python实现典型相关分析CCA (附完整源码)

python实现典型相关分析CCA


典型相关分析(Canonical Correlation Analysis, CCA)是一种用于分析两组变量之间关系的统计方法。下面是一个使用Python实现典型相关分析的完整示例,使用scikit-learn库中的CCA类。

首先,确保你已经安装了所需的库。如果没有安装,可以使用以下命令进行安装:

pip install numpy pandas scikit-learn

接下来,以下是一个完整的Python示例,演示如何进行典型相关分析:

import numpy as np
import pandas as pd
from sklearn.cross_decomposition import CCA

# 生成示例数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码大师

赏点狗粮吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值