- 博客(1407)
- 资源 (5)
- 收藏
- 关注

原创 python3案例和总结-专栏介绍和目录
本专栏专注于Python基础和进阶的系统讲解,逐步深入实际应用场景到python高级特性,让你轻松学会用Python解决各种实际问题。不管是零基础还是有经验的开发,相信都能从本专栏获益。
2025-03-17 19:28:36
7533
1

原创 爬虫和逆向教程-专栏介绍和目录
本专栏为爬虫初学者和进阶开发者量身定制的爬虫和逆向学习园地。为你提供全面而深入的爬虫和逆向技术指导,从入门到精通,从基础理论到高级实战,助你在数据的海洋中畅游,挖掘出有价值的信息。通过本专栏的学习,你将具备独立开发和优化爬虫程序的能力,及逆向分析能力和项目开发能力,成为爬虫领域的佼佼者。
2025-02-28 20:26:59
10727
5

原创 备考信息系统项目管理师-专栏介绍和目录
本专栏会持续详细梳理软考高级信息系统项目管理师(高项)的考点、所有历年真题(包括综合知识、案例分析、论文)等,有论文专项,预测模拟题等内容。需要的可以先订阅下哦。
2024-12-12 22:10:22
11711
2
原创 使用Python将中文语音翻译成英语音频
本文介绍了中文语音翻译成英语音频的实现方法,主要分为三个步骤:语音识别(将中文语音转为文本)、文本翻译(中文转英文)和语音合成(英文文本转音频)。文章详细说明了注意事项,包括音频格式要求(16kHz WAV)、API密钥配置和网络连接等,并提供了完整的Python代码实现,涵盖百度API的语音识别、文本翻译和语音合成功能。代码示例展示了如何构建一个完整的翻译器类,包含异常处理和播放功能,适用于实际应用场景。
2025-08-08 09:44:25
365
原创 反向传播算法:神经网络训练的核心原理及python实现
本文介绍了反向传播算法的基本原理及其在神经网络训练中的应用。反向传播算法通过计算损失函数对网络权重的梯度,实现参数优化更新,包含前向传播、损失计算、反向传播和参数更新四个核心步骤。文章详细解释了梯度计算的具体实现过程,并分析了深层网络中的梯度消失与爆炸问题及其解决方案。此外,还探讨了反向传播在机器翻译领域的具体应用,特别是编码器-解码器架构和注意力机制中的实现。最后,提供了一个Python实现案例,展示了如何构建和训练一个简单的神经网络,包括前向传播、损失计算、反向传播和参数更新的完整代码实现。
2025-08-08 09:27:58
794
原创 Word2Vec模型:CBOW与Skip-gram原理及训练实践
Word2Vec是Google提出的词向量生成模型,包含CBOW和Skip-gram两种架构。CBOW通过上下文预测目标词,适合小型数据集;Skip-gram通过目标词预测上下文,对低频词更有效。两者在训练速度、词频处理等方面各有优劣。实践时需注意数据预处理、负采样/层次softmax优化技术,并根据数据集规模选择模型。代码实现展示了基于PyTorch的CBOW和Skip-gram模型构建,包括词汇表处理、数据集生成和模型训练流程。关键参数包括嵌入维度、窗口大小等,合理设置对模型效果至关重要。
2025-08-08 09:12:19
442
原创 解码算法:维特比算法(Viterbi)在SMT中的应用
维特比算法是一种动态规划算法,常用于隐马尔可夫模型中寻找最优状态序列。本文首先介绍了其在统计机器翻译(SMT)中的应用,包括搜索最优翻译路径、处理短语组合和解码过程。算法具有高效性(O(N²T)复杂度)和全局最优性,但也面临搜索空间大等局限性。随后提供了Python实现代码,通过天气预测示例演示了算法流程,包含初始化概率矩阵、递推计算和路径回溯等步骤。代码实现了观测序列到最可能天气状态的推断,并包含矩阵打印等辅助功能,展示了维特比算法在实际问题中的应用方式。
2025-08-07 19:58:24
397
原创 词对齐技术:IBM Model 1-5原理与实践,和python完整代码实现
IBM Models 1-5是经典的词对齐模型,用于统计机器翻译。Model 1基于词汇翻译概率,忽略位置信息;Model 2增加位置对齐概率;Model 3引入生育率参数处理一对多翻译;Model 4优化生育率模型;Model 5允许词汇移动。文章提供了Python实现代码,包括初始化翻译概率、训练过程和获取翻译概率的方法,展示了IBM Model 1和Model 2的具体实现细节。
2025-08-07 19:46:56
