
Discrete Mathematics

Lecture Notes, Yale University, Spring 1999

L. Lovász and K. Vesztergombi

Parts of these lecture notes are based on
L. Lovász – J. Pelikán – K. Vesztergombi: Kombinatorika

(Tankönyvkiadó, Budapest, 1972);
Chapter 14 is based on a section in

L. Lovász – M.D. Plummer: Matching theory

(Elsevier, Amsterdam, 1979)

1

2

Contents

1 Introduction 5

2 Let us count! 7
2.1 A party . 7
2.2 Sets and the like . 9
2.3 The number of subsets . 12
2.4 Sequences . 16
2.5 Permutations . 17

3 Induction 21
3.1 The sum of odd numbers . 21
3.2 Subset counting revisited . 23
3.3 Counting regions . 24

4 Counting subsets 27
4.1 The number of ordered subsets . 27
4.2 The number of subsets of a given size . 28
4.3 The Binomial Theorem . 29
4.4 Distributing presents . 30
4.5 Anagrams . 32
4.6 Distributing money . 33

5 Pascal’s Triangle 35
5.1 Identities in the Pascal Triangle . 35
5.2 A bird’s eye view at the Pascal Triangle . 38

6 Fibonacci numbers 45
6.1 Fibonacci’s exercise . 45
6.2 Lots of identities . 46
6.3 A formula for the Fibonacci numbers . 47

7 Combinatorial probability 51
7.1 Events and probabilities . 51
7.2 Independent repetition of an experiment . 52
7.3 The Law of Large Numbers . 53

8 Integers, divisors, and primes 55
8.1 Divisibility of integers . 55
8.2 Primes and their history . 56
8.3 Factorization into primes . 58
8.4 On the set of primes . 59
8.5 Fermat’s “Little” Theorem . 63
8.6 The Euclidean Algorithm . 64
8.7 Testing for primality . 69

3

9 Graphs 73
9.1 Even and odd degrees . 73
9.2 Paths, cycles, and connectivity . 77

10 Trees 81
10.1 How to grow a tree? . 82
10.2 Rooted trees . 84
10.3 How many trees are there? . 84
10.4 How to store a tree? . 85

11 Finding the optimum 93
11.1 Finding the best tree . 93
11.2 Traveling Salesman . 96

12 Matchings in graphs 98
12.1 A dancing problem . 98
12.2 Another matching problem . 100
12.3 The main theorem . 101
12.4 How to find a perfect matching? . 104
12.5 Hamiltonian cycles . 107

13 Graph coloring 110
13.1 Coloring regions: an easy case . 110

14 A Connecticut class in King Arthur’s court 114

15 A glimpse of cryptography 117
15.1 Classical cryptography . 117

16 One-time pads 117
16.1 How to save the last move in chess? . 118
16.2 How to verify a password—without learning it? 120
16.3 How to find these primes? . 120
16.4 Public key cryptography . 122

4

1 Introduction

For most students, the first and often only area of mathematics in college is calculus. And
it is true that calculus is the single most important field of mathematics, whose emergence
in the 17th century signalled the birth of modern mathematics and was the key to the
successful applications of mathematics in the sciences.

But calculus (or analysis) is also very technical. It takes a lot of work even to introduce
its fundamental notions like continuity or derivatives (after all, it took 2 centuries just
to define these notions properly). To get a feeling for the power of its methods, say by
describing one of its important applications in detail, takes years of study.

If you want to become a mathematician, computer scientist, or engineer, this investment
is necessary. But if your goal is to develop a feeling for what mathematics is all about,
where is it that mathematical methods can be helpful, and what kind of questions do
mathematicians work on, you may want to look for the answer in some other fields of
mathematics.

There are many success stories of applied mathematics outside calculus. A recent hot
topic is mathematical cryptography, which is based on number theory (the study of positive
integers 1,2,3,. . .), and is widely applied, among others, in computer security and electronic
banking. Other important areas in applied mathematics include linear programming, coding
theory, theory of computing. The mathematics in these applications is collectively called
discrete mathematics. (“Discrete” here is used as the opposite of “continuous”; it is also
often used in the more restrictive sense of “finite”.)

The aim of this book is not to cover “discrete mathematics” in depth (it should be clear
from the description above that such a task would be ill-defined and impossible anyway).
Rather, we discuss a number of selected results and methods, mostly from the areas of
combinatorics, graph theory, and combinatorial geometry, with a little elementary number
theory.

At the same time, it is important to realize that mathematics cannot be done without
proofs. Merely stating the facts, without saying something about why these facts are valid,
would be terribly far from the spirit of mathematics and would make it impossible to give
any idea about how it works. Thus, wherever possible, we’ll give the proofs of the theorems
we state. Sometimes this is not possible; quite simple, elementary facts can be extremely
difficult to prove, and some such proofs may take advanced courses to go through. In these
cases, we’ll state at least that the proof is highly technical and goes beyond the scope of
this book.

Another important ingredient of mathematics is problem solving. You won’t be able
to learn any mathematics without dirtying your hands and trying out the ideas you learn
about in the solution of problems. To some, this may sound frightening, but in fact most
people pursue this type of activity almost every day: everybody who plays a game of chess,
or solves a puzzle, is solving discrete mathematical problems. The reader is strongly advised
to answer the questions posed in the text and to go through the problems at the end of
each chapter of this book. Treat it as puzzle solving, and if you find some idea that you
come up with in the solution to play some role later, be satisfied that you are beginning to
get the essence of how mathematics develops.

We hope that we can illustrate that mathematics is a building, where results are built

5

on earlier results, often going back to the great Greek mathematicians; that mathematics
is alive, with more new ideas and more pressing unsolved problems than ever; and that
mathematics is an art, where the beauty of ideas and methods is as important as their
difficulty or applicability.

6

2 Let us count!

2.1 A party

Alice invites six guests to her birthday party: Bob, Carl, Diane, Eve, Frank and George.
When they arrive, they shake hands with each other (strange European custom). This
group is strange anyway, because one of them asks: “How many handshakes does this
mean?”

“I shook 6 hands altogether” says Bob, “and I guess, so did everybody else.”
“Since there are seven of us, this should mean 7 · 6 = 42 handshakes” ventures Carl.
“This seems too many” says Diane. “The same logic gives 2 handshakes if two persons

meet, which is clearly wrong.”
“This is exactly the point: every handshake was counted twice. We have to divide 42

by 2, to get the right number: 21.” settles Eve the issue.

When they go to the table, Alice suggests:
“Let’s change the seating every half an hour, until we get every seating.”
“But you stay at the head of the table” says George, “since you have your birthday.”
How long is this party going to last? How many different seatings are there (with Alice’s

place fixed)?
Let us fill the seats one by one, starting with the chair on Alice’s right. We can put here

any of the 6 guests. Now look at the second chair. If Bob sits on the first chair, we can
put here any of the remaining 5 guests; if Carl sits there, we again have 5 choices, etc. So
the number of ways to fill the first two chairs is 5+5+5+5+5+5 = 6 · 5 = 30. Similarly,
no matter how we fill the first two chairs, we have 4 choices for the third chair, which gives
6 · 5 · 4 ways to fill the first three chairs. Going on similarly, we find that the number of
ways to seat the guests is 6 · 5 · 4 · 3 · 2 · 1 = 720.

If they change seats every half an hour, it takes 360 hours, that is, 15 days to go through
all seating orders. Quite a party, at least as the duration goes!

2.1 How many ways can these people be seated at the table, if Alice too can sit any-
where?

After the cake, the crowd wants to dance (boys with girls, remember, this is a conser-
vative European party). How many possible pairs can be formed?

OK, this is easy: there are 3 girls, and each can choose one of 4 guys, this makes
3 · 4 = 12 possible pairs.

After about ten days, they really need some new ideas to keep the party going. Frank
has one:

“Let’s pool our resources and win a lot on the lottery! All we have to do is to buy
enough tickets so that no matter what they draw, we should have a ticket with the right
numbers. How many tickets do we need for this?”

(In the lottery they are talking about, 5 numbers are selected from 90.)
“This is like the seating” says George, “Suppose we fill out the tickets so that Alice

marks a number, then she passes the ticket to Bob, who marks a number and passes it to
Carl, . . . Alice has 90 choices, no matter what she chooses, Bob has 89 choices, so there are

7

90 · 89 choices for the first two numbers, and going on similarly, we get 90 · 89 · 88 · 87 · 86
possible choices for the five numbers.”

“Actually, I think this is more like the handshake question” says Alice. “If we fill out
the tickets the way you suggested, we get the same ticket more then once. For example,
there will be a ticket where I mark 7 and Bob marks 23, and another one where I mark 23
and Bob marks 7.”

Carl jumped up:
“Well, let’s imagine a ticket, say, with numbers 7,23,31,34 and 55. How many ways

do we get it? Alice could have marked any of them; no matter which one it was that she
marked, Bob could have marked any of the remaining four. Now this is really like the
seating problem. We get every ticket 5 · 4 · 3 · 2 · 1 times.”

“So” concludes Diane, “if we fill out the tickets the way George proposed, then among
the 90 · 89 · 88 · 87 · 86 tickets we get, every 5-tuple occurs not only once, but 5 · 4 · 3 · 2 · 1
times. So the number of different tickets is only

90 · 89 · 88 · 87 · 86

5 · 4 · 3 · 2 · 1 .

We only need to buy this number of tickets.”
Somebody with a good pocket calculator computed this value in a glance; it was

43,949,268. So they had to decide (remember, this happens in a poor European coun-
try) that they don’t have enough money to buy so many tickets. (Besides, they would win
much less. And to fill out so many tickets would spoil the party. . .)

So they decide to play cards instead. Alice, Bob, Carl and Diane play bridge. Looking
at his cards, Carl says: “I think I had the same hand last time.”

“This is very unlikely” says Diane.
How unlikely is it? In other words, how many different hands can you have in bridge?

(The deck has 52 cards, each player gets 13.) I hope you have noticed it: this is essentially
the same question as the lottery. Imagine that Carl picks up his cards one by one. The first
card can be any one of the 52 cards; whatever he picked up first, there are 51 possibilities for
the second card, so there are 52 · 51 possibilities for the first two cards. Arguing similarly,
we see that there are 52 · 51 · 50 · . . . · 40 possibilities for the 13 cards.

But now every hand was counted many times. In fact, if Eve comes to quibbiz and
looks into Carl’s cards after he arranged them, and tries to guess (I don’t now why) the
order in which he picked them up, she could think: “He could have picked up any of the
13 cards first; he could have picked up any of the remaining 12 cards second; any of the
remaining 11 cards third;. . . Aha, this is again like the seating: there are 13 · 12 · . . . · 2 · 1
orders in which he could have picked up his cards.”

But this means that the number of different hands in bridge is

52 · 51 · 50 · . . . · 40

13 · 12 · . . . · 2 · 1 = 635,013,559,600.

So the chance that Carl had the same hand twice in a row is one in 635,013,559,600, very
small indeed.

Finally, the six guests decide to play chess. Alice, who just wants to watch them, sets
up 3 boards.

8

“How many ways can you guys be matched with each other?” she wonders. “This is
clearly the same problem as seating you on six chairs; it does not matter whether the chairs
are around the dinner table of at the three boards. So the answer is 720 as before.”

“I think you should not count it as a different matching if two people at the same board
switch places” says Bob, “and it should not matter which pair sits at which table.”

“Yes, I think we have to agree on what the question really means” adds Carl. “If we
include in it who plays white on each board, then if a pair switches places we do get a
different matching. But Bob is right that it does not matter which pair uses which board.”

“What do you mean it does not matter? You sit at the first table, which is closest to
the peanuts, and I sit at the last, which is farthest” says Diane.

“Let’s just stick to Bob’s version of the question” suggests Eve. “It is not hard, actually.
It is like with handshakes: Alice’s figure of 720 counts every matching several times. We
could rearrange the tables in 6 different ways, without changing the matching.”

“And each pair may or may not switch sides” adds Frank. “This means 2 ·2 ·2 = 8 ways
to rearrange people without changing the matching. So in fact there are 6 · 8 = 48 ways to
sit which all mean the same matching. The 720 seatings come in groups of 48, and so the
number of matchings is 720/48 = 15.”

“I think there is another way to get this” says Alice after a little time. “Bob is youngest,
so let him choose a partner first. He can choose his partner in 5 ways. Whoever is youngest
among the rest, can choose his or her partner in 3 ways, and this settles the matching. So
the number of matchings is 5 · 3 = 15.”

“Well, it is nice to see that we arrived at the same figure by two really different ar-
guments. At the least, it is reassuring” says Bob, and on this happy note we leave the
party.

2.2 What is the number of “matchings” in Carl’s sense (when it matters who sits on
which side of the board, but the boards are all alike), and in Diane’s sense (when it is
the other way around)?

