An Entity of Type: WikicatAlgebras, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, especially functional analysis, a Fréchet algebra, named after Maurice René Fréchet, is an associative algebra over the real or complex numbers that at the same time is also a (locally convex) Fréchet space. The multiplication operation for is required to be jointly continuous.If is an increasing family of seminorms forthe topology of , the joint continuity of multiplication is equivalent to there being a constant and integer for each such that for all . Fréchet algebras are also called B0-algebras.

Property Value
dbo:abstract
  • In mathematics, especially functional analysis, a Fréchet algebra, named after Maurice René Fréchet, is an associative algebra over the real or complex numbers that at the same time is also a (locally convex) Fréchet space. The multiplication operation for is required to be jointly continuous.If is an increasing family of seminorms forthe topology of , the joint continuity of multiplication is equivalent to there being a constant and integer for each such that for all . Fréchet algebras are also called B0-algebras. A Fréchet algebra is -convex if there exists such a family of semi-norms for which . In that case, by rescaling the seminorms, we may also take for each and the seminorms are said to be submultiplicative: for all -convex Fréchet algebras may also be called Fréchet algebras. A Fréchet algebra may or may not have an identity element . If is unital, we do not require that as is often done for Banach algebras. (en)
  • Алгебра Фреше - комплексна топологічна алгебра, локально опуклий метризовуваний простір , наділений структурою алгебри, причому алгебричні операції у ньому є неперервними. Напівнорми на породжують локально опуклу топологію на , їх можна обрати мультиплікативно опуклими. Іншими словами, топологія на задається деякою зліченною системою напівнорм таких, що Тобто модуль Фреше над алгеброю є повним метризовуваним локально опуклим простором разом із неперервним зовнішнім множенням на елементи алгебри . Наприклад, модуль Фреше над є локально опуклим простором, який реалізується як проективний тензорний добуток для декотрого метризованого простору Такі модулі називаються вільними. (uk)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 4102202 (xsd:integer)
dbo:wikiPageLength
  • 18994 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1069324781 (xsd:integer)
dbo:wikiPageWikiLink
dbp:1a
  • Żelazko (en)
  • Mitiagin (en)
  • Rolewicz (en)
dbp:1y
  • 1962 (xsd:integer)
dbp:2a
  • Żelazko (en)
dbp:2y
  • 2001 (xsd:integer)
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, especially functional analysis, a Fréchet algebra, named after Maurice René Fréchet, is an associative algebra over the real or complex numbers that at the same time is also a (locally convex) Fréchet space. The multiplication operation for is required to be jointly continuous.If is an increasing family of seminorms forthe topology of , the joint continuity of multiplication is equivalent to there being a constant and integer for each such that for all . Fréchet algebras are also called B0-algebras. (en)
  • Алгебра Фреше - комплексна топологічна алгебра, локально опуклий метризовуваний простір , наділений структурою алгебри, причому алгебричні операції у ньому є неперервними. Напівнорми на породжують локально опуклу топологію на , їх можна обрати мультиплікативно опуклими. Іншими словами, топологія на задається деякою зліченною системою напівнорм таких, що (uk)
rdfs:label
  • Fréchet-Algebra (de)
  • Fréchet algebra (en)
  • Алгебра Фреше (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License