684
原创 Moses工具的配置和小语种平行语料训练SMT完整实现
本文介绍了Moses统计机器翻译工具的开源安装与配置流程,并详细演示了使用小语种平行语料训练翻译模型的完整步骤。主要内容包括:1) Moses的安装和环境配置;2) 英语-世界语平行语料准备与预处理;3) 语言模型训练与翻译模型构建;4) 翻译测试与BLEU评估方法。该流程虽然基于示例小语料,但可扩展应用于实际小语种翻译任务,特别强调了语料预处理、参数调优等关键环节的注意事项。
2025-08-07 19:23:56
258
原创 语言模型(LM):n-gram模型原理与困惑度(Perplexity)计算详解
N-gram模型是一种基于统计的语言模型,通过马尔可夫假设简化条件概率计算,预测词序列概率。其核心思想是当前词仅依赖前n-1个词,包括Unigram、Bigram和Trigram等不同粒度。模型通过语料库计数构建,但面临数据稀疏问题,需使用加一平滑等技术处理。困惑度(PPL)是评估语言模型性能的关键指标,表示模型预测下一个词的平均不确定程度,值越低表明模型越好。通过一个Bigram模型实例计算测试句子的困惑度约为5.52,展示了N-gram模型的简单高效性,但也凸显了其上下文限制和长距离依赖等局限性。
2025-08-07 18:05:20
754
原创 翻译模型(TM):基于短语的统计翻译模型(PBSMT)的构建
摘要: 基于短语的统计机器翻译(PBSMT)是统计机器翻译的主流方法,通过将句子分割为短语进行翻译和重组,解决了传统逐词翻译的词序问题。其核心流程包括:语料预处理、词对齐与短语抽取、翻译模型训练(计算短语概率)和语言模型训练。PBSMT优势在于可解释性强、灵活性高,但对齐错误和短语拼接问题可能影响质量。随着神经机器翻译(NMT)的兴起,PBSMT虽被取代,但其对齐、解码等思想仍影响现代NLP。典型工具如Moses Toolkit支持全流程实现。
2025-08-07 18:02:57
487
原创 将英文PDF文件完整地翻译成中文的4类方式
本文介绍了将英文PDF翻译为中文的有效方法。在线翻译服务(如Google、DeepL)操作简单但格式易错乱,适合快速获取大意;专业软件(如Trados、OmegaT)能较好保留格式且质量高,但需学习成本;编程脚本(基于Python)最灵活但技术门槛高。文章详细分析了各类工具的核心难点(非结构化文本、格式保留等)、操作流程及优缺点,并针对不同场景(快速查阅/专业翻译/批量处理)给出了具体建议。还提供了Python自动翻译脚本实例,帮助用户根据需求选择最适合的解决方案。
2025-08-06 19:52:47
1234
1
原创 机器翻译:语料库的定义与获取,及语料预处理
语料库(Corpus)=「为特定研究或工程目的而收集、整理、标注的大规模真实语言数据集合」。在机器翻译(MT)场景下,语料库专指「平行语料库(parallel corpus)」:一一对应的源语言句子和目标语言句子;也可能附带单语语料、领域标签、时间戳、质量分数等元数据。
2025-08-06 12:26:13
1262
原创 学习路径规划:从零基础到精通机器翻译的核心知识
学习机器翻译是一个系统性工程,需要跨越语言学、计算机科学和深度学习等多个领域。本专栏提供分阶段的学习路径: 第一阶段:掌握基础,包括机器翻译概览、数学与编程基础、语言学知识。 第二阶段:深入神经机器翻译核心理论,学习Seq2Seq、Transformer架构,并通过实践搭建NMT模型。 第三阶段:项目实践与优化,涵盖数据处理、模型训练、评估及部署。 第四阶段:探索高级技术与前沿方向,如Transformer变体、大规模预训练模型(mBART、NLLB)及领域自适应。 本专栏偏向实战,只需Python基础即可
2025-08-06 12:07:15
805
原创 机器翻译的局限性:歧义、文化差异、专业术语翻译难题
机器翻译面临三大核心难题:歧义处理、文化差异适配和专业术语翻译。歧义处理需解决词汇、句法和语用多义性;文化差异要求克服特有概念、社交习惯和隐喻的跨文化传递障碍;专业术语翻译需应对领域特异性、更新速度快和一致性要求高的挑战。当前技术瓶颈包括上下文理解不足、文化知识缺失和领域语料稀缺。未来需结合预训练模型、多模态技术和人机协作实现突破,但人工翻译在文化适配和专业深度方面仍不可替代。机器翻译需算法、领域知识和人类专家协同才能跨越语义鸿沟。
2025-08-05 20:11:42
835