2.2 Sets and the like

We want to formalize assertions like “the problem of counting the number of hands in bridge
is essentially the same as the problem of counting tickets in the lottery”. The usual tool
in mathematics to do so is the notion of a set. Any collection of things, called elements,
is a set. The deck of cards is a set, whose elements are the cards. The participants of the
party form a set, whose elements are Alice, Bob, Carl, Diane, Eve, Frank and George (let
us denote this set by P). Every lottery ticket contains a set of 5 numbers.

For mathematics, various sets of numbers are important: the set of real numbers, de-
noted by R; the set of rational numbers, denoted by Q; the set of integers, denote by Z; the
set of non-negative integers, denoted by Z+; the set of positive integers, denoted by N. The
empty set, the set with no elements is another important (although not very interesting)
set; it is denoted by ∅.

If A is a set and b is an element of A, we write b ∈ A. The number of elements of a set
A (also called the cardinality of A) is denoted by |A|. Thus |P | = 7; |∅| = 0; and |Z| = ∞
(infinity).1

1In mathematics, one can distinguish various levels of “infinity”; for example, one can distinguish between

9

We may specify a set by listing its elements between braces; so

P = {Alice, Bob, Carl, Diane, Eve, Frank, George}

is the set of participants of Alice’s birthday party, or

{12,23,27,33,67}

is the set of numbers on my uncle’s lottery ticket. Sometimes we replace the list by a verbal
description, like

{Alice and her guests}.

Often we specify a set by a property that singles out the elements from a large universe
like real numbers. We then write this property inside the braces, but after a colon. Thus

{x ∈ Z : x ≥ 0}

is the set of non-negative integers (which we have called Z+ before), and

{x ∈ P : x is a girl} = {Alice, Diane, Eve}

(we denote this set by G). Let me also tell you that

D = {x ∈ P : x is over 21} = {Alice, Carl, Frank}

(we denote this set by D).
A set A is called a subset of a set B, if every element of A is also an element of B. In

other words, A consists of certain elements of B. We allow that A consists of all elements
of B (in which case A = B), or none of them (in which case A = ∅). So the empty set is a
subset of every set. The relation that A is a subset of B is denoted by

A ⊆ B.

For example, among the various sets of people considered above, G ⊆ P and D ⊆ P .
Among the sets of numbers, we have a long chain:

∅ ⊆ N ⊆ Z+ ⊆ Z ⊆ Q ⊆ R

The intersection of two sets is the set consisting of those elements that elements of both
sets. The intersection of two sets A and B is denoted by A ∩ B. For example, we have
G ∩ D = {Alice}. Two sets whose intersection is the empty set (in other words, have no
element in common) are called disjoint.

2.3 Name sets whose elements are (a) buildings, (b) people, (c) students, (d) trees, (e)
numbers, (f) points.

2.4 What are the elements of the following sets: (a) army, (b) mankind, (c) library, (d)
the animal kingdom?

the cardinalities of Z and R. This is the subject matter of set theory and does not concern us here.

10

2.5 Name sets having cardinality (a) 52, (b) 13, (c) 32, (d) 100, (e) 90, (f) 2,000,000.

2.6 What are the elements of the following (admittedly peculiar) set: {Alice,{1}}?

2.7 We have not written up all subset relations between various sets of numbers; for
example, Z ⊆ R is also true. How many such relations can you find between the sets
∅,N,Z+,Z,Q,R?

2.8 Is an “element of a set” a special case of a “subset of a set”?

2.9 List all subsets of {0,1,3}. How many do you get?

2.10 Define at least three sets, of which {Alice, Diane, Eve} is a subset.

2.11 List all subsets of {a,b,c,d,e}, containing a but not containing b.

2.12 Define a set, of which both {1,3,4} and {0,3,5} are subsets. Find such a set with
a smallest possible number of elements.

2.13 (a) Which set would you call the union of {a,b,c}, {a,b,d} and {b,c,d,e}?

(b) Find the union of the first two sets, and then the union of this with the third. Also,
find the union of the last two sets, and then the union of this with the first set. Try to
formulate what you observed.

(c) Give a definition of the union of more than two sets.

2.14 Explain the connection beween the notion of the union of sets and exercise 2.2.

2.15 We form the union of a set with 5 elements and a set with 9 elements. Which of
the following numbers can we get as the cardinality of the union: 4, 6, 9, 10, 14, 20?

2.16 We form the union of two sets. We know that one of them has n elements and
the other has m elements. What can we infer for the cardinality of the union?

2.17 What is the intersection of

(a) the sets {0,1,3} and {1,2,3};

(b) the set of girls in this class and the set of boys in this class;

(c) the set of prime numbers and the set of even numbers?

2.18 We form the intersection of two sets. We know that one of them has n elements
and the other has m elements. What can we infer for the cardinality of the intersection?

2.19 Prove that |A ∪B|+ |A ∩B| = |A|+ |B|.

2.20 The symmetric difference of two sets A and B is the set of elements that belong
to exectly one of A and B.

(a) What is the symmetric difference of the set Z+ of non-negative integers and the set
E of even integers (E = {. . .− 4,−2,0,2,4, . . . contains both negative and positive even
integers).

(b) Form the symmetric difference of A ad B, to get a set C. Form the symmetric
difference of A and C. What did you get? Give a proof of the answer.

11

2.3 The number of subsets

Now that we have introduced the notion of subsets, we can formulate our first general
combinatorial problem: what is the number of all subsets of a set with n elements?

We start with trying out small numbers. It plays no role what the elements of the set
are; we call them a,b,c etc. The empty set has only one subset (namely, itself). A set with
a single element, say {a}, has two subsets: the set {a} itself and the empty set ∅. A set
with two elements, say {a,b} has four subsets: ∅,{a},{b} and {a,b}. It takes a little more
effort to list all the subsets of a set {a,b,c} with 3 elements:

∅,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}. (1)

We can make a little table from these data:

No. of elements 0 1 2 3

No. of subsets 1 2 4 8

Looking at these values, we observe that the number of subsets is a power of 2: if the set
has n elements, the result is 2n, at least on these small examples.

It is not difficult to see that this is always the answer. Suppose you have to select a
subset of a set A with n elements; let us call these elements a1, a2, . . . , an. Then we may
or may not want to include a1, in other words, we can make two possible decisions at this
point. No matter how we decided about a1, we may or may not want to include a2 in
the subset; this means two possible decisions, and so the number of ways we can decide
about a1 and a2 is 2 · 2 = 4. Now no matter how we decide about a1 and a2, we have to
decide about a3, and we can again decide in two ways. Each of these ways can be combined
with each of the 4 decisions we could have made about a1 and a2, which makes 4 · 2 = 8
possibilities to decide about a1,a2 and a3.

We can go on similarly: no matter how we decide about the first k elements, we have
two possible decisions about the next, and so the number of possibilities doubles whenever
we take a new element. For deciding about all the n elements of the set, we have have 2n

possibilities.
Thus we have proved the following theorem.

Theorem 2.1 A set with n elements has 2n subsets.

We can illustrate the argument in the proof by the picture in Figure 1.
We read this figure as follows. We want to select a subset called S. We start from the

circle on the top (called a node). The node contains a question: is a1 an element of S? The
two arrows going out of this node are labeled with the two possible answers to this question
(Yes and No). We make a decision and follow the appropriate arrow (also called an edge)
to the the node at the other end. This node contains the next question: is a2 an element
of S? Follow the arrow corresponding to your answer to the next node, which contains the
third (and in this case last) question you have to answer to determine the subset: is a3

an element of S? Giving an answer and following the appropriate arrow we get to a node,
which contains a listing of the elements of S.

Thus to select a subset corresponds to walking down this diagram from the top to the
bottom. There are just as many subsets of our set as there are nodes on the last level.

12

abc ab ac a bc b c -

Sb

a S

b

ScScScSc

S

ε

Y N

Y N Y N

Y N Y N Y N Y N

ε ε

ε ε ε ε

Figure 1: A decision tree for selecting a subset of {a,b,c}.

Since the number of nodes doubles from level to level as we go down, the last level contains
23 = 8 nodes (and if we had an n-element set, it would contain 2n nodes).

Remark. A picture like this is called a tree. (This is not a mathematical definition, which
we’ll see later.) If you want to know why is the tree growing upside down, ask the computer
scientists who introduced it, not us.

We can give another proof of theorem 2.1. Again, the answer will be made clear by
asking a question about subsets. But now we don’t want to select a subset; what we want
is to enumerate subsets, which means that we want to label them with numbers 0,1,2, . . . so
that we can speak, say, about subset No. 23 of the set. In other words, we want to arrange
the subsets of the set in a list and the speak about the 23rd subset on the list.

(We actually want to call the first subset of the list No. 0, the second subset on the list
No. 1 etc. This is a little strange but this time it is the logicians who are to blame. In fact,
you will find this quite natural and handy after a while.)

There are many ways to order the subsets of a set to form a list. A fairly natural thing
to do is to start with ∅, then list all subsets with 1 elements, then list all subsets with 2
elements, etc. This is the way the list (1) is put together.

We could order the subsets as in a phone book. This method will be more transparent
if we write the subsets without braces and commas. For the subsets of {a,b,c}, we get the
list

∅,a,ab,abc,ac,b,bc,c.

These are indeed useful and natural ways of listing all subsets. They have one short-
coming though. Imagine the list of the subsets of five elements, and ask yourself to name
the 23rd subset on the list, without actually writing down the whole list. This will be
difficult! Is there a way to make this easier?

Let us start with another way of denoting subsets (another encoding in the mathematical
jargon). We illustrate it on the subsets of {a, b, c}. We look at the elements one by one,
and write down a 1 if the element occurs in the subset and a 0 if it does not. Thus for

13

the subset {a,c}, we write down 101, since a is in the subset, b is not, and c is in it again.
This way every subset in “encoded” by a string of length 3, consisting of 0’s and 1’s. If we
specify any such string, we can easily read off the subset it corresponds to. For example,
the string 010 corresponds to the subset {b}, since the first 0 tells us that a is not in the
subset, the 1 that follows tells us that b is in there, and the last 0 tells us that c is not
there.

Now such strings consisting of 0’s and 1’s remind us of the binary representation of
integers (in other words, representations in base 2). Let us recall the binary form of non-
negative integers up to 10:

0 = 02

1 = 12

2 = 102

3 = 2 + 1 = 112

4 = 1002

5 = 4 + 1 = 1012

6 = 4 + 2 = 1102

7 = 4 + 2 + 1 = 1112

8 = 10002

9 = 8 + 1 = 10012

10 = 8 + 2 = 10102

(We put the subscript 2 there to remind ourselves that we are working in base 2, not 10.)
Now the binary forms of integers 0,1, . . . ,7 look almost as the “codes” of subsets; the

difference is that the binary form of an integer always starts with a 1, and the first 4 of
these integers have binary forms shorter than 3, while all codes of subsets consist of exactly
3 digits. We can make this difference disappear if we append 0’s to the binary forms at
their beginning, to make them all have the same length. This way we get the following
correspondence:

0 ⇔ 02 ⇔ 000 ⇔ ∅
1 ⇔ 12 ⇔ 001 ⇔ {c}
2 ⇔ 102 ⇔ 010 ⇔ {b}
3 ⇔ 112 ⇔ 011 ⇔ {b,c}
4 ⇔ 1002 ⇔ 100 ⇔ {a}
5 ⇔ 1012 ⇔ 101 ⇔ {a,c}
6 ⇔ 1102 ⇔ 110 ⇔ {a,b}
7 ⇔ 1112 ⇔ 111 ⇔ {a,b,c}

So we see that the subsets of {a,b,c} correspond to the numbers 0,1, . . . ,7.
What happens if we consider, more generally, subsets of a set with n elements? We can

argue just like above, to get that the subsets of an n-element set correspond to integers,
starting with 0, and ending with the largest integer that has only n digits in its binary
representation (digits in the binary representation are usually called bits). Now the smallest
number with n + 1 bits is 2n, so the subsets correspond to numbers 0,1,2, . . . ,2n − 1. It is
clear that the number of these numbers in 2n, hence the number of subsets is 2n.

14

Comments. We have given two proofs of theorem 2.1. You may wonder why we needed
two proofs. Certainly not because a single proof would not have given enough confidence in
the truth of the statement! Unlike in a legal procedure, a mathematical proof either gives
absolute certainty or else it is useless. No matter how many incomplete proofs we give,
they don’t add up to a single complete proof.

For that matter, we could ask you to take our word for it, and not give any proof. Later
in some cases this will be necessary, when we will state theorems whose proof is too long
or too involved to be included in these notes.

So why did we bother to give any proof, let alone two proofs of the same statement?
The answer is that every proof reveals much more than just the bare fact stated in the
theorem, and this plus may be even more valuable. For example, the first proof given
above introduced the idea of breaking down the selection of a subset into independent
decisions, and the representation of this idea by a tree.

