- 博客(1853)
- 资源 (2)
- 收藏
- 关注
原创 安全监察部绩效考核方案与风险管控
电厂安全监察部绩效考核方案通过五大核心指标全面评估安全管理成效:全年连续安全生产天数(20分)考核安全生产稳定性;生产人身死亡重伤事故(30分)实行事故一票否决制;安全隐患整改率(20分)确保隐患及时处理;安全规范考试合格率(15分)检验员工安全知识掌握度;安全培训覆盖率(15分)保障全员安全教育。该方案以季度/年度为考核周期,结合事故报告、检查记录等数据源,通过量化评分机制推动安全管理持续改进,有效预防重大事故,全面提升电厂安全生产水平。
2025-08-19 15:21:18
511
原创 综合计划部绩效考核关键指标与综合评估
本文探讨了综合计划部绩效考核的关键指标(KPI)及其应用,包括采煤计划完成率、部门费用差异率、规划报告通过率等核心指标。这些KPI通过明确的定义、计算公式和评价标准,有效衡量部门在生产计划、成本控制、报告质量等方面的工作成效。绩效考核周期通常为月度或年度,确保持续监控和调整。文章还分析了统计学、机器学习和深度学习等技术在优化这些指标中的应用,如预测生产偏差、识别计划异常等,以提升整体运营效率。案例展示了这些技术在生产管理中的实际应用场景,为综合计划部的绩效优化提供了可行方案。
2025-08-19 15:21:13
488
原创 技术部绩效考核关键指标与技术研发
开发计划准时率分析摘要:本研究通过基础统计学方法评估技术部门6个项目的开发计划准时率,结果显示4个项目按时完成(100%),2项目延期(80%和87.5%)。分析表明整体准时率达94.2%,反映较好的时间管理能力,但存在个别项目延期现象。建议针对延期项目(B、E)开展根因分析,优化资源分配和进度管控机制。该分析为提升项目管理效率提供了数据支持,后续可结合更多项目样本进行趋势跟踪。
2025-08-19 08:32:31
317
原创 采购部绩效考核关键指标与成本控制
采购部的绩效考核指标包括订单按时完成率、物资合格率、成本预算差异率等,旨在评估采购活动的效率和质量。本文详细解析了这些指标的定义、计算方式及业务应用,并通过案例展示了统计分析、机器学习和深度学习技术在优化采购流程中的应用,帮助企业提升运营效率。
2025-08-19 08:32:26
784
原创 生产调度部绩效考核关键指标与调度优化
生产调度部的关键绩效指标(KPI)涵盖效率、成本控制、设备管理和员工管理等领域,包括部门费用预算达成率、调度方案通过率、设备完好率、按时送检率、调度投诉次数和关键员工流失率等。这些指标通过明确的计算公式和考核周期(月度/年度),确保考核的客观性和准确性。例如,费用预算达成率反映资源控制能力,设备完好率衡量维护效果,而调度投诉次数则评估方案合理性。数据分析与优化技术可进一步提升这些KPI,改善整体运营效率。
2025-08-18 15:54:24
858
原创 煤质管理部绩效考核关键指标与质量控制
煤质管理部的绩效考核体系围绕费用控制、质量检验与员工管理三大核心维度构建。部门费用预算达成率(权重20%)通过实际与计划费用对比评估财务管理能力;错漏检率(25%)监测煤质检验准确性;煤质检验频率(15%)确保质量控制频次达标;客户投诉率(20%)直接反映产品质量表现;员工考核合格率(20%)评估团队整体效能。典型案例显示,运用统计学方法分析预算执行趋势(如1月达成率90.9%)和错漏检数据(1%漏检率),可优化资源配置并提升检验质量,实现从财务到业务的全流程绩效改进。
2025-08-18 15:54:17
814
原创 财务总监绩效考核体系设计与财务管控能力优化实践
