An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Rubber elasticity refers to a property of crosslinked rubber: it can be stretched by up to a factor of 10 from its original length and, when released, returns very nearly to its original length. This can be repeated many times with no apparent degradation to the rubber. Rubber is a member of a larger class of materials called elastomers and it is difficult to overestimate their economic and technological importance. Elastomers have played a key role in the development of new technologies in the 20th century and make a substantial contribution to the global economy. Rubber elasticity is produced by several complex molecular processes and its explanation requires a knowledge of advanced mathematics, chemistry and statistical physics, particularly the concept of entropy. Entropy may be though

Property Value
dbo:abstract
  • المرونة المطاطية، هي مثال معروف على المرونة المفرطة، يصف السلوك الميكانيكي للعديد من البوليمرات، خاصة تلك التي تحوي روابط تشابكية. (ar)
  • Mit den Begriffen Entropieelastizität oder Gummielastizität bezeichnet man die für Polymere charakteristische Eigenschaft, nach einer Verformung, die auf Streckung von ganzen Makromolekülen oder Molekülsegmenten beruht, wieder in den entropisch günstigeren Knäuelzustand zurückzukehren. Sie beruht auf einer reversiblen Entropieänderung in den Makromolekülen der Materialmatrix, die aus langen Ketten gleicher Bausteine bestehen: * Bei einer Verstreckung des Moleküls durch Aufbringen einer äußeren Kraft werden die Bindungswinkel benachbarter Atome entlang der Hauptkette reibungsfrei, d. h. ohne Energieaufwand geändert; zugleich wird die Entropie vermindert (Verminderung der Unordnung). Allerdings kann dadurch auch Energie gespeichert werden. * Wird die zur Verstreckung führende Kraft entfernt, so führen thermisch induzierte intramolekulare Bewegungen (sog. mikrobrownsche Bewegungen) dazu, dass die Moleküle sich wieder verdrehen; die Entropie wird erhöht, und das Molekül zieht sich zusammen. Gummielastizität tritt bei allen Polymeren im Temperaturbereich oberhalb der Glasübergangstemperatur auf. Bei teilkristallinen Thermoplasten wird der entropieelastische Zustandsbereich nach oben durch den Kristallitschmelzbereich begrenzt, bei Elastomeren (z. B. Gummi, Silikonkautschuk) durch den Beginn thermischer Zersetzungsprozesse. Auch bei amorphen Thermoplasten mit ausreichend hoher Molmasse spielt sie eine wichtige Rolle, geht aber oberhalb des Glasübergangs kontinuierlich in den Fließbereich über. Bei den Thermoplasten übernehmen Van-der-Waals-Kräfte und Verschlaufungen der Polymerketten die Rolle temporärer Vernetzungspunkte, bei den Elastomeren sorgen die kovalenten Vernetzungen für mechanische Stabilität während der Verformungsprozesse. Die bei einer relativen Längenzunahme ε auftretende Spannung (d. h. Rückstellkraft pro Querschnittsfläche) definiert wie üblich einen – vergleichsweise kleinen – Elastizitätsmodul E (bzw. nichtlineare Verallgemeinerungen): Die betroffenen Materialgruppen zeichnet sich im entsprechenden Temperaturbereich durch eine nichtlineare Spannungs-Dehnungskennlinie, Dämpfungs- und verformungshistorische Effekte sowie eine ausgeprägte Inkompressibilität aus. Zur Beschreibung dieser Materialien sollte ein greensches Materialmodell verwendet werden. In ihm werden die Spannungen berechnet über die Dichte der Formänderungsenergie als Funktion der Dehnungen. Bekannte Ansätze für die Energiedichte sind die Mooney-Rivlin-, Neo-Hookeschen, Yeoh- oder Ogden-Modelle. Für gummielastische Materialien wurde diese Vorgehensweise durch die Thermodynamik der Entropieelastizität hergeleitet. Thermodynamisch gesehen beruht die Gummielastizität im Wesentlichen auf einer Abnahme der Entropie S in der allgemeinen Formel für die Änderung der Freien Energie bei gegebener Dehnung. Dagegen beruht die Elastizität der Hartstoffe (z. B. Metalle) auf der Zunahme der Inneren Energie U. (de)
  • La elasticidad del caucho se refiere a una propiedad del caucho reticulado: se puede estirar hasta en un factor de 10 desde su longitud original y, cuando se suelta, vuelve casi a su longitud original. Esto se puede repetir muchas veces sin degradación aparente del caucho. El caucho es miembro de una clase más grande de materiales llamados elastómeros y es difícil sobrestimar su importancia económica y tecnológica. Los elastómeros han jugado un papel clave en el desarrollo de nuevas tecnologías en el siglo XX y hacen una contribución sustancial a la economía global. La elasticidad del caucho es producida por varios procesos moleculares complejos y su explicación requiere un conocimiento avanzado de matemáticas, química y física estadística, particularmente el concepto de entropía. La entropía puede considerarse como una medida de la energía térmica que se almacena en una molécula. Los cauchos comunes, como el polibutadieno y el poliisopreno (también llamado caucho natural), se producen mediante un proceso llamado polimerización. Las moléculas muy largas (polímeros) se construyen secuencialmente agregando unidades de columna vertebral moleculares cortas a través de reacciones químicas. Un polímero de caucho sigue un camino aleatorio en zigzag en tres dimensiones, entremezclándose con muchas otras moléculas de caucho. Un elastómero se crea mediante la adición de un pequeño porcentaje de una molécula reticulante como el azufre. Cuando se calienta, la molécula de entrecruzamiento provoca una reacción que une (enlaza) químicamente dos de las moléculas de caucho en algún punto (un entrecruzamiento). Debido a que las moléculas de caucho son tan largas, cada una participa en muchos enlaces cruzados con muchas otras moléculas de caucho formando una red molecular continua. A medida que se estira una banda elástica, algunas de las cadenas de la red se ven obligadas a volverse rectas y esto provoca una disminución de su entropía. Es esta disminución de la entropía la que da lugar a la fuerza elástica en las cadenas de la red. (es)