The second proof introduced the idea of enumerating these subsets (labeling them with
integers 0,1,2, . . .). We also saw an important method of counting: we established a corre-
spondence between the objects we wanted to count (the subsets) and some other kinds of
objects that we can count easily (the numbers 0,1, . . . ,2n − 1). In this correspondence

— for every subset, we had exactly one corresponding number, and

— for every number, we had exactly one corresponding subset.

A correspondence with these properties is called a one-to-one correspondence (or bijec-
tion). If we can make a one-to-one correspondence between the elements of two sets, then
they have the same number of elements.

So we know that the number of subsets of a 100-element set is 2100. This is a large
number, but how large? It would be good to know, at least, how many digits it will have
in the usual decimal form. Using computers, it would not be too hard to find the decimal
form of this number, but let’s try to estimate at least the order of magnitude of it.

We know that 23 = 8 < 10, and hence 299 < 1033. Therefore, 2100 < 2 · 1033. Now
2 ·1033 is a 2 followed by 33 zeroes; it has 34 digits, and therefore 2100 has at most 34 digits.

We also know that 210 = 1024 > 1000 = 103.2 Hence 2100 > 1030, which means that
2100 has at least 30 digits.

This gives us a reasonably good idea of the size of 2100. With a little more high school
math, we can get the number of digits exactly. What does it mean that a number has
exactly k digits? It means that it is between 10k−1 and 10k (the lower bound is allowed,
the upper is not). We want to find the value of k for which

10k−1 ≤ 2100 < 10k.

Now we can write 2100 in the form 10x, only x will not be an integer: the appropriate value
of x is x = lg2100 = 100lg2. We have then

k − 1 ≤ x < k,

2The fact that 210 is so close to 103 is used — or rather misused — in the name “kilobyte”, which
means 1024 bytes, although it should mean 1000 bytes, just like a “kilogram” means 1000 grams. Similarly,
“megabyte” means 220 bytes, which is close to 1 million bytes, but not exactly the same.

15

which means that k−1 is the largest integer not exceeding x. Mathematicians have a name
for this: it is the integer part or floor of x, and it is denoted by ⌊x⌋. We can also say that
we obtain k by rounding x down to the next integer. There is also a name for the number
obtained by rounding x up to the next integer: it is called the ceiling of x, and denoted by
⌈x⌉.

Using any scientific calculator (or table of logarithms), we see that lg2 ≈ 0.30103, thus
100lg2 ≈ 30.103, and rounding this down we get that k − 1 = 30. Thus 2100 has 31 digits.

2.21 Under the correspondence between numbers and subsets described above, which
number correspond to subsets with 1 element?

2.22 What is the number of subsets of a set with n elements, containing a given element?

2.23 What is the number of integers with (a) at most n (decimal) digits; (b) exactly n
digits?

2.24 How many bits (binary digits) does 2100 have if written in base 2?

2.25 Find a formula for the number of digits of 2n.

2.4 Sequences

Motivated by the “encoding” of subsets as strings of 0’s and 1’s, we may want to determine
the number of strings of length n composed of some other set of symbols, for example, a,
b and c. The argument we gave for the case of 0’s and 1’s can be carried over to this case
without any essential change. We can observe that for the first element of the string, we
can choose any of a, b and c, that is, we have 3 choices. No matter what we choose, there
are 3 choices for the second of the string, so the number of ways to choose the first two
elements is 32 = 9. Going on in a similar manner, we get that the number of ways to choose
the whole string is 3n.

In fact, the number 3 has no special role here; the same argument proves the following
theorem:

Theorem 2.2 The number of strings of length n composed of k given elements is kn.

The following problem leads to a generalization of this question. Suppose that a
database has 4 fields: the first, containing an 8-character abbreviation of an employee’s
name; the second, M or F for sex; the third, the birthday of the employee, in the format
mm-dd-yy (disregarding the problem of not being able to distinguish employees born in
1880 from employees born in 1980); and the fourth, a jobcode which can be one of 13
possibilities. How many different records are possible?

The number will certainly be large. We already know from theorem 2.2 that the first
field may contain 268 > 200,000,000,000 names (most of these will be very difficult to
pronounce, and are not likely to occur, but let’s count all of them as possibilities). The
second field has 2 possible entries; the third, 36524 possible entries (the number of days in
a century); the last, 13 possible entries.

Now how do we determine the number of ways these can be combined? The argument
we described above can be repeated, just “3 choices” has to be replaced, in order, by

16

“268 choices”, “2 choices”, “36524 choices” and “13 choices”. We get that the answer is
268 · 2 · 36524 · 13 = 198307192370919424.

We can formulate the following generalization of theorem 2.2

Theorem 2.3 Suppose that we want to form strings of length n so that we can use any of
a given set of k1 symbols as the first element of the string, any of a given set of k2 symbols
as the second element of the string, etc., any of a given set of kn symbols as the last element
of the string. Then the total number of strings we can form is k1 · k2 · . . . · kn.

As another special case, consider the problem: how many non-negative integers have
exactly n digits (in decimal)? It is clear that the first digit can be any of 9 numbers
(1,2, . . . ,9), while the second, third, etc. digits can be any of the 10 digits. Thus we get a
special case of the previous question with k1 = 9 and k2 = k3 = . . . = kn = 10. Thus the
answer is 9 · 10n−1. (cf. with exercise 2.3).

2.26 Draw a tree illustrating the way we counted the number of strings of length 2
formed from the characters a, b and c, and explain how it gives the answer. Do the
same for the more general problem when n = 3, k1 = 2, k2 = 3, k3 = 2.

2.27 In a sport shop, there are T-shirts of 5 different colors, shorts of 4 different colors,
and socks of 3 different colors. How many different uniforms can you compose from
these items?

2.28 On a ticket for a succer sweepstake, you have to guess 1, 2, or X for each of 13
games. How many different ways can you fill out the ticket?

2.29 We roll a dice twice; how many different outcomes can we have (a 1 followed by
a 4 is different from a 4 followed by a 1)?

2.30 We have 20 different presents that we want to distribute to 12 children. It is
not required that every child gets something; it could even happen that we give all the
presents to the same child. In how many ways can we distribute the presents?

2.31 We have 20 kinds of presents; this time, we have a large supply from each. We
want to give presents to 12 children. Again, it is not required that every child gets
something; but no child can get two copies of the same present. In how many ways can
we give presents?

2.5 Permutations

During the party, we have already encountered the problem: how many ways can we seat
n people on n chairs (well, we have encountered it for n = 6 and n = 7, but the question
is natural enough for any n). If we imagine that the seats are numbered, then a finding
a seating for these people is the same as assigning them to the numbers 1, 2, . . . , n (or
0,1, . . . ,n− 1 if we want to please the logicians). Yet another way of saying this is to order
the people in a single line, or write down an (ordered) list of their names.

If we have an ordered list of n objects, and we rearrange them so that they are in another
order, this is called permuting them, and the new order is also called a permutation of the
objects. We also call the rearrangement that does not change anything, a permutation
(somewhat in the spirit of calling the empty set a set).

17

c

baacb c

ba

abc bcaacb bac cab cba

No.1?

No.2? No.2? No.2?

Figure 2: A decision tree for selecting a subset of {a,b,c}.

For example, the set {a,b,c} has the following 6 permutations:

abc,acb,bac,bca,cab,cba.

So the question is to determine the number of ways n objects can be ordered, i.e., the
number of permutations of n objects. The solution found by the people at the party works
in general: we can put any of the n people on the first place; no matter whom we choose,
we have n−1 choices for the second. So the number of ways to fill the first two positions is
n(n−1). No matter how we have filled the first and second positions, there are n−2 choices
for the third position, so the number of ways to fill the first three positions is n(n−1)(n−2).

It is clear that this argument goes on like this until all positions are filled. The last but
one position can be filled in two ways; the person put in the last position is determined, if
the other positions are filled. Thus the number of ways to fill all positions is n · (n − 1) ·
(n − 2) · . . . · 2 · 1. This product is so important that we have a notation for it: n! (read n
factorial). In other words, n! is the number of ways to order n objects. With this notation,
we can state our second theorem.

Theorem 2.4 The number of permutations of n objects in n!.

Again, we can illustrate the argument above graphically (Figure 2). We start with the
node on the top, which poses our first decision: whom to seat on the first chair? The
3 arrows going out correspond to the three possible answers to the question. Making a
decision, we can follow one of the arrows down to the next node. This carries the next
decision problem: whom to put on the second chair? The two arrows out of the node
represent the two possible choices. (Note that these choices are different for different nodes
on this level; what is important is that there are two arrows going out from each node.) If
we make a decision and follow the corresponding arrow to the next node, we know who sits
on the third chair. The node carries the whole “seating order”.

It is clear that for a set with n elements, n arrows leave the top node, and hence there
are n nodes on the next level. n − 1 arrows leave each of these, hence there are n(n − 1)
nodes on the third level. n − 2 arrows leave each of these, etc. The bottom level has n!
nodes. This shows that there are exactly n! permutations.

18

2.32 n boys and n girls go out to dance. In how many ways can they all dance
simultaneously? (We assume that only couples of different sex dance with each other.)

2.33 (a) Draw a tree for Alice’s solution of enumerating the number of ways 6 people
can play chess, and explain Alice’s argument using the tree.

(b) Solve the problem for 8 people. Can you give a general formula for 2n people?

It is nice to know such a formula for the number of permutations, but often we just
want to have a rough idea about how large it is. We might want to know, how many digits
does 100! have? Or: which is larger, n! or 2n? In other words, does a set with n elements
have more permutations or more subsets?

Let us experiment a little. For small values of n, subsets are winning: 21 = 2 > 1! = 1,
22 = 4 > 2! = 2, 23 = 8 > 3! = 6. But then the picture changes: 24 = 16 < 4! = 24,
35 = 32 < 5! = 120. It is easy to see that as n increases, n! grows much faster than 2n: if
we go from n to n + 1, then 2n grows by a factor of 2, while n! grows by a factor of n + 1.

This shows that 100! > 2100; we already know that 2100 has 31 digits, and hence it
follows that 100! has at least 31 digits.

What upper bound can we give on n!? It is trivial that n! < nn, since n! is the product of
n factors, each of which is at most n. (Since most of them are smaller than n, the product
is in fact much smaller.) In particular, for n = 100, we get that 100! < 100100 = 10200, so
100! has at most 200 digits.

In general we know that, for n ≥ 4,

2n < n! < nn.

These bounds are rather weak; for n = 10, the lower bound is 210 = 1024 while the upper
bound is 1010 (i.e., ten billion).

We could also notice that n−9 factors in n! are greater than, or equal to 10, and hence
n! ≥ 10n−9. This is a much better bound for large n, but it is still far from the truth. For
n = 100, we get that 100! ≥ 1091, so it has at least 91 digits.

There is a formula that gives a very good approximation of n!. We state it without
proof, since the proof (although not terribly difficult) needs calculus.

Theorem 2.5 [Stirling’s Formula]

n! ∼
(n

e

)n √
2πn.

Here π = 3.14 . . . is the area of the circle with unit radius, e = 2.718 . . . is the basis of the
natural logarithm, and ∼ means approximate equality in the precise sense that on the one
hand

n!
(

n
e

)n √
2πn

→ 1 (n → ∞).

Both these funny irrational numbers e and π occur in the same formula!

So how many digits does 100! have? We know by Stirling’s Formula that

100! ≈ (100/e)100 ·
√

200π.

19

The number of digits of this number is its logarithm, in base 10, rounded up. Thus we get

lg(100!) ≈ 100lg(100/e) + 1 + lg
√

2π = 157.969 . . .

So the number of digits in 100! is about 158 (actually, this is the right value).

2.34 (a) Which is larger, n or n(n − 1)/2?

(b) Which is larger, n2 or 2n?

2.35 (a) Prove that 2n > n3 if n is large enough.

(b) Use (a) to prove that 2n/n2 becomes arbitrarily large if n is large enough.

20

3 Induction

3.1 The sum of odd numbers

It is time to learn one of the most important tools in discrete mathematics. We start with
a question: We add up the first n odd numbers. What do we get?

Perhaps the best way to try to find the answer is to experiment. If we try small values
of n, this is what we find:

1 = 1

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

1 + 3 + 5 + 7 + 9 = 25

1 + 3 + 5 + 7 + 9 + 11 = 36

1 + 3 + 5 + 7 + 9 + 11 + 13 = 49

1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 = 64

1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 = 81

1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 = 100

It is easy to observe that we get squares; in fact, it seems from this examples that the
sum of the first n odd numbers is n2. This we have observed for the first 10 values of n; can
we be sure that it is valid for all? Well, I’d say we can be reasonably sure, but not with
mathematical certainty. How can we prove the assertion?