财务总监的绩效考核指标涵盖预算控制、财务分析、融资管理、投资回报、成本控制及团队管理等关键领域。通过设定量化目标和定性评估标准,责任书明确了财务总监的职责范围与考核机制。案例分析展示了数据分析与预测模型在财务管理中的实际应用:基础统计学监测预算执行偏差,机器学习预测报告完成情况。这些方法有助于财务总监优化决策流程、提升工作效率,确保公司财务目标的达成,同时为绩效评估提供客观依据。考核体系强调灵活调整机制,确保在经营环境变化时仍能有效衡量财务总监的工作表现。
2025-08-17 22:24:27
801
原创 数据与模型融合波士顿房价回归建模预测
本案例数据地址。在这个案例中,旨在预测房产的售价(SalePrice),并通过多种数据处理技术和回归模型优化预测效果。数据清洗和预处理工作对于处理缺失值、异常值和分类特征至关重要。通过转换和特征工程,创建了一些新的特征,这些特征有助于提高模型的预测能力。不同的回归模型(如线性回归、岭回归、Lasso回归等)分别进行了训练和评估,最后通过集成学习方法(Stacking)和模型融合进一步提高了预测性能。本案例的目标是通过精细的数据处理和强大的回归模型,优化房产价格预测。模块名称内容简介所需技能数据类型。
2025-08-17 22:24:20
834
原创 数据清洗与机器学习贷款偿还预测建模
本案例数据地址。模块名称内容简介所需技能数据类型应用场景案例概述该案例通过数据预处理和机器学习模型建立来预测贷款的偿还情况。初步阶段包括数据清洗、特征选择和编码,之后使用逻辑回归和随机森林分类器进行模型训练和评估。Python编程,Pandas数据处理,机器学习基础CSV文件,数值型数据,分类数据金融风险评估,信用评分案例目标清洗贷款数据,选择有效特征,并通过机器学习模型预测贷款的偿还状态。数据清洗,特征选择,模型训练,交叉验证数值型数据,分类标签信贷分析,贷款违约预测。
2025-08-16 10:00:26
782
原创 机器学习保险行业中应用Allstate理赔损失预测
本案例数据地址。在Allstate Claims Severity案例中,目的是通过预测保险理赔的成本来评估理赔的严重性。Allstate作为美国的个人保险公司,致力于为超过1600万个家庭提供保障。通过提高理赔服务的效率,Allstate希望改善用户的理赔体验,让他们无需在繁琐的理赔流程上浪费时间和精力。该案例通过创建一个算法来准确预测理赔的严重性,进而帮助Allstate优化其理赔流程,提升客户的整体体验。模块名称内容简介所需技能数据类型应用场景案例概述。
2025-08-16 10:00:20
648
原创 随机森林模型预测Kobe Bryant篮球投篮命中率
本案例数据地址。本案例展示了如何利用Python及其数据科学库(如Pandas、NumPy、Matplotlib等)处理和分析篮球数据,以预测Kobe Bryant的投篮命中与否。数据处理过程涉及到特征工程、数据清理以及对类别变量的转换,最终通过随机森林分类器进行训练和预测。通过交叉验证和Log Loss等评估指标,优化了模型的性能。该项目不仅适用于体育数据分析领域,也能为其他类型的预测建模任务提供方法与思路。模块名称内容简介所需技能数据类型应用场景案例概述。
2025-08-15 10:31:09
972
原创 从数据看足球运动员红牌行为与裁判决策分析
本案例数据地址。本案例展示了如何利用Python进行体育数据分析,尤其是对运动员和裁判的数据进行详细的预处理、分析与整合。通过数据清洗和探索性数据分析(EDA),分析了红牌等事件与运动员特征之间的关系。分析过程中使用了回归分析方法来探究可能的影响因素,并通过可视化技术进一步展示数据特征。这一过程不仅帮助识别了运动员行为模式,还为教练和运动员提供了数据驱动的决策支持,以改进训练和比赛策略。模块名称内容简介所需技能数据类型应用场景案例概述。
2025-08-15 10:31:01
623
原创 安全监察部经理绩效考核指标量表与管理提升
