Python 机器学习 模型保存和加载

本文介绍了Python机器学习中模型的保存和加载,包括使用pickle和joblib库,以及特定机器学习库如TensorFlow和PyTorch的保存加载机制。模型的保存有利于将来直接使用,避免重复训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python 机器学习中,模型保存和加载是两个非常重要的操作。模型保存可以将训练好的模型保存到文件,以便以后使用。模型加载可以将保存的文件加载到内存,以便进行预测或评估。最常用保存和加模型的库包括pickle和joblib,另外在使用特定的机器学习库,如scikit-learn、TensorFlow或PyTorch时,它们也提供了自己的保存和加载机制。

参考文档:Python 机器学习 模型保存和加载-CJavaPy

1、pickle

pickle模块是Python的一部分,提供了一个简单的方式来序列化和反序列化一个Python对象结构。训练好的模型通常需要被保存,以便于未来进行预测时能够直接加载使用,而不需要重新训练。pickle模块是Python中一个常用的进行对象序列化和反序列化的模块,它可以将Python对象转换为字节流,从而能够将对象保存到文件中,或者从文件中恢复对象。

1)模型的保存

pickle.dump()方法用于将Python对象序列化并保存到文件中。常用参数如下,

参数

类型

描述

obj

对象

要被序列化的Python对象。

file

文件对象

一个打开的文件对象,

必须以二进制写模式打开('wb')。

protocol

整数/None

指定pickle数据格式的版本号。

如果省略,则使用默认的协议。可选的协议版本号从0到5,

其中更高的版本

提供了更高的效率和新的功能。

fix_imports

布尔值

仅在Python 2和Python 3之间的互操作性中使用。

默认为True,

为了使pickle文件在不同的Python版本间

能够互相兼容。

buffer_callback

回调函数/None

一个可选的回调函数,

用于pickle协议版本5中,

为了提供对大型数据的优化处理机制。

仅在Python 3.8及以上版本中可用。

使用代码:

import pickle

# 创建一个复杂的数据结构
my_data = {
    'name': 'Python',
    'version': 3.8,
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值