An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, namely ring theory, a kth root of unity modulo n for positive integers k, n ≥ 2, is a root of unity in the ring of integers modulo n, that is, a solution x to the equation (or congruence) . If k is the smallest such exponent for x, then x is called a primitive kth root of unity modulo n. See modular arithmetic for notation and terminology. Software to compute modular roots is available in the python library sympy.ntheory.residue_ntheory using the function nthroot_mod. See https://docs.sympy.org/latest/modules/ntheory.html.

Property Value
dbo:abstract
  • En arithmétique modulaire, une racine k-ième de l'unité modulo n, pour des entiers k, n ≥ 2, est une racine de l'unité dans l'anneau ℤ/nℤ, c'est-à-dire une solution de l'équation . Si k est l'ordre de modulo n, alors est appelé racine k-ième primitive de l'unité modulo n. Les racines primitives modulo n sont les racines -ièmes primitives de l'unité modulo n, où est l'indicatrice d'Euler. (fr)
  • In mathematics, namely ring theory, a kth root of unity modulo n for positive integers k, n ≥ 2, is a root of unity in the ring of integers modulo n, that is, a solution x to the equation (or congruence) . If k is the smallest such exponent for x, then x is called a primitive kth root of unity modulo n. See modular arithmetic for notation and terminology. Software to compute modular roots is available in the python library sympy.ntheory.residue_ntheory using the function nthroot_mod. See https://docs.sympy.org/latest/modules/ntheory.html. Do not confuse this with a primitive root modulo n, which is a generator of the group of units of the ring of integers modulo n. The primitive roots modulo n are the primitive -roots of unity modulo n, where is Euler's totient function. This topic deals with roots of unity modulo n where n is at times not a prime number. Finite field § Roots of unity addresses the special case where n is prime and Root of unity covers (non-modular) roots of unity in the field of complex numbers. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 30949769 (xsd:integer)
dbo:wikiPageLength
  • 11055 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1116984277 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En arithmétique modulaire, une racine k-ième de l'unité modulo n, pour des entiers k, n ≥ 2, est une racine de l'unité dans l'anneau ℤ/nℤ, c'est-à-dire une solution de l'équation . Si k est l'ordre de modulo n, alors est appelé racine k-ième primitive de l'unité modulo n. Les racines primitives modulo n sont les racines -ièmes primitives de l'unité modulo n, où est l'indicatrice d'Euler. (fr)
  • In mathematics, namely ring theory, a kth root of unity modulo n for positive integers k, n ≥ 2, is a root of unity in the ring of integers modulo n, that is, a solution x to the equation (or congruence) . If k is the smallest such exponent for x, then x is called a primitive kth root of unity modulo n. See modular arithmetic for notation and terminology. Software to compute modular roots is available in the python library sympy.ntheory.residue_ntheory using the function nthroot_mod. See https://docs.sympy.org/latest/modules/ntheory.html. (en)
rdfs:label
  • Racine de l'unité modulo n (fr)
  • Root of unity modulo n (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License