本绩效考核表专门针对安全监察部经理的工作进行评估。考核指标涵盖了部门工作计划、费用控制、安全生产、隐患整改、培训等多个方面,体现了对安全管理和团队绩效的综合要求。每项考核指标都有明确的权重和标准,目的是通过科学的评价体系,确保安全监察工作能够按照预定目标有效实施,提升部门的整体运作效率。
2025-08-14 22:40:48
276
原创 地测管理部绩效考核关键指标与地质数据分析
地测管理部绩效考核指标聚焦费用控制、设备管理、数据质量及安全生产四大维度。主要KPI包括:部门费用预算达成率(30%权重)、地测器具周检合格率(20%)、地测检验频率(15%)、数据准确性(15%)、方案通过率(10%)和百万吨煤死亡率(10%)。通过机器学习技术可优化预算预测、设备合格率及检验频率,提升管理效率和安全水平。案例显示,某部门通过数据分析将预算达成率控制在95%,周检合格率达98%,有效降低了运营风险。
2025-08-14 22:40:31
383
原创 使用非线性降维方法进行数据降维
非线性降维方法用于处理复杂的、高维的非线性数据,能够提取出隐藏在数据中的非线性结构。这类方法突破了传统线性降维技术的局限,能够更好地应用于图像、文本、信号等复杂数据集。常见的非线性降维方法包括核PCA、快速独立成分分析(FastICA)和非负矩阵分解(NMF)。这些方法通过不同的数学原理和分解技术,将数据转换为低维表示,同时保留其内在结构信息,适用于各类需要非线性映射的场景。方法名描述适用场景核PCA (KernelPCA)通过使用核技巧处理非线性数据的PCA版本。非线性数据的降维。
2025-08-13 20:27:55
771
原创 使用稀疏编码方法进行数据降维
稀疏编码降维方法是一类基于稀疏表示的降维技术,旨在通过学习稀疏表示来有效地简化高维数据。这类方法特别适用于需要保持数据稀疏性的场景,如图像处理和文本分析。稀疏编码的核心思想是通过稀疏字典学习来表示原始数据,进而在降维过程中保留尽量多的信息。稀疏编码降维的常用方法包括字典学习、稀疏PCA及其小批量版本等,适用于大规模数据或高维数据的稀疏处理。方法名描述适用场景字典学习 (DictionaryLearning)通过学习稀疏表示中的字典来降维。通用的稀疏表示降维。
2025-08-13 20:27:50
838
原创 使用数据基础描述进行连续变量的特征提取
通过本教程的学习,读者可以掌握如何利用描述性统计和时间数据创建特征。这些方法不仅可以提高数据处理的效率,还能为机器学习模型提供更丰富的特征,进而提高预测的准确性。希望通过对数值区间的划分、日期和时间特征的提取,能够为实际的数据分析工作提供实用的工具和思路。
2025-08-12 17:41:52
873
原创 使用类别数据编码进行连续变量的特征提取
类别数据编码是数据预处理中的关键环节。本文介绍了三种常用的编码方法,分别适用于不同的场景和数据特征。可以有效处理类别之间无顺序关系的特征,Map类别转换适合有自然顺序的类别,而二值特征则在处理简单的二元特征时最为高效。通过对这些编码技术的掌握,能够更好地理解如何让模型充分利用数据中的类别信息,进而提高模型的预测能力和准确性。在实际应用中,选择合适的编码方式是优化模型效果的重要一步。
2025-08-12 17:41:46
947
原创 【Dv3Admin】后端配置echarts统计图前端可视化渲染
财务统计可视化方案 本方案实现了财务数据的一体化展示系统,结合后端数据处理与前端可视化技术,提供高效的数据分析能力。系统采用三层架构设计: 数据层:后端Django处理支付与退费记录,按周/月粒度聚合数据,生成Markdown表格和ECharts配置 逻辑层:前端通过fast-crud实现动态查询,利用markdown-it解析表格数据 展示层:Vue-ECharts渲染趋势图表,CSS深度选择器优化表格样式 核心优势在于后端驱动的配置化设计,使前端只需关注渲染逻辑,降低耦合度。系统支持双时间维度切换(周/
2025-08-11 15:52:46