Consider the sum for a general n. The n-th odd number is 2n − 1 (check!), so we want
to prove that

1 + 3 + . . .+ (2n − 3) + (2n − 1) = n2. (2)

If we separate the last term in this sum, we are left with the sum of the first (n − 1) odd
numbers:

1 + 3 + . . .+ (2n − 3) + (2n − 1) =
(

1 + 3 + . . .+ (2n − 3)
)

+ (2n − 1)

Now here the sum in the large parenthesis is (n − 1)2, so the total is

(n − 1)2 + (2n − 1) = (n2 − 2n + 1) + (2n − 1) = n2, (3)

just as we wanted to prove.
Wait a minute! Aren’t we using in the proof the statement that we are proving? Surely

this is unfair! One could prove everything if this were allowed.
But in fact we are not quite using the same. What we were using, is the assertion about

the sum of the first n−1 odd numbers; and we argued (in (3)) that this proves the assertion
about the sum of the first n odd numbers. In other words, what we have shown is that if
the assertion is true for a certain value of n, it is also true for the next.

This is enough to conclude that the assertion is true for every n. We have seen that it
is true for n = 1; hence by the above, it is also true for n = 2 (we have seen this anyway by

21

direct computation, but this shows that this was not even necessary: it followed from the
case n = 1).

In a similar way, the truth of the assertion for n = 2 implies that it is also true for
n = 3, which in turn implies that it is true for n = 4, etc. If we repeat this sufficiently
many times, we get the truth for any value of n.

This proof technique is called induction (or sometimes mathematical induction, to dis-
tinguish it from a notion in philosophy). It can be summarized as follows.

Suppose that we want to prove a property of positive integers. Also suppose that we
can prove two facts:

(a) 1 has the property, and

(b) whenever n − 1 has the property, then also n has the property (n ≥ 1).

The principle of induction says that if (a) and (b) are true, then every natural number has
the property.

Often the best way to try to carry out an induction proof is the following. We try to
prove the statement (for a general value of n), and we are allowed to use that the statement
is true if n is replaced by n − 1. (This is called the induction hypothesis.) If it helps, one
may also use the validity of the statement for n− 2, n− 3, etc., in general for every k such
that k < n.

Sometimes we say that if 0 has the property, and every integer n inherits the property
from n−1, then every integer has the property. (Just like if the founding father of a family
has a certain piece of property, and every new generation inherits this property from the
previous generation, then the family will always have this property.)

3.1 Prove, using induction but also without it, that n(n + 1) is an even number for
every non-negative integer n.

3.2 Prove by induction that the sum of the first n positive integers is n(n + 1)/2.

3.3 Observe that the number n(n + 1)/2 is the number of handshakes among n + 1
people. Suppose that everyone counts only handshakes with people older than him/her
(pretty snobbish, isn’t it?). Who will count the largest number of handshakes? How
many people count 6 handshakes?

Give a proof of the result of exercise 3.1, based on your answer to these questions.

3.4 Give a proof of exercise 3.1, based on figure 3.

3.5 Prove the following identity:

1 · 2 + 2 · 3 + 3 · 4 + . . .+ (n − 1) ·n =
(n − 1) ·n · (n + 1)

3
.

Exercise 3.1 relates to a well-known (though apocryphal) anecdote from the history
of mathematics. Carl Friedrich Gauss (1777-1855), one of the greatest mathematicians
of all times, was in elementary school when his teacher gave the class the task to add
up the integers from 1 to 1000 (he was hoping that he would get an hour or so to relax
while his students were working). To his great surprise, Gauss came up with the correct
answer almost immediately. His solution was extremely simple: combine the first term
with the last, you get 1 + 1000 = 1001; combine the second term with the last but one,

22

2(1+2+3+4+5)= 5.6=301+2+3+4+5=?

Figure 3: The sum of the first n integers

you get 2+999 = 1001; going on in a similar way, combining the first remaining term with
the last one (and then discarding them) you get 1001. The last pair added this way is
500+501 = 1001. So we obtained 500 times 1001, which makes 500500. We can check this
answer against the formula given in exercise 3.1: 1000 · 1001/2 = 500500.

3.6 Use the method of the little Gauss to give a third proof of the formula in exercise
3.1

3.7 How would the little Gauss prove the formula for the sum of the first n odd numbers
(2)?

3.8 Prove that the sum of the first n squares (1+4+9+ . . .+n2) is n(n+1)(2n+1)/6.

3.9 Prove that the sum of the first n powers of 2 (starting with 1 = 20) is 2n − 1.

3.2 Subset counting revisited

In chapter 2 we often relied on the convenience of saying “etc.”: we described some argument
that had to be repeated n times to give the result we wanted to get, but after giving the
argument once or twice, we said “etc.” instead of further repetition. There is nothing
wrong with this, if the argument is sufficiently simple so that we can intuitively see where
the repetition leads. But it would be nice to have some tool at hand which could be used
instead of “etc.” in cases when the outcome of the repetition is not so transparent.

The precise way of doing this is using induction, as we are going to illustrate by revisiting
some of our results. First, let us give a proof of the formula for the number of subsets of
an n-element set, given in Theorem 2.1 (recall that the answer is 2n).

As the principle of induction tells us, we have to check that the assertion is true for
n = 0. This is trivial, and we already did it. Next, we assume that n > 0, and that the
assertion is true for sets with n−1 elements. Consider a set S with n elements, and fix any
element a ∈ S. We want to count the subsets of S. Let us divide them into two classes:
those containing a and those not containing a. We count them separately.

First, we deal with those subsets which don’t contain a. If we delete a from S, we are
left with a set S′ with n − 1 elements, and the subsets we are interested in are exactly the
subsets of S′. By the induction hypothesis, the number of such subsets is 2n−1.

Second, we consider subsets containing a. The key observation is that every such subset
consists of a and a subset of S′. Conversely, if we take any subset of S′, we can add a to it

23

to get a subset of S containing a. Hence the number of subsets of S containing a is the same
as the number of subsets of S′, which, as we already know, is 2n−1. (With the jargon we
introduced before, the last piece of the argument establishes as one-to-one correspondence
between those subsets of S containing a and those not containing a.)

To conclude: the total number of subsets of S is 2n−1 + 2n−1 = 2 · 2n−1 = 2n. This
proves Theorem 2.1 (again).

3.10 Use induction to prove Theorem 2.2 (the number of strings of length n composed
of k given elements is kn) and Theorem 2 (the number of permutations of a set with n
elements is n!).

3.11 Use induction on n to prove the “handshake theorem” (the number of handshakes
between n people in n(n − 1)/2).

3.12 Read carefully the following induction proof:

Assertion: n(n + 1) is an odd number for every n.

Proof: Suppose that this is true for n − 1 in place of n; we prove it for n, using the
induction hypothesis. We have

n(n + 1) = (n − 1)n + 2n.

Now here (n − 1)n is odd by the induction hypothesis, and 2n is even. Hence n(n + 1)
is the sum of an odd number and an even number, which is odd.

The assertion that we proved is obviously wrong for n = 10: 10 · 11 = 110 is even.
What is wrong with the proof?

3.13 Read carefully the following induction proof:

Assertion: If we have n lines in the plane, no two of which are parallel, then they all
go through one point.

Proof: The assertion is true for one line (and also for 2, since we have assumed that
no two lines are parallel). Suppose that it is true for any set of n − 1 lines. We are
going to prove that it is also true for n lines, using this induction hypothesis.

So consider a set of S = {a, b, c, d, . . .} of n lines in the plane, no two of which are
parallel. Delete the line c, then we are left with a set S′ of n−1 lines, and obviously no
two of these are parallel. So we can apply the induction hypothesis and conclude that
there is a point P such that all the lines in S′ go through P . In particular, a and b go
through P , and so P must be the point of intersection of a and b.

Now put c back and delete d, to get a set S′′ of n − 1 lines. Just as above, we can use
the induction hypothesis to conclude that these lines go through the same point P ′; but
just like above, P ′ must be the point of intersection of a and b. Thus P ′ = P . But then
we see that c goes through P . The other lines also go through P (by the choice of P),
and so all the n lines go through P .

But the assertion we proved is clearly wrong; where is the error?

3.3 Counting regions

Let us draw n lines in the plane. These lines divide the plane into some number of regions.
How many regions do we get?

24

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

��

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

��

a) b) c) d)

1 2 3

1

2

3

4
2

3
4

1

6

5

1

2

4 5

6

3

7

Figure 4:

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

��

1

2

4 5

6

3

7

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

1
2

1

3

2 4

1
2

3

4

5
6

7

8

9

10
11

Figure 5:

A first thing to notice is that this question does not have a single answer. For example,
if we draw two lines, we get 3 regions if the two are parallel, and 4 regions if they are not.

OK, let us assume that no two of the lines are parallel; then 2 lines always give us 4
regions. But if we go on to three lines, we get 6 regions if the lines go through one point,
and 7 regions, if they do not (Figure 4).

OK, let us also exclude this, and assume that no 3 lines go through the same point. One
might expect that the next unpleasant example comes with 4 lines, but if you experiment
with drawing 4 lines in the plane, with no two parallel and no three going threw the same
point, then you invariably get 11 regions (Figure 5). In fact, we’ll have a similar experience
for any number of lines.

A set of lines in the plane such that no two are parallel and no three go through the same
point is said to be in general position. If we choose the lines “randomly” then accidents
like two being parallel or three going through the same point will be very unlikely, so our
assumption that the lines are in general position is quite natural.

Even if we accept that the number of regions is always the same for a given number of
lines, the question still remains: what is this number? Let us collect our data in a little
table (including also the observation that 0 lines divide the plane into 1 region, and 1 line
divides the plane into 2):

0 1 2 3 4

1 2 4 7 11

Staring at this table for a while, we observe that each number in the second row is the
sum of the number above it and the number before it. This suggests a rule: the n-th entry
is n plus the previous entry. In other words: If we have a set of n − 1 lines in the plane

25

in general position, and add a new line (preserving general position), then the number of
regions increases by n.

Let us prove this assertion. How does the new line increase the number of regions? By
cutting some of them into two. The number of additional regions is just the same as the
number of regions intersected.

So, how many regions does the new line intersect? At a first glance, this is not easy to
answer, since the new line can intersect very different sets of regions, depending on where
we place it. But imagine to walk along the new line, starting from very far. We get to a
new region every time we cross a line. So the number of regions the new line intersects is
one larger than the number of crossing points on the new line with other lines.

Now the new line crosses every other line (since no two lines are parallel), and it crosses
them in different points (since no three lines go through the same point). Hence during
our walk, we see n − 1 crossing points. So we see n different regions. This proves that our
observation about the table is true for every n.

We are not done yet; what does this give for the number of regions? We start with 1
region for 0 lines, and then add to it 1,2,3, . . . ,n. This way we get

1 + (1 + 2 + 3 + . . .+n) = 1 +
n(n + 1)

2
.

Thus we have proved:

Theorem 3.1 A set of n lines in general position in the plane divides the plane into 1 +
n(n + 1)/2 regions.

3.14 Describe a proof of Theorem 3.1 using induction on the number of lines.

Let us give another proof of Theorem 3.1; this time, we will not use induction, but
rather try to relate the number of regions to other combinatorial problems. One gets a hint
from writing the number in the form 1 +n +

(

n
2

)

.
Assume that the lines are drawn on a vertical blackboard (Figure 6), which is large

enough so that all the intersection points appear on it. We also assume that no line is
horizontal (else, we tilt the picture a little), and that in fact every line intersects the
bottom edge of the blackboard (the blackboard is very long).

Now consider the lowest point in each region. Each region has only one lowest point,
since the bordering lines are not horizontal. This lowest point is then an intersection point
of two of our lines, or the intersection point of line with the lower edge of the blackboard,
or the lower left corner of the blackboard. Furthermore, each of these points is the lowest
point of one and only one region. For example, if we consider any intersection point of two
lines, then we see that four regions meet at this point, and the point is the lowest point of
exactly one of them.

Thus the number of lowest points is the same as the number of intersection points of
the lines, plus the number of intersection points between lines and the lower edge of the
blackboard, plus one. Since any two lines intersect, and these intersection points are all
different (this is where we use that the lines are in general position), the number of such
lowest points is

(

n
2

)

+n + 1.

26

��������

Figure 6:

4 Counting subsets

4.1 The number of ordered subsets

At a competition of 100 athletes, only the order of the first 10 is recorded. How many
different outcomes does the competition have?

This question can be answered along the lines of the arguments we have seen. The first
place can be won by any of the athletes; no matter who wins, there are 99 possible second
place winners, so the first two prizes can go 100 · 99 ways. Given the first two, there are 98
athletes who can be third, etc. So the answer is 100 · 99 · . . . · 91.

4.1 Illustrate this argument by a tree.

4.2 Suppose that we record the order of all 100 athletes.

(a) How many different outcomes can we have then?

