | 24.09-py3 |
FastPitch Inference | NVIDIA L40S | ts-trace | PyTorch | Mixed | 2 | 2 | 64 | 52.861 | 2,421 inf/sec | 24.09-py3 |
GPUNet-0 | NVIDIA L40S | onnx | PyTorch | Mixed | 2 | 1 | 32 | 3.88 | 8,118 inf/sec | 24.09-py3 |
GPUNet-0 | NVIDIA L40S | onnx | PyTorch | Mixed | 2 | 2 | 32 | 7.009 | 9,061 inf/sec | 24.09-py3 |
GPUNet-1 | NVIDIA L40S | onnx | PyTorch | Mixed | 2 | 1 | 32 | 3.59 | 8,808 inf/sec | 24.09-py3 |
GPUNet-1 | NVIDIA L40S | onnx | PyTorch | Mixed | 2 | 2 | 16 | 3.851 | 8,217 inf/sec | 24.09-py3 |
ResNet-50 v1.5 | NVIDIA L40S | onnx | PyTorch | Mixed | 4 | 1 | 512 | 57.95 | 8,807 inf/sec | 24.09-py3 |
ResNet-50 v1.5 | NVIDIA L40S | tensorrt | PyTorch | Mixed | 2 | 2 | 32 | 5.878 | 10,836 inf/sec | 24.09-py3 |
TFT Inference | NVIDIA L40S | ts-trace | PyTorch | Mixed | 1 | 1 | 128 | 9.37 | 13,629 inf/sec | 24.09-py3 |
TFT Inference | NVIDIA L40S | ts-trace | PyTorch | Mixed | 2 | 2 | 128 | 9.792 | 26,099 inf/sec | 24.09-py3 |
Inference Performance of NVIDIA GPUs in the Cloud
A100 Inference Performance in the Cloud
Network | Batch Size | Throughput | Efficiency | Latency (ms) | GPU | Server | Container | Precision | Dataset | Framework | GPU Version |
---|---|---|---|---|---|---|---|---|---|---|---|
ResNet-50v1.5 | 8 | 13,768 images/sec | - images/sec/watt | 0.58 | 1x A100 | GCP A2-HIGHGPU-1G | 23.10-py3 | INT8 | Synthetic | - | A100-SXM4-40GB |
128 | 30,338 images/sec | - images/sec/watt | 4.22 | 1x A100 | GCP A2-HIGHGPU-1G | 23.10-py3 | INT8 | Synthetic | - | A100-SXM4-40GB | |
BERT-LARGE | 8 | 2,308 images/sec | - images/sec/watt | 3.47 | 1x A100 | GCP A2-HIGHGPU-1G | 23.10-py3 | INT8 | Synthetic | - | A100-SXM4-40GB |
128 | 4,045 images/sec | - images/sec/watt | 31.64 | 1x A100 | GCP A2-HIGHGPU-1G | 23.10-py3 | INT8 | Synthetic | - | A100-SXM4-40GB |
BERT-Large: Sequence Length = 128
View More Performance Data
Training to Convergence
Deploying AI in real-world applications requires training networks to convergence at a specified accuracy. This is the best methodology to test whether AI systems are ready to be deployed in the field to deliver meaningful results.
Learn MoreAI Pipeline
NVIDIA Riva is an application framework for multimodal conversational AI services that deliver real-performance on GPUs.
Learn More