1012
原创 【Dv3Admin】菜单转换选项卡平铺到页面
本文提出了一种统一的多业务模块路由与菜单管理方案,通过规范化配置解决前后端协作中的路径混乱问题。方案包含三部分:1)定义统一的web_path、component和component_name命名规则;2)后端实现基于路径解析的动态路由API,支持Data、Setting、Statistics三种标准后缀;3)前端通过通用API组件实现数据获取与渲染。该方案通过标准化路由结构和权限控制机制,显著提升了多模块项目的可维护性和扩展性。
2025-08-11 15:52:38
1166
原创 使用特征构建进行连续变量的特征提取
特征构建(Feature Engineering)是机器学习过程中至关重要的一步,它直接影响模型的性能和准确性。通过对原始数据进行转换、处理和扩展,可以为模型提供更加丰富的信息,提升预测效果。特征构建的核心思想是利用现有的数据来生成新的特征,以便模型可以更好地捕捉潜在的规律和趋势。无论是简单的线性特征还是更为复杂的多项式特征,这些新特征都有可能显著提高模型的表现。本教程将深入探讨特征构建的不同技术,特别是多项式特征和分段(Binning)的应用。
2025-08-10 22:10:01
971
原创 使用线性降维方法进行数据降维
线性降维方法是一类通过将高维数据转换为低维表示的技术,目的是在减少特征数量的同时,保留尽可能多的有用信息。这类方法在处理高维数据时非常有效,因为它们可以消除冗余特征和噪声,使数据更易于可视化和建模。常见的线性降维方法包括主成分分析(PCA)、增量PCA、截断SVD和因子分析,这些方法各自有不同的应用场景和适用性,如适用于稀疏数据、分批处理大数据等。方法名描述适用场景主成分分析 (PCA)通过正交变换将一组可能相关的变量转换为一组线性不相关变量的技术。通用的线性降维方法。
2025-08-10 22:09:55
969
原创 使用数据规范化进行连续变量的特征提取
数据规范化是机器学习和数据分析中不可或缺的一部分,通过规范化可以消除不同特征的尺度差异,提升模型的性能。标准化和归一化是两种常见的规范化方法,前者适合正态分布的数据,后者适用于将数据缩放到固定范围。
2025-08-09 16:33:14
954
原创 使用数据转换进行连续变量的特征提取
数据转换在数据分析和建模中起着重要作用,它不仅改善了数据的对称性,还能使模型更好地拟合数据。通过合理选择不同的转换方法,如对数转换、指数转换、Box-Cox转换或Yeo-Johnson转换,能够有效应对不同数据的特性。每一种方法都有其特定的应用场景,理解并掌握这些转换技巧,有助于提升数据分析的效率和准确性。
2025-08-09 16:33:08
1000
原创 使用Z-score进行数据特征标准化
Z-score标准化,又称为零均值标准化或标准化正态分布,是数据预处理中常用的一种方法。它通过将每个数据点减去数据的平均值,再除以标准差,来将数据转换为一个均值为0、标准差为1的正态分布。这一转换使得不同特征之间能够在相同的尺度上进行比较。ZX−μσZX−μσ符号描述X原始数据值μ数据的均值σ数据的标准差Z-score标准化非常适用于数据分布不均匀或量纲差异较大的情况,常见于统计分析、机器学习算法中,例如线性回归、KNN等模型。
2025-08-08 17:29:10
919
原创 基于频率或排序编码进行数据离散变量处理
在数据分析和建模过程中,数据的离散化处理是一项关键任务,特别是在处理分类问题时。基于频率的编码和基于排序的编码是两种常见的编码技术,各有其优势与适用场景。基于频率的编码更适合数据不平衡问题,而基于排序的编码则能够更好地保留数据的顺序信息,适用于有序分类任务。在实际应用中,选择合适的编码方式取决于数据的分布特征、模型的需求以及业务的具体要求。通过对比不同编码方式的优劣势,并结合业务场景,能够有效优化数据预处理的效果,从而提升模型的表现。