(b) How many of these give the same for the first 10 places?

(c) Show that the result above for the number of possible outcomes for the first 10
places can be also obtained using (a) and (b).

There is nothing special about the numbers 100 and 10 in the problem above; we could
carry out the same for n athletes with the first k places recorded.

To give a more mathematical form to the result, we can replace the athletes by any set
of size n. The list of the first k places is given by a sequence of k elements of n, which
all have to be different. We may also view this as selecting a subset of the athletes with k
elements, and then ordering them. Thus we have the following theorem.

Theorem 4.1 The number of ordered k-subsets of an n-set is n(n − 1) . . .(n − k + 1).

27

(Note that if we start with n and count down k numbers, the last one will be n − k + 1.)

4.3 If you generalize the solution of exercise 4.1, you get the answer in the form

n!

(n − k)!

Check that this is the same number as given in theorem 4.1.

4.4 Explain the similarity and the difference between the counting questions answered
by theorem 4.1 and theorem 2.2.

4.2 The number of subsets of a given size

From here, we can easily derive one of the most important counting results.

Theorem 4.2 The number of k-subsets of an n-set is

n(n − 1) . . .(n − k + 1)

k!
=

n!

k!(n − k)!

Recall that if we count ordered subsets, we get n(n − 1) . . . (n − k + 1) = n!/(n − k)!,
by Theorem 4.1. Of course, if we want to know the number of unordered subsets, then we
have overcounted; every subset was counted exactly k! times (with every possible ordering
of its elements). So we have to divide this number by k! to get the number of subsets with
k elements (without ordering).

The number of k-subsets of an n-set is such an important quantity that one has a
separate notation for it:

(

n
k

)

(read: ‘n choose k’). Thus

(

n

k

)

=
n!

k!(n − k)!
.

Thus the number of different lottery tickets in
(

90
5

)

, the number of handshakes is
(

7
2

)

etc.

4.5 Which problems discussed during the party were special cases of theorem 4.2?

4.6 Tabulate the values of
(

n

k

)

for n,k ≤ 5.

In the following exercises, try to prove the identities by using the formula in theorem
4.2, and also without computation, by explaining both sides of the equation as the result
of a counting problem.

4.7 Prove that

(

n

2

)

+

(

n + 1

2

)

= n2.

4.8 (a) Prove that

(

90

5

)

=

(

89

5

)

+

(

89

4

)

.

(b) Formulate and prove a general identity based on this.

4.9 Prove that

(

n

k

)

=

(

n

n − k

)

.

28

4.10 Prove that

1 +

(

n

1

)

+

(

n

2

)

+ . . .+

(

n

n − 1

)

+

(

n

n

)

= 2n.

4.11 Prove that for 0 < c ≤ b ≤ a,

(

a

b

)(

b

c

)

=

(

a

a− c

)(

a− c

b − c

)

4.3 The Binomial Theorem

The numbers
(

n
k

)

also have a name, binomial coefficients, which comes from a very important
formula in algebra involving them. We are now going to discuss this theorem.

The issue is to compute powers of the simple algebraic expression (x + y). We start
with small examples:

(x+ y)2 = x2 + 2xy + y2,

(x+ y)3 = (x+ y) · (x+ y)2 = (x+ y) · (x2 + 2xy + y2) = x3 + 3x2y + 3xy2 + y3,

and, going on like this,

(x+ y)4 = (x+ y) · (x+ y)3 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

You may have noticed that the coefficients you get are the numbers that we have seen, e.g.
in exercise 4.2, as numbers

(

n
k

)

. Let us make this observation precise. We illustrate the
argument for the next value of n, namely n = 5, but it works in general.

Think of expanding

(x+ y)5 = (x+ y)(x+ y)(x+ y)(x+ y)(x+ y)

so that we get rid of all parentheses. We get each term in the expansion by selecting one of
the two terms in each factor, and multiplying them. If we choose x, say, 2 times then we
choose y 3 times, and we get x2y3. How many times do we get this same term? Clearly as
many times as the number of ways to select the two factors that supply x (the remaining
factors supply y). Thus we have to choose two factors out of 5, which can be done in

(

5
2

)

ways.
Hence the expansion of (x+ y)5 looks like this:

(x+ y)5 =

(

5

0

)

y5 +

(

5

1

)

xy4 +

(

5

2

)

x2y3 +

(

5

3

)

x3y2 +

(

5

4

)

x4y +

(

5

5

)

x5.

We can apply this argument in general to obtain

Theorem 4.3 (The Binomial Theorem) The coefficient of xkyn−k in the expansion of
(x+ y)n is

(

n
k

)

. In other words, we have the identity:

(x+ y)n = yn +

(

n

1

)

xn−1y +

(

n

2

)

xn−2y2 + . . .+

(

n

n − 1

)

xn−1y +

(

n

n

)

xn.

29

This important theorem is called the Binomial Theorem; the name comes from the Greek
word binome for an expression consisting of two terms, in this case, x+y. The appearance
of the numbers

(

n
k

)

in this theorem is the source of their name: binomial coefficients.
The Binomial Theorem can be applied in many ways to get identities concerning bino-

mial coefficients. For example, let us substitute x = y = 1, then we get

2n =

(

n

0

)

+

(

n

1

)

+

(

n

2

)

+ . . .+

(

n

n − 1

)

+

(

n

n

)

. (4)

Later on we are going to see trickier applications of this idea. For the time being, another
twist on it is contained in the next exercise.

4.12 Give a proof of the Binomial Theorem by induction, based on exercise 4.2.

4.13 (a) Prove the identity

(

n

0

)

−
(

n

1

)

+

(

n

2

)

−
(

n

3

)

. . . = 0

(The sum ends with
(

n

n

)

= 1, with the last depending on the parity of n.)

(b) This identity is obvious if n is odd. Why?

4.14 Prove identity 4, using a combinatorial interpretation of the two sides (recall
exercise 4.2).

4.4 Distributing presents

Suppose we have n different presents, which we want to distribute to k children. For some
reason, we are told how many presents should each child get; so Adam should get nAdam

presents, Barbara, nBarbara presents etc. In a mathematically convenient (though not very
friendly) way, we call the children 1,2, . . . ,k; thus we are given the numbers (non-negative
integers) n1, n2, . . . , nk. We assume that n1 + n2 + . . . + nk = n, else there is no way to
distribute the presents.

The question is, of course, how many ways can these presents be distributed?
We can organize the distribution of presents as follows. We lay out the presents in a

single row of length n. The first child comes and picks up the first n1 presents, starting
from the left. Then the second comes, and picks up the next n2; then the third picks up
the next n3 presents etc. Child No. k gets the last nk presents.

It is clear that we can determine who gets what by choosing the order in which the
presents are laid out. There are n! ways to order the presents. But, of course, the number
n! overcounts the number of ways to distribute the presents, since many of these orderings
lead to the same results (that is, every child gets the same set of presents). The question
is, how many?

So let us start with a given distribution of presents, and let’s ask the children to lay out
the presents for us, nicely in a row, starting with the first child, then continuing with the
second, third, etc. This way we get back one possible ordering that leads to the current
distribution. The first child can lay out his presents in n1! possible orders; no matter which
order he chooses, the second child can lay out her presents in n2! possible ways, etc. So the

30

Figure 7: Placing 8 non-attacking rooks on a chessboard

number of ways the presents can be laid out (given the distribution of the presents to the
children) is a product of factorials:

n1! ·n2! · . . . ·nk! .

Thus the number of ways of distributing the presents is

n!

n1!n2! . . .nk!
.

4.15 We can describe the procedure of distributing the presents as follows. First, we

select n1 presents and give them to the first child. This can be done in

(

n

n1

)

ways.

Then we select n2 presents from the remaining n − n1 and give them to the second
child, etc.

Complete this argument and show that it leads to the same result as the previous one.

4.16 The following special cases should be familiar from previous problems and theo-
rems. Explain why.

(a) n = k,n1 = n2 = . . . = nk;

(b) n1 = n2 = . . . = nk−1 = 1,nk = n − k + 1;

(c) k = 2;

(d) k = 3,n = 6,n1 = n2 = n3 = 2.

4.17 (a) How many ways can you place n rooks on a chessboard so that no two attack
each other (Figure 7)? We assume that the rooks are identical, so e.g. interchanging
two rooks does not count as a separate placement.

(b) How many ways can you do this if you have 4 black and 4 white rooks?

(c) How many ways can you do this if all the 8 rooks are different?

31

4.5 Anagrams

Have you played with anagrams? One selects a word (say, COMBINATORICS) and tries
to compose from its letters meaningful, often funny words or expressions.

How many anagrams can you build from a given word? If you try to answer this question
by playing around with the letters, you will realize that the question is badly posed; it is
difficult to draw the line between meaningful and non-meaningful anagrams. For example,
it could easily happen that A CROC BIT SIMON. And it may be true that Napoleon
always wanted a TOMB IN CORSICA. It is questionable, but certainly grammatically
correct, to assert that COB IS ROMANTIC. Some universities may have a course on MAC
IN ROBOTICS.

But one would have to write a book to introduce an exciting character, ROBIN COS-
MICAT, who enforces a COSMIC RIOT BAN, while appealing TO COSMIC BRAIN.

And it would be terribly difficult to explain an anagram like MTBIRASCIONOC.
To avoid this controversy, let’s accept everything, i.e., we don’t require the anagram

to be meaningful (or even pronouncible). Of course, the production of anagrams becomes
then uninteresting; but at least we can tell how many of them are there!

4.18 How many anagrams can you make from the word COMBINATORICS?

4.19 Which word gives rise to more anagrams: COMBINATORICS or COMBINA-
TORICA? (The latter is the Latin name of the subject.)

4.20 Which word with 13 letters gives rise to the most anagrams? Which word gives
rise to the least?

So let’s see the general answer to the question of counting anagrams. If you have
solved the problems above, it should be clear that the number of anagrams n-letter word
depends on how many times letters of the word are repeated. So suppose that the word
contains letter No. 1 n1 times, letter No. 2 n2 times, etc., letter No. k nk times. Clearly,
n1 +n2 + . . .+nk = n.

Now to form an anagram, we have to select n1 positions for letter No. 1, n2 positions
for letter No. 2, etc., nk positions fro letter No. 3. Having formulated it this way, we can
see that this is nothing but the question of distributing n presents to k children, when it
is prescribed how many presents each child gets. Thus we know from the previous section
that the answer is

n

n1!n2! . . .nk!
.

4.21 It is clear that STATUS and LETTER have the same number of anagrams (in
fact, 6!/(2!2!) = 180). We say that these words are “essentially the same” (at least as
far as counting anagrams goes): they have two letters repeated twice and two letters
occurring only once.

(a) How many 6-letter words are there? (As before, the words don’t have to be mean-
ingful. The alphabet has 26 letters.)

(b) How many words with 6 letters are “essentially the same” as the word LETTER?

(c) How many “essentially different” 6-letter words are there?

32

P P P P P P P P P P

Bob Carl DianeAlice

Figure 8: How to distribute n pennies to k children?

(d) Try to find a general answer to question (c) (that is, how many “essentially different”
words are there on n letters?). If you can’t find it, read the following section and return
to this exercise after it.

4.6 Distributing money

Instead of distributing presents, let’s distribute money. Let us formulate the question in
general: we have n pennies that we want to distribute among k kids. Each child must get
at least one penny (and, of course, an integer number of pennies). How many ways can we
distribute the money?

Before answering this question, we must clarify the difference between distributing
money and distributing presents. If you are distributing presents, you have to decide
not only how many presents each child gets, but also which are these presents. If you are
distributing money, only the quantity matters. In other words, the presents are distinguish-
able while the pennies are not. (A question like in section 4.4, where we specify in advance
how many presents does a given child get, would be trivial for money: there is only one
way to distribute n pennies so that the first child gets n1, the second child gets n2, etc.)

Even though the problem is quite different from the distribution of presents, we can
solve it by imagining a similar distribution method. We line up the pennies (it does not
matter in which order, they are all alike), and then let child No. 1 begin to pick them up
from left to right. After a while we stop him and let the second child pick up pennies, etc.
(Figure 8) The distribution of the money is determined by specifying where to start with a
new child.

Now there are n− 1 points (between consecutive pennies) where we can let a new child
in, and we have to select k −1 of them (since the first child always starts at the beginning,
we have no choice there). Thus we have to select a (k − 1)-element subset from an (n− 1)-
element set. The number of possibilities to do so is

(

n−1
k−1

)

.
To sum up, we get

Theorem 4.4 The number of ways to distribute n identical pennies to k children, so that
each child gets at least one, is

(

n−1
k−1

)

.

It is quite surprising that the binomial coefficients give the answer here, in a quite
non-trivial and unexpected way.