原创 机器翻译的评价标准:BLEU、ROUGE等指标说明及代码实现
机器翻译领域常用的自动评价指标主要包括BLEU、ROUGE、METEOR和COMET四大类。BLEU基于n-gram精确率和短句惩罚,ROUGE关注召回率,METEOR结合精确率和召回率并考虑同义词,COMET则利用预训练模型计算语义相似度。这些指标各有特点:BLEU适用于机器翻译,ROUGE对长句友好,METEOR更接近人工评分,COMET无需参考译文。代码实现上,sacrebleu、rouge-score等库提供了便捷的计算方式。新兴趋势包括基于BERT等模型的语义评估和大语言模型评估器,但传统指标仍占
2025-08-05 19:58:16
803
原创 翻译的本质:人工翻译vs机器翻译的核心差异与互补性
摘要: 翻译的本质是跨语言的意义传递与重构,涉及信息、情感与文化内涵的转换。人工翻译(HT)基于认知与创造性表达,擅长处理歧义、隐喻及文化适配;机器翻译(MT)依赖数据驱动,高效但缺乏深层理解。两者在语义深度、文化适配、效率成本等方面差异显著,但互补性强:HT主导文学、法律等高复杂度场景,MT胜任批量、实时翻译需求。未来趋势是人机协同的“增强翻译”,机器处理基础任务,人工专注质量把控与文化适配,实现效率与质量的平衡。核心结论:机器解决“量与速”,人工解决“质与魂”,二者协同构建更高效的翻译生态。(149字)
2025-08-05 19:36:28
1021
原创 一文掌握讯飞星火认知模型翻译,及python实现
讯飞星火认知大模型提供强大的多语言翻译能力,支持200+语言互译、文档翻译和实时语音翻译。其核心技术采用Transformer架构与知识增强模块,具备深度语义理解能力,中英互译BLEU评分达48.7。通过Python API可实现文本翻译,需先获取API密钥,使用WebSocket协议进行通信,支持通用和专业领域翻译,并能处理方言和保留格式。该服务适用于各类翻译场景,延迟控制在200ms以内。
2025-08-05 12:12:15
1190
原创 一文掌握DeepL机器翻译详解,以及用python调用的4种方式
DeepL是一款基于Transformer架构的高性能机器翻译工具,在语义理解和语境把握上表现出色,尤其擅长欧洲语言互译。其核心技术包括编码器-解码器结构、注意力机制和大规模平行语料训练。本文介绍了DeepL的三种Python实现方式:1)官方API调用,提供稳定高质量的翻译服务;2)非官方API,免费但不稳定;3)自建简易Transformer模型,适合学习研究。官方API方案最为推荐,支持文本批量翻译和文档格式转换,但需API密钥。非官方API适合个人测试,而自建模型虽然灵活但需要大量计算资源。
2025-08-05 12:05:44
1435
原创 一文掌握Bard机器翻译,以及用python调用的4种方式(现已升级为 Gemini)
Bard(大型双语自动编码器解码器)是Google推出的生成式AI模型,具备强大的自然语言理解与生成能力,在机器翻译领域表现出色。与传统机器翻译模型相比,Bard不仅能实现精准翻译,还能理解上下文语境、保持翻译风格一致性,并支持复杂句式和专业领域文本的翻译。Google 已将其 AI 聊天机器人 Bard 更名为 Gemini,作为品牌重塑的一部分。这一变更旨在统一 Google 的 AI 产品线,避免混淆,并引入更强大的模型功能。
2025-08-05 09:48:10
934
原创 一文搞懂T5机器翻译原理,及对应的2个案例(python脚本可直接运行)
T5机器翻译是基于Google提出的通用文本转换框架,将翻译任务转化为"文本到文本"的生成任务。其核心特点包括统一框架设计、多语言支持、强大的迁移学习能力,采用Transformer编码器-解码器结构,通过添加任务前缀实现不同语言翻译。T5提供多种规模模型(60M-11B参数),支持Hugging Face库快速调用,但相比专业翻译模型在特定语言对表现稍逊。实现时通过添加"translate X to Y"前缀指令,利用beam search生成翻译结果。该模型优势在
2025-08-04 20:14:47
1354
原创 一文搞懂google机器翻译原理,及对应的3个详细案例(python脚本可直接运行)
Google 提供了强大的 Google Cloud Translation API,允许开发者集成高质量的机器翻译服务到自己的应用中。该 API 支持多种语言之间的文本翻译,并提供了自动检测源语言的功能。