2025-08-08 17:29:05
921
原创 One-Hot编码进行数据离散变量处理
One-Hot编码作为一种有效的数据预处理方法,能够将离散类别变量转化为数值形式,从而提高机器学习模型的性能。在pandas和sklearn的帮助下,One-Hot编码操作变得更加简单方便。然而,在使用One-Hot编码时,需要综合考虑数据的特点与应用场景,以避免编码带来的高维稀疏问题。通过本教程的学习,读者应能够理解One-Hot编码的基本原理、操作方法及其应用场景,并在实际数据处理中灵活运用该方法。
2025-08-07 22:24:27
580
原创 使用数据规整进行数据离散变量处理
本教程介绍了Python中处理离散变量的几种常见方法,包括编码、分箱和特征交互等技术。这些方法都是特征工程中不可或缺的一部分,能够帮助更好地理解和利用数据,提高模型的预测能力。通过掌握这些技能,在实际数据分析和机器学习任务中,将能够更灵活、高效地处理离散变量。使用这些方法可以使数据更具结构性和信息性,从而为后续的分析和建模打下坚实的基础。
2025-08-07 22:24:19
1048
原创 【Dv3Admin】解决vue页面拆分组件在视觉上出现顺序混乱
前端开发中,左侧导航菜单被右侧固定定位(position: fixed)的模型菜单遮挡,导致层级混乱。通过将模型菜单改为静态定位(position: static)并配合高度(height: calc(100vh - 200px))和滚动控制(overflow-y: auto),使元素回归文档流,解决遮挡问题。核心思路是合理使用定位属性避免脱离文档流,必要时配合z-index调整层级。该方案有效修复布局错乱,提升用户体验。(149字)
2025-08-06 17:40:12
1008
原创 【Dv3Admin】视图下全部权限按钮批量生成
摘要 本文介绍了在Dv3Admin项目中实现自动化权限按钮生成的方法。针对Web应用中权限管理繁琐的问题,提出基于Django和Swagger文档的解决方案。通过四个关键步骤:获取菜单信息、构建基础权限、解析Swagger文档、批量存储权限,实现了权限项的自动生成。该方法利用正则表达式从Swagger文档提取API接口,自动创建对应权限按钮,有效解决了手动创建权限效率低、易出错的问题。特别处理了权限去重和接口过滤,确保生成权限的准确性和完整性。该方案显著提升了开发效率,减少了权限配置的工作量。
2025-08-06 17:40:06
829
原创 Label Encoding编码进行数据离散变量处理
标签编码是一种处理类别型变量的简单方法,尤其适合处理具有少量类别并且类别之间具有自然顺序的情况。通过sklearn中的类,可以轻松地将非数值型数据转换为整数编码,并在需要时进行反向转换。然而,在实际应用中,选择合适的编码方式至关重要。如果类别之间没有明确的顺序或者类别数较多,标签编码可能并不是最佳选择,此时独热编码等其他方法可能更加合适。在数据处理过程中,需要根据具体场景慎重选择编码方式,以确保模型的表现和可靠性。
2025-08-05 17:39:36
922
原创 Binary Encoding编码进行数据离散变量处理
二元编码是处理高基数离散变量的有效方法,通过将类别转化为整数再编码为二进制,显著减少了特征列的数量并保持了部分类别之间的结构信息。在机器学习项目中,尤其是高维度特征工程中,二元编码可以大幅提升模型的效率和性能。学习并掌握二元编码的使用,能够帮助构建更高效、更精简的机器学习模型,为后续的模型优化和推理打下良好的基础。
2025-08-05 17:39:29
1113
原创 K均值聚类与Apriori应用探索中医证素数据分析