Let’s also discuss the natural (though unfair) modification of this question, where we
also allow distributions in which some children get no money at all; we consider even giving
all the money to one child. With the following trick, we can reduce the problem of counting
such distributions to the problem we just solved: we borrow 1 penny from each child, and
the distribute the whole amount (i.e., n+k pennies) to the children so that each child gets

33

at least one penny. This way every child gets back the money we borrowed from him or
her, and the lucky ones get some more. The “more” is exactly n pennies distributed to
k children. We already know that the number of ways to distribute n + k pennies to k
children so that each child gets at least one penny is

(

n+k−1
k−1

)

. So we have

Theorem 4.5 The number of ways to distribute n identical pennies to k children is
(

n+k−1
k−1

)

.

4.22 In how many ways can you distribute n pennies to k children, if each child is
supposed to get at least 2?

4.23 We distribute n pennies to k boys and ℓ girls, so that (to be really unfair) we
require that each of the girls gets at least one penny. In how many ways can we do
this?

4.24 k earls play cards. Originally, they all have p pennies. At the end of the game,
they count how much money they have. They do not borrow from each other, so that
they cannot loose more than their p pennies. How many possible results are there?

34

5 Pascal’s Triangle

To study various properties of binomial coefficients, the following picture is very useful.
We arrange all binomial coefficients into a triangular scheme: in the “zeroeth” row we put
(

0

0

)

, in the first row, we put

(

1

0

)

and

(

1

1

)

, in the third row,

(

2

0

)

,

(

2

1

)

and

(

2

2

)

etc. In

general, the n-th row contains the numbers

(

n

0

)

,

(

n

1

)

,. . .,

(

n

n

)

. We shift these rows so that

their midpoints match; this way we get a pyramid-like scheme, called the Pascal Triangle
(named after the French mathematician and philosopher Blaise Pascal, 1623-1662). The
Figure below shows only a finite piece of the Pascal Triangle.

(

0
0

)

(

1
0

) (

1
1

)

(

2
0

) (

2
1

) (

2
1

)

(

3
0

) (

3
1

) (

3
2

) (

3
3

)

(

4
0

) (

4
1

) (

4
2

) (

4
3

) (

4
4

)

(

5
0

) (

5
1

) (

5
2

) (

5
3

) (

5
4

) (

5
5

)

We can replace each binomial coefficient by its numerical value, to get another version
of Pascal’s Triangle.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

5.1 Prove that the Pascal Triangle is symmetric with respect to the vertical line through
its apex.

5.2 Prove that each row in the Pascal Triangle starts and ends with 1.

5.1 Identities in the Pascal Triangle

Looking at the Pascal Triangle, it is not hard to notice its most important property: every
number in it (other than the 1’s on the boundary) is the sum of the two numbers immedi-
ately above it. This in fact is a property of the binomial coefficients you have already met:
it translates into the relation

(

n

k

)

=

(

n − 1

k − 1

)

+

(

n − 1

k

)

(5)

35

(cf. exercise 4.2).
This property of the Pascal Triangle enables us to generate the triangle very fast, build-

ing it up row by row, using (5). It also gives us a tool to prove many properties of the
binomial coefficients, as we shall see.

As a first application, let us give a new solution of exercise 4.3. There the task was to
prove the identity

(

n

0

)

−
(

n

1

)

+

(

n

2

)

−
(

n

3

)

. . .+ (−1)n

(

n

n

)

= 0,

using the binomial theorem. Now we give a proof based on (5): we can replace
(

n
0

)

by
(

n−1
0

)

(both are just 1),
(

n
1

)

by
(

n−1
0

)

+
(

n−1
1

)

,
(

n
2

)

by
(

n−1
1

)

+
(

n−1
2

)

, etc. Thus we get the sum

(

n − 1

0

)

−
[(

n − 1

0

)

+

(

n − 1

1

)]

+

[(

n − 1

1

)

+

(

n − 1

2

)]

−
[(

n − 1

2

)

+

(

n − 1

3

)]

+ . . .

which is clearly 0, since the second term in each bracket cancels with the first term of the
next.

This method gives more than just a new proof of an identity we already know. What do
we get if we start the same way, adding and subtracting binomial coefficients alternatingly,
but stop earlier? In formula, we take

(

n

0

)

−
(

n

1

)

+

(

n

2

)

−
(

n

3

)

. . .+ (−1)k

(

n

k

)

.

If we do the same trick as above, we get
(

n − 1

0

)

−
[(

n − 1

0

)

+

(

n − 1

1

)]

+

[(

n − 1

1

)

+

(

n − 1

2

)]

− . . .(−1)k

[(

n − 1

k − 1

)

+

(

n − 1

k

)]

.

Here again every term cancels except the last one; so the result is (−1)k

(

n − 1

k

)

.

There are many other surprising relations satisfied by the numbers in the Pascal Trian-
gle. For example, let’s ask: what is the sum of squares of elements in each row?

Let’s experiment, by computing the sum of squares of elements in the the first few rows:

12 = 1,

12 + 12 = 2,

12 + 22 + 12 = 6,

12 + 32 + 32 + 12 = 20,

12 + 42 + 62 + 42 + 12 = 70.

We may recognize these numbers as the numbers in the middle column of the Pascal triangle.
Of course, only every second row contains an entry in the middle column, so the last value
above, the sum of squares in row No. 4, is the middle element in row No. 8. So the examples
above suggest the following identity:

(

n

0

)2

+

(

n

1

)2

+

(

n

2

)2

+ . . .+

(

n

n − 1

)2

+

(

n

n

)2

=

(

2n

n

)

. (6)

36

Of course, the few experiments above do not prove that this identity always holds, so we
need a proof.

We will give an interpretation of both sides of the identity as the result of a counting
problem; it will turn out that they count the same things, so they are equal. It is obvious
what the right hand side counts: the number of subsets of size n of a set of size 2n. It will
be convenient to choose, as our 2n-element set, the set S = {1,2, . . . ,2n}.

The combinatorial interpretation of the left hand side is not so easy. Consider a typical

term, say

(

n

k

)2

. We claim that this is the number of those n-element subsets of {1,2,. . .,2n}
that contain exactly k elements from {1,2, . . . ,n} (the first half of our set S). In fact, how
do we choose such an n-element subset of S? We choose k elements from {1,2, . . . ,n} and

then n − k elements from {n + 1, n + 2, . . . ,2n}. The first can be done in

(

n

k

)

ways; no

matter which k-element subset of {1,2, . . . ,n} we selected, we have

(

n

n − k

)

ways of choose

the other part. Thus the number of ways to choose an n-element subset of S having k
elements from {1,2, . . . ,n} is

(

n

k

)

·
(

n

n − k

)

=

(

n

k

)2

(by the symmetry of the Pascal Triangle).
Now to get the total number number of n-element subsets of S, we have to sum these

numbers for all values of k = 0,1, . . . ,n. This proves identity (6).

5.3 Give a proof of the formula in exercise 4.2

1 +

(

n

1

)

+

(

n

2

)

+ . . .+

(

n

n − 1

)

+

(

n

n

)

= 2n

along the same lines. (One could expect that, similarly as for the “alternating” sum,

we could get a nice formula for the sum obtained by stopping earlier, like

(

n

0

)

+

(

n

1

)

+

. . . +

(

n

k

)

. But this is not the case: no simpler expression is known for this sum in

general.)

5.4 By the Binomial Theorem, the right hand side in identity (6) is the coefficient
of xnyn in the expansion of (x + y)2n. Write (x + y)2n in the form (x + y)n(x + y)n,
expand both factors (x+ y)n using the binomial theorem, and the try to figure out the
coefficient of xnyn in the product. Show that this gives another proof of identity (6).

5.5 Prove the following identity:
(

n

0

)(

m

k

)

+

(

n

1

)(

m

k − 1

)

+

(

n

2

)(

m

k − 2

)

+ . . .+

(

n

k − 1

)(

m

1

)

+

(

n

k

)(

m

0

)

=

(

n +m

k

)

.

You can use a combinatorial interpretation of both sides, similarly as in the proof of
(6) above, or the Binomial Theorem as in the previous exercise.

Here is another relation between the numbers in the Pascal Triangle. Let us start with
the last element in any row, and sum the elements moving down diagonally to the left. For

37

example, starting with the last element in the second row, we get

1 = 1,

1 + 3 = 4,

1 + 3 + 6 = 10,

1 + 3 + 6 + 10 = 20.

This numbers are just the numbers in the next skew line of the table! If we want to put
this in a formula, we get

(

n

0

)

+

(

n + 1

1

)

+

(

n + 2

2

)

+ . . .+

(

n + k

k

)

=

(

n + k + 1

k

)

. (7)

To prove this identity, we use induction on k. If k = 0, the identity just says 1 = 1,
so it is trivially true. (We can check it also for k = 1, even though this is not necessary.
Anyway, it says 1 +n = n + 1.)

So suppose that the identity (7) is true for a given value of k, and we want to prove
that it also holds for k + 1 in place of k. In other words, we want to prove that

(

n

0

)

+

(

n + 1

1

)

+

(

n + 2

2

)

+ . . .+

(

n + k

k

)

+

(

n

k + 1

)

=

(

n + k + 2

k + 1

)

.

Here the sum of the first k terms on the left hand side is
(

n+k+1
k

)

by the induction hypothesis,
and so the left hand side is equal to

(

n + k + 1

k

)

+

(

n + k + 1

k + 1

)

.

But this is indeed equal to

(

n + k + 2

k + 1

)

by the fundamental property of the Pascal Triangle.

This completes the proof by induction.

5.6 Suppose that you want to choose a (k+1)-element subset of the (n+k+1)-element
set {1,2, . . . ,n+k+1}. You decide to do this by choosing first the largest element, then
the rest. Show that counting the number of ways to choose the subset this way, you
get a combinatorial proof of identity (7).

5.2 A bird’s eye view at the Pascal Triangle

Let’s imagine that we are looking at the Pascal Triangle from a distance. Or, to put it
differently, we are not interested in the exact numerical value of the entries, but rather in
their order of magnitude, rise and fall, and other global properties. The first such property
of the Pascal Triangle is its symmetry (with respect to the vertical line through its apex),
which we already know.

Another property one observes is that along any row, the entries increase until the
middle, and then decrease. If n is even, there is a unique middle element in the n-th row,
and this is the largest; if n is odd, then there are two equal middle elements, which are
largest.

38

So let us prove that the entries increase until the middle (then they begin to decrease
by the symmetry of the table). We want to compare two consecutive entries:

(

n

k

)

?

(

n

k + 1

)

.

If we use formula 4.2, we can write this as

n(n − 1) . . .(n − k + 1)

k(k − 1) . . .1
?

n(n − 1) . . .(n − k)

(k + 1)k . . .1
.

There are a lot of common factors on both sides with which we can simplify. We get the
really simple comparison

1 ?
n − k

k + 1
.

Rearranging, we get

k ?
n − 1

2
.

So if k < (n−1)/2, then

(

n

k

)

<

(

n

k + 1

)

; if k = (n−1)/2, then

(

n

k

)

=

(

n

k + 1

)

(this is the

case of the two entries in the middle if n is odd); and if k > (n−1)/2, then

(

n

k

)

>

(

n

k + 1

)

.

It will be useful later that this computation also describes by how much consecutive
elements increase or decrease. If we start from the left, the second entry (n) is larger by a
factor of n than the first; the third (n(n − 1)/2) is larger by a factor of (n − 1)/2 than the
second. In general,

(

n
k+1

)

(

n
k

) =
n − k

k + 1
. (8)

5.7 For which values of n and k is
(

n

k+1

)

twice the previous entry in the Pascal Triangle?

5.8 Instead of the ratio, look at the difference of two consecutive entries in the Pascal
triangle:

(

n

k + 1

)

−
(

n

k

)

.

For which value of k is this difference largest?

We know that each row of the Pascal Triangle is symmetric. We also know that the
entries start with 1, raise to the middle, and then they fall back to 1. Can we say more
about their shape?

Figure 9 shows the graph of the numbers
(

n
k

)

(k = 0,1, . . . ,n) for the values n = 10 and
n = 100. We can make several further observations.

— First, the largest number gets very large.

— Second, not only do these numbers increase to the middle and then they decrase,
but that the middle ones are substantially larger than those at the beginning and end. For
n = 100, the figure only shows the range

(

100
20

)

,
(

100
21

)

, . . . ,
(

100
80

)

; the numbers outside this
range are so small compared to the largest that they are negligible.

39

0

20

40

60

80

100

120

0 2 4 6 8
0

1e+028

2e+028

3e+028

4e+028

5e+028

20 30 40 50 60 70 80

Figure 9: Graph of the n-th row of the Pascal Triangle, for n = 10 and 100.

— Third, we can observe that the shape of the graph is quite similar for different values
of n.

