An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In Riemannian geometry, Gauss's lemma asserts that any sufficiently small sphere centered at a point in a Riemannian manifold is perpendicular to every geodesic through the point. More formally, let M be a Riemannian manifold, equipped with its Levi-Civita connection, and p a point of M. The exponential map is a mapping from the tangent space at p to M:

Property Value
dbo:abstract
  • In Riemannian geometry, Gauss's lemma asserts that any sufficiently small sphere centered at a point in a Riemannian manifold is perpendicular to every geodesic through the point. More formally, let M be a Riemannian manifold, equipped with its Levi-Civita connection, and p a point of M. The exponential map is a mapping from the tangent space at p to M: which is a diffeomorphism in a neighborhood of zero. Gauss' lemma asserts that the image of a sphere of sufficiently small radius in TpM under the exponential map is perpendicular to all geodesics originating at p. The lemma allows the exponential map to be understood as a radial isometry, and is of fundamental importance in the study of geodesic convexity and normal coordinates. (en)
  • En géométrie riemannienne, le lemme de Gauss permet de comprendre l'application exponentielle comme une isométrie radiale. Dans ce qui suit, soit M une variété riemannienne dotée d'une connexion de Levi-Civita (i.e. en particulier, cette connexion est symétrique et compatible avec la métrique de M). (fr)
  • Лемма Гаусса о геодезических утверждает, что любая достаточно малая сфера с центром в точке риманова многообразия перпендикулярна каждой геодезической через точку. Лемма используется в доказательстве того, что геодезические являются локально кратчайшими кривыми, также она имеет фундаментальное значение при изучении геодезической выпуклости и нормальных координат. (ru)
dbo:thumbnail
dbo:wikiPageID
  • 15585793 (xsd:integer)
dbo:wikiPageLength
  • 9162 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1110871503 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • En géométrie riemannienne, le lemme de Gauss permet de comprendre l'application exponentielle comme une isométrie radiale. Dans ce qui suit, soit M une variété riemannienne dotée d'une connexion de Levi-Civita (i.e. en particulier, cette connexion est symétrique et compatible avec la métrique de M). (fr)
  • Лемма Гаусса о геодезических утверждает, что любая достаточно малая сфера с центром в точке риманова многообразия перпендикулярна каждой геодезической через точку. Лемма используется в доказательстве того, что геодезические являются локально кратчайшими кривыми, также она имеет фундаментальное значение при изучении геодезической выпуклости и нормальных координат. (ru)
  • In Riemannian geometry, Gauss's lemma asserts that any sufficiently small sphere centered at a point in a Riemannian manifold is perpendicular to every geodesic through the point. More formally, let M be a Riemannian manifold, equipped with its Levi-Civita connection, and p a point of M. The exponential map is a mapping from the tangent space at p to M: (en)
rdfs:label
  • Gauss's lemma (Riemannian geometry) (en)
  • Lemme de Gauss (géométrie riemannienne) (fr)
  • Лемма Гаусса о геодезических (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License