2025-08-04 19:58:08
1276
原创 一文搞懂meta机器翻译原理,及对应的4个案例(python脚本可直接运行)
Meta(原Facebook)在机器翻译领域推出了多款先进的模型,包括mBART、NLLB和SeamlessM4T等。这些模型基于Transformer架构,支持100-200种语言,特别擅长低资源语言翻译。主要优势包括语言覆盖广、翻译质量高、支持多对多翻译且完全开源。文章提供了多种使用方式:通过Hugging Face Hub一行代码调用、本地服务器部署nllb-serve服务,以及使用CTranslate2量化模型降低硬件要求。同时给出了完整的Python实现代码,展示了如何初始化翻译器、加载模型并进行
2025-08-04 19:37:40
1556
原创 百度翻译详解:包括PaddleNLP、百度AI开放平台、接口逆向(包括完整代码)
百度翻译是基于百度自研神经机器翻译技术(NMT)和大语言模型的多语言翻译平台,支持200+种语言互译,具备高准确率、低延迟和多模态输入等优势。其核心技术包括Transformer-XL架构的基础翻译模型、基于LoRA的领域适配模型以及ERNIE-M多语言大模型,并采用渐进式解码、动态术语注入等优化技术。百度翻译与开源工具库PaddleNLP共享部分底层技术,后者提供可定制的NLP模型训练与部署能力。针对不同场景,用户可选择直接调用百度翻译API或基于PaddleNLP自建翻译模型,文中还提供了使用Paddl
2025-08-04 12:32:35
1613
1
原创 使用GPT机器翻译详解,及对应实现翻译的3个案例
GPT机器翻译利用Transformer架构的大型语言模型(如GPT-3.5/4)实现高质量的跨语言转换。相比传统神经机器翻译,其核心优势在于:1)强大的上下文理解能力,能处理长文本中的指代和歧义;2)零样本/少样本学习能力,无需大量平行语料;3)支持多语言翻译和风格一致性保持。实现方式包括调用OpenAI API和本地部署开源模型(如LLaMA)。通过Python示例代码展示了如何构建GPT翻译器,包括单文本和批量翻译功能,支持中英等10种语言互译,并具备错误重试机制。该技术特别适合文学翻译、少资源语言处
2025-08-04 12:11:40
972
原创 使用 Marian 进行机器翻译详解及对应案例
Marian是一个高效的神经机器翻译框架,采用C++11编写,具有速度快、内存占用低的特点。它支持多种语言和先进架构(如RNN和Transformer),适用于学术研究、企业翻译、教育等领域。Marian的优势包括高性能、高准确性、易用性和开源支持,但对低质量输入处理能力有限。使用案例展示了基于Hugging Face和Python接口的翻译实现,支持参数调优和多结果输出。Marian为开发者提供了高度定制化的解决方案,并持续通过社区更新保持技术前沿。
2025-08-04 09:34:30
1114
原创 机器翻译的分类:规则式、统计式、神经式MT的核心区别
机器翻译经历了从规则式(RBMT)、统计式(SMT)到神经式(NMT)的技术演进。RBMT依赖人工编写的语法规则,适用于小语种但维护成本高;SMT基于统计概率模型,需大量平行语料但长句处理弱;NMT采用端到端神经网络,翻译更流畅自然但依赖海量数据和算力。三者各有优劣:RBMT可解释性强,SMT领域适应好,NMT语义理解优。现代翻译以NMT为主,但RBMT和SMT在特定场景仍有价值。技术发展呈现从人工规则到数据驱动、从离散建模到连续语义学习的趋势。未来将聚焦低资源优化和多模态融合等方向。
2025-08-03 13:37:01
1082
1
原创 跨语言模型中的翻译任务:XLM-RoBERTa在翻译任务中的应用
XLM-RoBERTa((Cross-lingual Language Model Pretraining - RoBERTa),简称 XLM-R)是 Facebook 于 2020 年提出的仅编码器(encoder-only)跨语言预训练模型,在 2.5 TB、覆盖 100 种语言的 CommonCrawl 语料上以 MLM 目标训练而成。与早期 XLM 相比,不依赖语言 ID embedding,统一用 SentencePiece 分词,参数量更大(base 270 M / large 550 M)。
2025-08-03 12:56:29
986