Let’s look more carefully at these observations. For the discussions that follow, we shall
assume that n is even (for odd values of n, the results would be quite similar, just one
would have to word them differently). If n is even, then we know that the largest entry in
the n-th row is the middle number

(

n
n/2

)

, and all other entries are smaller.
How large is the largest number in the n-th row of the Pascal Triangle? We know

immediately an upper bound on this number:

(

n

n/2

)

< 2n,

since 2n is the sum of all entries in the row. It only takes a little more sophistication to get
a lower bound:

(

n

n/2

)

>
2n

n + 1
,

since 2n/(n+1) is the average of the numbers in the row, and the largest number is certainly
at least as large as the average.

These bounds already give a pretty good idea about the size of
(

n
n/2

)

. Take, say, n = 500.
Then we get

2500

501
<

(

500

250

)

< 2500.

If we want to know, say, the number of digits of
(

500
250

)

, we just have to take the logarithm
(in base 10) of it. From the bounds above, we get

500lg2− lg501 < lg

(

500

250

)

< 500lg2.

40

Since lg 501 < 3, this inequality gives the number of digits with a very small error: if
we guess that it is (500 lg 2) − 1, rounded up (which is 150) then we are off by at most 2
(actually, 150 is the true value).

Using the Stirling Formula, one can get a much better approximation of this largest
entry.

(

n

n/2

)

∼ 2n

√

πn/2
. (9)

5.9 (a) Give a combinatorial argument to show that 2n >
(

n

4

)

.

(b) Use this inequality to show that 2n > n3 if n is large enough.

5.10 Show how to use the Stirling Formula to derive (9).

So we know that the largest entry in the n-th row of the Pascal triangle is in the middle,
and we know approximately how large this element is. We also know that going either left
or right, the elements begin to drop. How fast do they drop? We show that if we move away
from the middle of the row, quite soon the numbers drop to less than a half of the maximum.
(We pick this 1/2 only for illustration; we shall see that one can estimate similarly how far
away from the middle we have to move before the entries drop to a third, or to one percent,
of the middle entry.) This quantifies our observation that the large binomial coefficients
are concentrated in the middle of the row.

It is important to point out that in the arguments below, using calculus would give
stronger results; we only give here as much as we can without appealing to calculus.

Again, we consider the case when n is even; then we can write n = 2m, where m is

a positive integer. The middle entry is

(

2m

m

)

. Consider the binomial coefficient that is t

steps before the middle: this is

(

2m

m − t

)

. We want to compare it with the largest coefficient.

We shall choose the value of t later; this way our calculations will be valid for any value of
t such that 0 ≤ t ≤ m, and so they will be applicable in different situations.

We already know that

(

2m

m

)

>

(

2m

m − t

)

; we also know by (8) that going left from
(

2m

m

)

, the entries drop by factors
m

m + 1
, then by

m − 1

m + 2
, then by

m − 2

m + 3
, etc. The last

drop is by a factor of
m − t + 1

m + t
.

Multiplying these factors together, we get
(

2m

m − t

)/(

2m

m

)

=
m(m − 1) . . .(m − t + 1)

(m + 1)(m + 2) . . .(m + t)
.

So we have a formula for this ratio, but how do we know for which value does it become
less than 1/3? We could write up the inequality

m(m − 1) . . .(m − t + 1)

(m + 1)(m + 2) . . .(m + t)
<

1

2
,

and solve it for t (as we did when we proved that the entries are increasing to the middle),
but this would lead to inequalities that are too complicated to solve.

41

So we have to do some arithmetic trickery here. We start with looking at the reciprocal
ratio:

(

2m

m

)/(

2m

m − t

)

=
(m + 1)(m + 2) . . .(m + t)

m(m − 1) . . .(m − t + 1)
. (10)

and write it in the following form:

(m + t)(m + t − 1) . . .(m + 1)

m(m − 1) . . .(m − t + 1)
=

m + t

m
· m + t − 1

m − 1
· . . . · m + 1

m − t + 1

=

(

1 +
t

m

)

·
(

1 +
t

m − 1

)

· . . . ·
(

1 +
t

m − t + 1

)

.

If we replace the numbers m,m−1, . . . ,m− t+1 in the denominator by m, we decrease the
value of each factor and thereby the value of the whole product:

(

1 +
t

m

)

·
(

1 +
t

m − 1

)

· . . . ·
(

1 +
t

m − t + 1

)

≥
(

1 +
t

m

)t

. (11)

It is still not easy to see how large this expression is; the base is close to 1, but the exponent
may be large. We can get a simpler expression if we use the Binomial Theorem and then
retain just the first two terms:

(

1 +
t

m

)t

= 1 +

(

t

1

)

t

m
+

(

t

2

)(

t

m

)2

+ . . . > 1 +

(

t

1

)

t

m
= 1 +

t2

m
.

To sum up, we conclude that

Theorem 5.1 For all integers 0 ≤ t ≤ m,
(

2m

m

)/(

2m

m − t

)

> 1 +
t2

m
.

Let us choose t to be the least integer that is not smaller than
√

m (in notation: ⌈√m⌉).
Then t2 ≥ m, and we get the following:

(

2m

m − ⌈√m⌉

)

<
1

2

(

2m

m

)

.

5.11 Find a number c such that if t > c
√

m, then

(

2m

m − t

)

<
1

100

(

2m

m

)

.

Consider, for example, the 500th row. Since
√

500 = 22.36 . . ., it follows that the entry
(

500

227

)

is less than half of the largest entry

(

500

250

)

. This argument only gives an upper

bound on how far we have to go; it does not say that the entries closer to the middle are all

larger than a third of the middle entry; in fact, the entry

(

500

236

)

is already smaller than a

1

2

(

500

250

)

, but the entry

(

500

237

)

is larger.

42

Next we prove that even if we sum all entries outside a narrow range in the middle, we
get a small fraction of the sum of all entries. (This fact will be very important when we
will apply these results in probability theory.)

We need an inequality that is a generalization of the inequality in Theorem 5.1. We
state is as a ”lemma”; this means an auxiliary result that may not be so interesting in itself,
but will be important in proving some other theorem.

Lemma 5.1 For all integers 0 ≤ t,s ≤ m such that t + s ≤ m,
(

2m

m − s

)/(

2m

m − t − s

)

>
t2

m
.

For s = 0, this lemma says the same as Theorem 5.1. We leave the proof of it as an
exercise.

5.12 (a) Prove Lemma 5.1, by following the proof of Theorem 5.1.

(b) Show that Lemma 5.1 follows from Theorem 5.1, if one observes that as s increases,
the binomial coefficient

(

2m

m−t−s

)

decreases faster than the binomial coefficient
(

2m

m−s

)

.

(c) Show that by doing the calculations more carefully, the lower bound of t2/m in
Lemma 5.1 can be improved to 1 + t(2t + s)/m.

Now we state the theorem about the sum of the “small” binomial coefficients.

Theorem 5.2 Let 0 ≤ k ≤ m and let t = ⌈
√

km⌉. Then
(

2m

0

)

+

(

2m

1

)

+ . . .+

(

2m

m − t − 1

)

<
1

2k
22m. (12)

To digest the meaning of this, choose k = 100. The quantity 22m on the right hand side
is the sum of all binomial coefficient in row No. 2m of the Pascal Triangle; so the theorem
says that if we take the sum of the first m − t (where t = ⌈10

√
m⌉) then we get less than

half percent of the total sum. By the symmetry of the Pascal Triangle, the sum of the last
m− t entries in this row will be the same, so the 2t+1 remaining terms in the middle make
up 99 percent of the sum.

To prove this theorem, let us compare the sum on the left hand side of (12) with the
sum

(

2m

t

)

+

(

2m

t + 1

)

+ . . .+

(

2m

m − 1

)

. (13)

Let us note right away that the sum in (13) is clearly less than 22m/2, since even if we add
the mirror image of this part of the row of the Pascal Triangle, we get less than 22m. Now
for the comparison, we have

(

2m

m − t − 1

)

≤ 1

k

(

2m

m − 1

)

by Lemma 5.1 (check the computation!), and
(

2m

m − t − 2

)

<
1

k

(

2m

m − 2

)

,

43

and similarly, each term on the left hand side of (13) is less that a hundredth of the
corresponding term in (13). Hence we get that

(

2m

0

)

+

(

2m

1

)

+ . . .+

(

2m

m − 2t

)

<
1

k

(

2m

t

)

+

(

2m

t + 1

)

+ . . .+

(

2m

m − t

)

<
1

2k
22m.

This proves the theorem.

44

6 Fibonacci numbers

6.1 Fibonacci’s exercise

In the 13th century, the Italian mathematician Leonardo Fibonacci studied the following
(not too realistic) exercise:

Leonardo Fibonacci

A farmer raises rabbits. Each rabbit gives birth to one
rabbit when it turns 2 months old, and then to one
rabbit each month. Rabbits never die, and we ignore
hares. How many rabbits will the farmer have in the
n-th month, if he starts with one newborn rabbit?

It is easy to figure out the answer for small values of n. He has 1 rabbit in the first
month and 1 rabbit in the second month, since the rabbit has to be 2 months old before
starting to reproduce. He has 2 rabbits during the third months, and 3 rabbits during the
fourth, since his first rabbit delivered a new one after the second and one after the third.
After 4 months, the second rabbit also delivers a new rabbit, so two new rabbits are added.
This means that the farmer will have 5 rabbits during the fifth month.

It is easy to follow the multiplication of rabbits for any number of months, if we notice
that the number of new rabbits added after n months is just the same as the number of
rabbits who are at least 2 months old, i.e., who were already there after during the (k−1)-st
month. In other words, if we denote by Fn the number of rabbits during the n-th month,
then we have, for n = 2,3,4, . . .,

Fn+1 = Fn +Fn−1. (14)

We also know that F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5. It is convenient to define
F0 = 0; then equation (14) will remain valid for n = 1 as well. Using the equation (14), we
can easily determine any number of terms in this sequence of numbers:

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597 . . .

The numbers in this sequence are called Fibonacci numbers.
We see that equation (14), together with the special values F0 = 0 and F1 = 1, uniquely

determines the Fibonacci numbers. Thus we can consider (14), together with F0 = 0 and
F1 = 1, as the definition of these numbers. This may seem as a somewhat unusual definition:
instead of telling what Fn is (say, by a formula), we just give a rule that computes each
Fibonacci number from the two previous numbers, and specify the first two values. Such
a definition is called a recurrence. It is quite similar in spirit to induction (except that it
not a proof technique, but a definition method), and is sometimes also called definition by
induction.

45

6.1 Why do we have to specify exactly two of the elements to begin with? Why not
one or three?

Before trying to say more about these numbers, let us consider another counting prob-
lem:

A staircase has n steps. You walk up taking one or two at a time. How many ways can
you go up?

For n = 1, there is only 1 way. For n = 2, you have 2 choices: take one twice or two
once. For n = 3, you have 3 choices: three single steps, or one sigle followed by one double,
or one double followed by one single.

Now stop and try to guess what the answer is in general! If you guessed that the number
of ways to go up on a stair with n steps is n, you are wrong. The next case, n = 4, gives 5
possibilities (1 + 1 + 1 + 1, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 2 + 2).

So instead of guessing, let’s try the following strategy. We denote by Gn the answer,
and try to figure out what Gn+1 is, assuming we know the value of Gk for k ≤ n. If we
start with a single step, we have Gn ways to go up the remaining n steps. If we start with
a double step, we have Gn−1 ways to go up the remaining n − 1 steps. Now these are all
the possibilities, and so

Gn+1 = Gn +Gn−1.

This equation is the same as the equation we have used to compute the Fibonacci numbers
Fn. Does this means that Fn = Gn? Of course not, as we see by looking at the beginning
values: for example, F3 = 2 but G3 = 3. However, it is easy to observe that all that
happens is that the Gn are shifted by one:

Gn = Fn+1.

This is valid for n = 1,2, and then of course it is valid for every n since the sequences
F2,F3,F4 . . . and G1,G2,G3, . . . are computed by the same rule from their first two elements.

6.2 We have n dollars to spend. Every day we either by a candy for 1 dollar, or an
icecream for 2 dollars. In how many ways can we spend the money?

6.2 Lots of identities

There are many interesting relations valid for the Fibonacci numbers. For example, what
is the sum of the first n Fibonacci numbers? We have

0 = 0,

0 + 1 = 1,

0 + 1 + 1 = 2,

0 + 1 + 1 + 2 = 4,

0 + 1 + 1 + 2 + 3 = 7,

0 + 1 + 1 + 2 + 3 + 5 = 12,

0 + 1 + 1 + 2 + 3 + 5 + 8 = 20,

0 + 1 + 1 + 2 + 3 + 5 + 8 + 13 = 33.

