MATLAB数据处理: 每种样本类型随机抽样

本文介绍了一种在处理大样本数据集时,通过随机抽取部分样本进行训练的方法,旨在减少计算时间,防止过拟合,提升模型训练的效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tn=5;% 每种类型随机抽样数
indextrain=[];% 训练样本序号集
for i=1:typenumber
    index301= find(typemat== i);
    n2=length(index301);
    index302=randperm(n2);
    index401=index301(index302(1:tn));
    indextrain=[indextrain;
        index401];
end

该代码可以对大样本数据集随机抽样, 用于训练, 防止样本过多导致训练太慢.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB代码顾问

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值