原创 机器翻译入门:定义、发展简史与核心价值
摘要: 机器翻译(MT)利用计算机技术实现跨语言自动转换,经历了规则、统计、神经网络和Transformer等技术演进,从1940年代萌芽到如今的大模型时代。其核心价值在于消除语言壁垒、赋能产业升级、推动知识普惠和支撑技术创新。尽管面临低资源语言和文化差异等挑战,随着大语言模型的发展,机器翻译正朝着更精准智能的方向发展,成为全球化时代不可或缺的信息基础设施。
2025-08-03 11:51:42
1241
原创 基于神经机器翻译(NMT)实现:英文到中文翻译(python代码可直接运行)
神经机器翻译(NMT)是基于深度学习的端到端自动翻译技术,采用Encoder-Decoder架构和注意力机制,相比传统方法具有更流畅的翻译效果。本文介绍了NMT的核心原理、流程及优缺点,并提供了Python实现方案。通过Hugging Face的预训练模型(如Helsinki-NLP/opus-mt-en-zh),用户可以快速搭建英中翻译系统。代码包含文本预处理、模型推理和后处理模块,支持单句和批量翻译,使用Beam Search优化生成质量。该方案兼顾实用性和效率,适合快速部署应用。
2025-08-02 17:00:12
1134
原创 基于统计机器翻译(SMT)实现:英文到中文翻译(python代码可直接运行)
统计机器翻译(SMT)是一种基于统计模型和大规模平行语料库的自动翻译技术,通过学习源语言到目标语言的映射关系实现翻译。其核心包括语言模型(评估目标语言通顺度)、翻译模型(计算映射概率)和解码算法(寻找最优翻译)。主要流程为语料预处理、模型训练和解码生成。SMT不依赖人工规则但需大量语料,长句翻译效果较差。Python实现示例使用NLTK库,包括数据预处理、IBM Model 1翻译模型训练和n-gram语言模型训练,通过词对齐和语言模型生成翻译结果。实际应用中需使用专业工具如Moses。
2025-08-02 16:51:12
952
原创 基于MarianMT模型实现机器翻译:英文到中文(python代码可直接运行)
本文介绍了基于MarianMT模型的英汉机器翻译实现方案。MarianMT是微软与约翰斯·霍普金斯大学联合开发的开源神经机器翻译框架,采用Transformer架构,具有高效、支持多语言等特点。文章详细阐述了其原理,包括自注意力机制和编码器-解码器结构,并提供了两种实现方式:基础版使用Hugging Face的transformers库快速实现翻译功能;增强版则支持单句和批量翻译,包含GPU加速、输入长度限制等优化。代码示例展示了如何加载预训练模型、处理输入输出及提升翻译质量的方法,为开发者提供了完整的实现
2025-08-02 16:34:56
1039
原创 python反爬:一文掌握 undetected-chromedriver 的详细使用(可通过机器人验证)
摘要: undetected-chromedriver 是一款优化的 Selenium Chromedriver 补丁工具,可绕过 Distill Network/DataDome 等反爬服务。其核心功能包括移除自动化标识(如 navigator.webdriver)、自动匹配 Chrome 版本、支持无头/远程调试模式。通过自定义启动参数、伪装浏览器指纹(如修改 WebGL/屏幕参数)、模拟人类操作(随机延迟、鼠标移动)及代理配置,有效规避检测。工具提供异步模式(Python 3.7+)和异常处理机制,并
2025-07-30 20:15:28
1726
原创 爬虫验证码处理:ddddocr 的详细使用(通用验证码识别OCR pypi版)
DdddOcr是一个基于深度学习的开源验证码识别工具,支持数字、字母、滑块、点选等多种验证码类型,识别准确率达98%以上。本文详细介绍了DdddOcr的安装方法、核心优势与使用建议,包括基本使用(数字字母识别、复杂背景处理、滑块/点选验证码)和高级用法(自定义模型、批量识别优化、与Selenium/Scrapy集成)。提供了完整的爬虫集成案例和滑块验证码识别示例,并针对常见问题给出解决方案。该工具具有模型体积小(<10MB)、推理速度快(<50ms/张)等特点,能有效解决大多数爬虫验证码问题。
2025-07-30 20:00:46
790
原创 爬虫自动化:一文掌握 PyAutoGUI 的详细使用
