涨点技巧:卷积变体DCNV2引入Yolov8,助力小目标涨点

本文介绍了将DCN V2改进版(DCNV2)应用于YOLOv8的目标检测网络,通过在YOLOv8中加入DCNV2,尤其是在数据集上的验证表明,尤其是在小目标和遮挡物的检测精度上有显著提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🏆🏆🏆🏆🏆🏆🏆🏆Yolov8魔术师🏆🏆🏆🏆🏆🏆🏆🏆

🌟🌟🌟魔改网络和复现cvpr等前沿论文,组合优化

🚀🚀🚀在多个数据集进行验证mAP涨点明显,尤其是小目标、遮挡物精度提升明显; 

1.DCN V2介绍

DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems

论文:https://arxiv.org/abs/2008.13535

 

作者通过在DCN的基础上,增加了2个创新点,分别是调制模块和使用多个调制后的DCN模块,从形成了DCN的升级版本——DCN-v2!
①调制模块:

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值