  • Rubber elasticity refers to a property of crosslinked rubber: it can be stretched by up to a factor of 10 from its original length and, when released, returns very nearly to its original length. This can be repeated many times with no apparent degradation to the rubber. Rubber is a member of a larger class of materials called elastomers and it is difficult to overestimate their economic and technological importance. Elastomers have played a key role in the development of new technologies in the 20th century and make a substantial contribution to the global economy. Rubber elasticity is produced by several complex molecular processes and its explanation requires a knowledge of advanced mathematics, chemistry and statistical physics, particularly the concept of entropy. Entropy may be thought of as a measure of the thermal energy that is stored in a molecule. Common rubbers, such as polybutadiene and polyisoprene (also called natural rubber), are produced by a process called polymerization. Very long molecules (polymers) are built up sequentially by adding short molecular backbone units through chemical reactions. A rubber polymer follows a random, zigzag path in three dimensions, intermingling with many other rubber molecules. An elastomer is created by the addition of a few percent of a cross linking molecule such as sulfur. When heated, the crosslinking molecule causes a reaction that chemically joins (bonds) two of the rubber molecules together at some point (a crosslink). Because the rubber molecules are so long, each one participates in many crosslinks with many other rubber molecules forming a continuous molecular network. As a rubber band is stretched, some of the network chains are forced to become straight and this causes a decrease in their entropy. It is this decrease in entropy that gives rise to the elastic force in the network chains. (en)
  • 고무 탄성(Rubber elasticity)은 폴리머(중합체)의 역학적 성질에 관한 것으로, 주로 과 관련이 있다. (ko)
  • Elastyczność – właściwość materiałów polimerowych do odwracalnej zmiany kształtu pod działaniem sił zewnętrznych. Niektóre materiały polimerowe charakteryzują się zdolnościami do odkształceń elastycznych. Są to elastomery. Do elastomerów należy np. guma. (pl)
  • Высокоэластичное состояние — состояние полимеров, промежуточное между стеклообразным и состоянием, или, между стеклообразным и деструкцией, для полимеров с прочными междуцепочечными связями. Соответствующие температурные переходы называются температурой стеклования (или температурой размягчения, если образец нагревается) и . Главным признаком высокоэластичного состояния является способность к значительным обратимым деформациям (сотни процентов), под воздействием небольших внешних сил. Некоторые линейные полимеры с жёсткой структурой, например, целлюлоза, не переходят в высокоэластичное состояние, а разрушаются до того, и наоборот, у полимеров с высокой термодинамической гибкостью, например, каучуков, температуры стеклования очень низки.) Особенности этого состояния вызваны тем, что тепловые колебания молекул становятся достаточно высокоэнергичными для того, чтобы отдельные звенья взаимодействующих полимерных цепей могли разрывать связи друг с другом, но при этом молекулярные нити в целом остаются связанными. Это приводит к тому, что клубки полимерных нитей достаточно легко могут распутываться, а сами нити — вытягиваться в линию, но при этом ближний порядок расположения макромолекул сохраняется. Значительную роль играют в этом поперечные связи между молекулами, которые не позволяют им скользить друг относительно друга. Полимеры без таких связей, например, невулканизированный каучук, тоже имеют некоторую сцеплённость своих нитей, за счёт перехлёстывания, зацепления петель и тому подобного, но такие связи непрочны (хотя они легко восстанавливаются, когда на материал перестаёт действовать внешняя сила), потому эти полимеры имеют гораздо большую пластичность, хотя проявляют и эластические свойства. Поскольку переходы между состояниями у полимеров отличаются от резких фазовых переходов обычных веществ, температурные рамки высокоэластичного состояния не являются постоянными, даже для одного и того же вещества, и зависят от режима нагревания, количества прошедших циклов нагревания-охлаждения, и других параметров. Зависят они и от степени полимеризации вещества, причём, из-за того, что температура стеклования определяется энергией взаимодействия отдельных звеньев полимерных нитей, она