本案例展示了如何使用Apriori算法和K均值聚类算法来分析中医证素数据。数据通过K均值聚类进行预处理,接着通过Apriori算法挖掘关联规则,最后得到关于不同证型的统计信息与预测指标。该过程分为数据预处理、数据转换以及关联规则计算三个主要步骤,分别应用了聚类分析和关联规则算法来帮助进一步理解和处理复杂的中医证素数据。整个过程不仅涉及聚类分析的实现,还涵盖了Apriori算法用于发现证型之间潜在关联的应用,旨在为中医证素的分析与实践提供一种系统化的计算方法。模块名称内容简介所需技能数据类型应用场景。
2025-08-04 23:17:01
726
1
原创 数据与模型优化随机森林回归进行天气预测
本案例数据地址Temperature Prediction_Random Forest气温预测_随机森林。本案例探讨了使用随机森林回归模型来进行天气数据的预测。数据首先经过了预处理,包括One-Hot编码等方法,将不同的气象变量转化为适合模型训练的形式。在特征选择过程中,案例通过添加多个特征(如风速、降水、雪深等)来增强模型的预测能力。模块名称内容简介所需技能数据类型应用场景案例概述本案例使用随机森林回归模型对天气数据进行预测,并探索了不同特征和模型参数对预测结果的影响。
2025-08-04 23:16:54
1005
原创 经济发展与水资源关系粮数据分析
本案例数据地址。本教程基于一系列数据处理和分析案例,旨在帮助自学编程的读者通过实际数据分析步骤来掌握数据清洗、统计描述和业务应用分析的技术。这些脚本涵盖了从基础信息解释到业务需求分析的全过程,重点关注如何处理缺失数据、进行统计分析以及如何使用数据进行业务决策分析。读者可以从中学习到如何使用Python中的各种数据处理工具(如Pandas、Matplotlib、Seaborn)进行数据可视化、数据清理、数据挖掘以及建模等操作,帮助其在实际项目中实现高效的数据分析和决策支持。模块名称内容简介所需技能。
2025-08-03 15:23:06
1040
原创 SVM与XGBoost舌像数据分类与模型优化
本案例数据来源于道生设备采集。本案例通过使用SVM和XGBoost两种机器学习算法,针对舌像数据进行分类,展示了从数据预处理到模型训练、评估与优化的完整流程。在第一个脚本中,采用SVM模型,通过标准化和PCA降维方法,利用GridSearchCV进行超参数调优,并最终评估模型在测试集上的表现。第二个脚本则基于XGBoost算法,使用连续型数据进行多类别分类,涉及了多个关键超参数调优步骤,如最大树深度、子样本采样比例、特征采样等,进一步通过交叉验证提高模型稳定性和泛化能力。
2025-08-03 15:23:00
933
原创 使用等宽等频法进行数据特征离散化
在数据分析过程中,特征离散化是一项重要的操作。通过cut和qcut函数,可以方便地进行等宽和等频离散化。等宽离散化适用于数据分布较为均匀的场景,而等频离散化更适用于数据分布不均匀的情况。本文展示了在实际生活中如何使用这些方法对数据进行有效的分类和处理,帮助理解数据特征并制定更好的分析和决策方案。
2025-08-02 11:45:54
646
1
原创 使用函数二值化进行数据特征离散化
除了固定阈值的简单二值化,Python 提供了灵活的工具,可以根据自定义规则执行更加复杂的离散化操作。这种方法能够根据数据的特征和分布,更精准地进行处理,尤其适用于具有不同范围、分布不均或需要特定分组规则的数据集。在实际应用中,用户可以根据业务需求设计自定义的分段规则,使得离散化过程不仅能够保留关键信息,还能更好地服务于下游任务。例如,使用 Python 中的pandas库,结合cut和qcut函数,可以基于不同的条件进行分箱或区间划分。cut适用于固定区间划分,而qcut。
2025-08-02 11:45:47
967
原创 使用Min-Max进行数据特征标准化