本文详细介绍了PyAutoGUI自动化库的使用方法,包括安装配置、基础操作和高级功能。主要内容涵盖鼠标键盘控制、屏幕操作、图像识别定位等核心功能,并提供了自动登录、文件重命名、表单填写等实战案例。文章还针对常见问题如跨平台兼容性、识别失败等提供了解决方案,适合自动化测试、GUI操作等场景的应用开发。通过PyAutoGUI可以快速实现系统级输入模拟,提高工作效率。
2025-07-29 20:14:58
988
原创 python应用:一文掌握Gradio的详细使用(快速构建交互式 Web 界面)
Gradio是一个开源的Python库,可快速构建机器学习模型的交互式Web界面,无需前端开发经验。它支持文本、图像、音频等多种输入输出组件,并提供丰富的布局选项。通过几行代码即可将模型封装成可视化应用,支持本地运行、Docker部署及托管到Hugging Face Spaces。Gradio还支持模型串联、实时流式输出、状态保持等功能,并提供性能优化技巧如模型缓存和异步处理。典型应用包括文本翻译、图像分类等,适合快速演示和部署机器学习模型。
2025-07-29 12:14:03
810
原创 用 Python 获取电脑电池电量的各种案例
本文介绍了多种Python获取电脑电池电量的方法:1)跨平台的psutil库方法,可获取电量百分比、电源状态和剩余时间;2)Windows专用方法,通过win32api获取电源状态和电量;3)macOS方法,使用subprocess调用系统命令解析电池信息;4)Linux方法,直接读取/sys文件系统获取电池数据;5)跨平台统一方法,根据操作系统自动选择合适方案。每种方法都提供了完整的代码示例和错误处理机制,适用于不同开发场景下的电池监控需求。
2025-07-28 19:22:21
917
原创 轻量级 Python 数据库框架 records 详解
摘要:Records是一个基于SQLAlchemy Core的极简Python数据库操作库,提供比传统ORM更简单的API。核心特性包括SQL优先、轻量级、结果集导出功能,支持多种数据库。基本用法包括连接数据库、执行查询/非查询操作、结果集处理和数据导出(CSV/Excel/JSON等)。高级功能涵盖连接池管理、事务处理、批量操作优化等。适合快速脚本开发、数据导出工具等场景,但不支持复杂ORM特性。安装简单(pip install records),是直接使用SQL进行数据库交互的高效选择。
2025-07-28 09:18:06
758
原创 爬虫逆向:一篇文章掌握 Hopper 的详细使用(macOS 和 Linux 反汇编程序:对可执行文件进行静态分析)
Hopper是一款macOS/Linux平台下的二进制反汇编和逆向分析工具,支持ARM/x86等多种架构。该工具能够将二进制文件转换为可读的汇编指令和伪代码(F5键生成类C伪代码),并提供流程图视图、十六进制编辑和动态调试(与LLDB集成)等功能。界面分为符号列表区、检查器区和代码显示区,支持通过标签和文本过滤符号。Hopper自动分析文件类型(代码/数据/ASCII等),并允许手动修改。关键功能包括修改二进制文件、Python脚本扩展、控制流图(CFG)分析等。工具还提供导航堆栈、段/节查看、符号标记等辅
2025-07-17 08:54:03
2066
用python3实现个人博客系统,脚本可以直接运行 (所用技术:Flask、TinyDB)
2023-06-13
用python3实现AI人脸识别签到打卡系统(压缩包中源码可直接运行)
2023-06-13
用Panda3D开发3D枪战类游戏源码,脚本可以直接运行
2023-06-13
用python3实现民宿信息可视化系统
2023-06-13
用python3实现在线生鲜商城系统,脚本可以直接运行
2023-06-13
用python3实现招聘信息实时数据分析系统,包括数据文件、爬虫文件、部署文件等
2023-06-10
用python3实现房产价格数据可视化分析系统(包括采集房产的脚本、数据可视化脚本)
2023-06-10
用python3实现基于深度学习的AI人脸识别系统,脚本可以直接运行(包括源码文件、数据文件)
2023-06-10
用python3实现动态验证码,脚本可以直接运行
2023-06-08
用python3实现轻松背单词程序,代码可直接运行
2023-06-08
炫酷时钟动态案例,web浏览器打开index.html即可看到动态效果
2023-06-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人