почти не зависит от количества этих звеньев, температура же текучести — зависит от взаимодействия макромолекул целиком, потому растёт вместе с их длиной. Таким образом, температурный диапазон высокоэластичного состояния расширяется, вместе с увеличением степени полимеризации вещества, и наоборот, уже у олигомеров эта стадия практически отсутствует. Эластичность полимеров, в отличие от упругости таких материалов, как металлы, имеет энтропийную природу, и не связана с межмолекулярным притяжением (при растяжении меняется лишь конфигурация молекул, но не межмолекулярные расстояния — благодаря этому, практически не изменяется объём, а внутренняя энергия меняется лишь за счёт изменения конформационных энергий). Состоянию с максимальной энтропией соответствуют конфигурации, при которых расстояние между концами молекулы равно , где n — число звеньев молекулы, а b — длина одного звена. Как видно, для больших молекул это расстояние — несравнимо меньше общей длины молекулы, что и соответствует спутанности в клубок.Также, из-за того, что изменение свободной энергии под воздействием приложенных сил, идёт, по большей части, за счёт изменения энтропии, можно вывести, что силы упругости пропорциональны температуре, а кроме того, процесс растяжения сопровождается повышением температуры, из-за соответствующего падения энтропии. Модуль упругости полимеров в этом состоянии очень мал (E~0,1-10 МПа). При этом модуль всестороннего сжатия, определяющийся межмолекулярными силами отталкивания, сравним с другими твёрдыми телами (103 МПа) Полимеры, обладающие высокоэластичными свойствами в диапазоне эксплуатации, называют эластомерами. (ru)
dbo:thumbnail
dbo:wikiPageID
  • 7623862 (xsd:integer)
dbo:wikiPageLength
  • 45665 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1122157855 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • المرونة المطاطية، هي مثال معروف على المرونة المفرطة، يصف السلوك الميكانيكي للعديد من البوليمرات، خاصة تلك التي تحوي روابط تشابكية. (ar)
  • 고무 탄성(Rubber elasticity)은 폴리머(중합체)의 역학적 성질에 관한 것으로, 주로 과 관련이 있다. (ko)
  • Elastyczność – właściwość materiałów polimerowych do odwracalnej zmiany kształtu pod działaniem sił zewnętrznych. Niektóre materiały polimerowe charakteryzują się zdolnościami do odkształceń elastycznych. Są to elastomery. Do elastomerów należy np. guma. (pl)
  • Mit den Begriffen Entropieelastizität oder Gummielastizität bezeichnet man die für Polymere charakteristische Eigenschaft, nach einer Verformung, die auf Streckung von ganzen Makromolekülen oder Molekülsegmenten beruht, wieder in den entropisch günstigeren Knäuelzustand zurückzukehren. Sie beruht auf einer reversiblen Entropieänderung in den Makromolekülen der Materialmatrix, die aus langen Ketten gleicher Bausteine bestehen: (de)
  • La elasticidad del caucho se refiere a una propiedad del caucho reticulado: se puede estirar hasta en un factor de 10 desde su longitud original y, cuando se suelta, vuelve casi a su longitud original. Esto se puede repetir muchas veces sin degradación aparente del caucho. El caucho es miembro de una clase más grande de materiales llamados elastómeros y es difícil sobrestimar su importancia económica y tecnológica. Los elastómeros han jugado un papel clave en el desarrollo de nuevas tecnologías en el siglo XX y hacen una contribución sustancial a la economía global. La elasticidad del caucho es producida por varios procesos moleculares complejos y su explicación requiere un conocimiento avanzado de matemáticas, química y física estadística, particularmente el concepto de entropía. La entro (es)
  • Rubber elasticity refers to a property of crosslinked rubber: it can be stretched by up to a factor of 10 from its original length and, when released, returns very nearly to its original length. This can be repeated many times with no apparent degradation to the rubber. Rubber is a member of a larger class of materials called elastomers and it is difficult to overestimate their economic and technological importance. Elastomers have played a key role in the development of new technologies in the 20th century and make a substantial contribution to the global economy. Rubber elasticity is produced by several complex molecular processes and its explanation requires a knowledge of advanced mathematics, chemistry and statistical physics, particularly the concept of entropy. Entropy may be though (en)
  • Высокоэластичное состояние — состояние полимеров, промежуточное между стеклообразным и состоянием, или, между стеклообразным и деструкцией, для полимеров с прочными междуцепочечными связями. Соответствующие температурные переходы называются температурой стеклования (или температурой размягчения, если образец нагревается) и . Главным признаком высокоэластичного состояния является способность к значительным обратимым деформациям (сотни процентов), под воздействием небольших внешних сил. Полимеры, обладающие высокоэластичными свойствами в диапазоне эксплуатации, называют эластомерами. (ru)
rdfs:label
  • مرونة مطاطية (ar)
  • Gummielastizität (de)
  • Elasticidad del caucho (es)
  • 고무 탄성 (ko)
  • Elastyczność (polimery) (pl)
  • Rubber elasticity (en)
  • Высокоэластичное состояние (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License