Min-Max标准化是一种简便且实用的数据预处理方法,尤其适合在数据具有已知范围或需要将数据缩放到特定范围时使用。与Z-score标准化不同,Min-Max标准化不依赖数据的均值和标准差,而是通过最小值和最大值进行缩放处理。其主要优势在于能够保留数据的相对顺序,同时确保数据被限制在指定范围内。通过在图像处理、金融数据分析等实际场景中的应用,Min-Max标准化展现了其在消除量纲差异和保证特征一致性上的重要作用。借助Python中的。
2025-08-01 18:38:09
652
原创 使用字典向量化进行数据特征离散化
字典向量化是处理类别型特征的一种高效方法,能够快速将字典格式的数据转换为机器学习模型可以处理的数值格式。通过字典向量化,不仅能够保持数据的稀疏性,还能有效提高模型的计算效率和预测精度。在实际工作中,字典向量化的应用十分广泛,尤其是在需要处理大量类别数据的场景下。掌握这一工具,将为更好地进行特征工程和数据预处理奠定坚实的基础。
2025-08-01 18:38:02
792
Dify基于LLM的多关卡人机互动排名游戏应用
2025-08-04
Dify文生视频与TTS一键生成解说视频应用
2025-08-04
Dify网页内容智能仿写与多图自动排版应用
2025-08-04
Dify文本风格重写智能应用
2025-08-04
Dify轻量级数据库学生成绩查询与可视化应用
2025-08-04
Dify增值税发票信息自动提取应用
2025-08-04
Dify图像语义特征提取与向量匹配应用
2025-08-04
Dify专家音频与多媒体结合的历史播客应用
2025-08-04
Dify科研论文英文翻译应用
2025-08-04
DifyGPT模型的中英文自动翻译应用
2025-08-04
Dify自动化抓取36氪热榜新闻应用
2025-08-04
Dify资讯推送全流程应用
2025-08-04
Difyedgetts文本转语音应用
2025-08-04
Dify自定义edgetts文本转语音自动化应用
2025-08-04
DifyGithub项目智能机器人在开源分析应用
2025-08-04
Dify思维导图生成助手
2025-08-04
Dify高效知识搜索与智能问答应用
2025-08-04
Dify知识库智能检索应用
2025-08-04
Dify网站爬虫分析应用
2025-08-04
Dify基于LLM的多关卡人机互动游戏应用
2025-08-04
Dify思维导图生成应用
2025-08-04
Dify实时热点新闻聚合每日简报应用
2025-08-04
Dify文本驱动的短视频生成与应用
2025-08-04
Dify智能写作中文长文自动生成应用
2025-08-04
Dify自动化合同审查与生成应用
2025-08-04
Dify智能学业规划应用
2025-08-04
Dify智能简历筛选与语义分析应用
2025-08-16
Dify自动化知识结构化与可视化应用
2025-08-04
Dify多平台实时热点新闻聚合引擎应用
2025-08-04
Dify智能出题与标准化试卷生成应用
2025-08-04
n8nASMR视频创意与多平台分发应用
2025-08-09
n8nAI驱动的短视频全自动生成应用
2025-08-09
n8n多平台视频自动化发布应用
2025-08-09
n8nAI短视频生成与多平台分发应用
2025-08-09
n8n文本生成视频并上传Google云盘
2025-08-09
n8n自动化TikTok短视频生成应用
2025-08-09
n8nTransform Markdown 到 Notion 的全自动化应用
2025-08-09
n8nPDF发票自动解析与Airtable入库应用
2025-08-09
n8n图片在线化与压缩优化自动化应用
2025-08-09
n8n自动化网页博客抓取与RSS订阅生成应用
2025-08-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