46

Staring at these numbers for a while, it is not hard to recognize that adding 1 to the right
hand sides we get Fibonacci numbers; in fact, we get Fibonacci numbers two steps after
the last summand. In formula:

F0 +F1 +F2 + . . .+Fn = Fn+2 − 1.

Of course, at this point this is only a conjecture, an unproved mathematical statement we
believe to be true. To prove it, we use induction on n (since the Fibonacci numbers are
defined by recurrence, induction is the natural and often only proof method at hand).

We have already checked the validity of the statement for n = 0 and 1. Suppose that
we know that the identity holds for the sum of the first n−1 Fibonacci numbers. Consider
the sum of the first n Fibonacci numbers:

F0 +F1 + . . .+Fn = (F0 +F1 + . . .+Fn−1) +Fn = (Fn+1 − 1) +Fn,

by the induction hypothesis. But now we can use the recurrence equation for the Fibonacci
numbers, to get

(Fn+1 − 1) +Fn = Fn+2 − 1.

This completes the induction proof.

6.3 Prove that F3n is even.

6.4 Prove that F5n is divisible by 5.

6.5 Prove the following identities.

(a) F1 +F3 +F5 + . . .+F2n−1 = F2n.

(b) F0 −F1 +F2 −F3 + . . .−F2n−1 +F2n = F2n−1 − 1.

(c) F 2
0 +F 2

1 +F 2
2 + . . .+F 2

n = Fn ·Fn+1.

(d) Fn−1Fn+1 −F 2
n = (−1)n.

6.6 Mark the first entry (a 1) of any row of the Pascal triangle. Move one step East
and one step Northeast, and mark the entry there. Repeat this until you get out of the
triangle. Compute the sum of the entries you marked.

(a) What numbers do you get if you start from different rows? First ”conjecture”, than
prove your answer.

(b) Formulate this fact as an identity involving binomial coefficients.

6.7 Cut a chessboard into 4 pieces as shown in Figure 10 and assemble a 5×13 rectangle
from them. Does this prove that 5 · 13 = 82? Where are we cheating? What does this
have to do with Fibonacci numbers?

6.3 A formula for the Fibonacci numbers

How large are the Fibonacci numbers? Is there a simple formula that expresses Fn as a
function of n?

An easy way out, at least for the author of a book, is to state the answer right away:

47

1

2

3

4

3

4

1

2

8 8 = 5. 13.

Figure 10: Proof of 65 = 64

Theorem 6.1 The Fibonacci numbers are given by the formula

Fn =
1√
5

((

1 +
√

5

2

)n

− (

(

1 −
√

5

2

)n)

.

It is straightforward to check that this formula gives the right value for n = 0,1, and
then one can prove its validity for all n by induction.

6.8 Prove Theorem 6.1 by induction on n.

Do you feel cheated by this? You should; while it is of course logically correct what we
did, one would like to see more: how can one arrive at such a formula? What should we
try if we face a similar, but different recurrence?

So let us forget Theorem 6.1 for a while and let us try to find a formula for Fn “from
scratch”.

One thing we can try is to experiment. The Fibonacci numbers grow quite fast; how
fast? Let’s compute the ratio of consecutive Fibonacci numbers:

1

1
= 1,

2

1
= 2,

3

2
= 1.5,

5

3
= 1.666666667,

8

5
= 1.600000000,

13

8
= 1.625000000,

21

13
= 1.615384615,

34

21
= 1.619047619,

55

34
= 1.617647059,

89

55
= 1.618181818,

144

89
= 1.617977528,

233

144
= 1.618055556,

377

233
= 1.618025751.

48

It seems that the ratio of consecutive Fibonacci numbers is very close to 1.618, at least
if we ignore the first few values. This suggests that the Fibonacci numbers behave like a
geometric progression. So let’s see if there is any geometric progression that satisfies the
same recurrence as the Fibonacci numbers. Let Gn = c · qn be a geometric progression
(c,q 6= 0). Then

Gn+1 = Gn +Gn−1

translates into
c · qn+1 = c · qn + c · qn−1,

which after simplification becomes
q2 = q + 1.

(So the number c disappears: what this means that if we find a sequence of this form that
satisfies Fibonacci’s recurrence, then we can change c in it to any other real number, and
get another sequence that satisfies the recurrence.)

What we have is a quadratic equation for q, which we can solve and get

q1 =
1 +

√
5

2
≈ 1.618034, q2 =

1 −
√

5

2
≈ −0.618034.

So we have found two kinds of geometric progressions that satisfy the same recurrence as
the Fibonacci numbers:

Gn = c

(

1 +
√

5

2

)n

, G′

n = c

(

1 −
√

5

2

)n

(where c is an arbitrary constant). Unfortunately, neither Gn nor G′

n gives the Fibonacci
sequence: for one, G0 = G′

0 = c while F0 = 0. But notice that the sequence Gn − G′

n also
satisfies the recurrence:

Gn+1 −G′

n+1 = (Gn +Gn−1) − (G′

n −G′

n−1 = (Gn −G′

n) + (Gn−1 −G′

n−1)

(using that Gn and G′

n satisfy the recurrence). Now we have matched the first value F0,
since G0 − G′

0 = 0. What about the next one? We have G1 − G′

1 = c
√

5. We can match
this with F1 = 1 if we choose c = 1/

√
5.

Now we have two sequences: Fn and Gn − G′

n, that both begin with the same two
numbers, and satisfy the same recurrence. Hence they must be the same: Fn = Gn −G′

n.
Now you can substitute for the values of Gn and G′

n, and see that we got the formula
in the Theorem!

Let us include a little discussion of the formula we just derived. The first base in the
exponential expression is q1 = (1 +

√
5/2) ≈ 1.618034 > 1, while the second base q2 is

between −1 and 0. Hence if n increases, then Gn will become very large, while |G′

n| < 1/2
and in fact G′

n becomes very small. This means that

Fn ≈ Gn =
1√
5

(

1 +
√

5
)n

,

where the term we ignore is less than 1/2 (and tends t0 0 if n tends to infinity); this means
that Fn is the integer nearest to Gn.

The base (1 +
√

5)/2 is called the golden ratio, and it comes up all over mathematics;
for example, it is the ratio between the diagonal and side of a regular pentagon.

49

6.9 Define a sequence of integers Hn by H0 = 1, H1 = 3, and Hn+1 = Hn + Hn−1.
Show that Hn can be expressed in the form a · qn

1 + b · qn
2 (where q1 and q2 are the same

numbers as in the proof above), and find the values of a and b.

6.10 Define a sequence of integers In by I0 = 0, I1 = 1, and In+1 = 4In + In−1. Find
a formula for In.

50

7 Combinatorial probability

7.1 Events and probabilities

Probability theory is one of the most important areas of mathematics from the point of
view of applications. In this book, we do not attempt to introduce even the most basic
notions of probability theory; our only goal is to illustrate the importance of combinatorial
results about the Pascal Triangle by explaning a key result in probability theory, the Law
of Large Numbers. To do so, we have to talk a little about what probability is.

If we make an observation about our world, or carry out an experiment, the outcome will
always depend on chance (to a varying degree). Think of the weather, the stockmarket, or
a medical experiment. Probability theory is a way of modeling this dependence on chance.

We start with making a mental list of all possible outcomes of the experiment (or
observation, which we don’t need to distringuish). These possible outcomes form a set S.
Perhaps the simplest experiment is tossing a coin. This has two outcomes: H (head) and
T (tail). So in this case S = {H,T}. As another example, the outcomes of throwing a dice
form the set S = {1,2,3,4,5,6}. In this book, we assume that the set S = {s1,s2, . . . ,sk} of
possible outcomes of our experiment is finite. The set S is often called a sample space.

Every subset of S is called an event (the event that the observed outcome falls in this
subset). So if we are throwing a dice, the subset {2,4,6} ⊆ S can be thought of as the
event that we have thrown an even number.

The intersection of two subsets corresponds to the event that both events occur; for
example, the subset L ∩ E = {4,6} corresponds to the event that we throw a better-than-
average number that is also even. Two events A and B (i.e., two subsets of S) are called
exclusive if the never occur at the same time, i.e., A ∩ B = ∅. For example, the event
O = {1,3,5} that the outcome of tossing a dice is odd and the event E that it is even are
exclusive, since E ∩O = ∅.

7.1 What event does the union of two subsets corresponds to?

So let S = {s1, s2, . . . , sn} be the set of possible outcomes of an experiment. To get a
probability space we assume that each outcome si ∈ S has a “probability” P(si) such that

(a) P(si) ≥ 0 for all si ∈ S,

and

(b) P(s1) +P(s2) + . . .+P(sk) = 1.

Then we call S, together with these probabilities, a probability space. For example, if
we toss a “fair” coin, the P(H) = P(T) = 1/2. If the dice in our example is of good quality,
then we will have P(i) = 1/6 for every outcome i.

A probability space in which every outcome has the same probability is called a uniform
probability space. We shall only discuss uniform spaces here, since they are the easiest to
imagine and they are the best for the illustration of combinatorial methods. But you
should be warned that in more complicated modelling, non-uniform probability spaces are
very often needed. For example, if we are observing if a day is rainy or not, we will have a
2-element sample space S = {RAINY,NON-RAINY}, but these two will typically not have
the same probability.

51

The probability of an event A ⊆ S is defined as the sum of probabilities of outcomes in
A, and is denoted by P(A). If the probability space is uniform, then the probability of A is

P(A) =
|A|
|S| =

|A|
k

.

7.2 Prove that the probability of any event is at most 1.

7.3 What is the probability of the event E that we throw an even number with the
dice? What is the probability of the event T = {3,6} that we toss a number that is
divisible by 3?

7.4 Prove that if A and B are exclusive, then P(A) +P(B) = P(A ∩B).

7.5 Prove that for any two events A and B,

P(A ∩B) +P(A ∪B) = P(A) +P(B).

7.2 Independent repetition of an experiment

Let us repeat our experiment n times. We can consider this as a single big experiment,
and a possible outcome of this repeated experiment is a sequence of length n, consisting
of elements of S. Thus the sample space corresponding to this repeated experiment is
the set Sn of such sequences. Thus the number of outcomes of this “big” experiment is
kn. We consider every sequence equally likely, which means that we consider it a uniform
probability space. Thus if (a1, a2, . . . , an) is an outcome of the “big” experiment, then we
have

P(a1,a2, . . . ,an) =
1

kn
.

As an example, consider the experiment of tossing a coin twice. Then S = {H,T}
(head,tail) for a single coin toss, and so the sample space for the two coin tosses is
{HH,HT,TH,TT}. The probability of each of these outcomes is 1/4.

This definition intends to model the situation where the outcome of each repeated
experiment is independent of the previous outcomes, in the everyday sense that “there
cannot possibly be any measurable influence of one experiment on the other”. We cannot
go here into the philosophical questions that this notion raises; all we can do is to give
a mathematical definition that we can check on examples that it expresses the informal
notion above.

A key notion in probability is that if independence of events. Informally, this means
that information about one (whether or not it occured) does not influence the probability
of the other. Formally, two events A and B are independent if P(A ∩ B) = P(A)P(B).
For example, if E = {2,4,6} is the event that the result of throwing a dice is even, and
T = {3,6} is the event that it is a multiple of 3, then E and the event T are independent:
we have E ∩ T = {6} (the only possibility to throw a number that is even and divisible by
3 is to throw 6), and hence

P(E ∩T) =
1

6
=

1

2
· 1

3
= P(E)P(T).

52

Consider again the experiment of tossing a coin twice. Let A be the event that the
first toss is head; let B be the event that the second toss is head. Then we have P(A) =
P(HH) + P(HT) = 1/4 + 1/4 = 1/2, similarly P(B) = 1/2, and P(A ∩ B) = P(HH) =
1/4 = (1/2) · (1/2). Thus A and B are independent events (as they should be).

7.6 Which pairs of the events E,O,T,L are independent? Which pairs are exclusive?

7.7 Show that ∅ is independent from every event. Is there any other event with this
property?

7.8 Consider an experiment with sample space S repeated n times (n ≥ 2). Let s ∈ S.
Let A be the event that the first outcome is s, and let B be the event that the last
outcome is s. Prove that A and B are independent.

7.3 The Law of Large Numbers

In this section we study an experiment that consists of n independent coin tosses. For
simplicity, assume that n is even, so that n = 2m for some integer m. Every outcome is
a sequence of length n, in which each element is either H or T . A typical outcome would
look like this:

HHTTTHTHTTHTHHHHTHTT

(for n = 20).
The “Law of Large Numbers” says that if we toss a coin many times, the number of

‘heads’ will be about the same as the number of ‘tails’. How can we make this statement
precise? Certainly, this will not always be true; one can be extremely lucky or unlucky, and
have a winning or loosing streak of arbitrary length. Also, we can’t claim that the number
of heads is equal to the number of tails; only that they are close. The following theorem is
the simplest form of the Law of Large Numbers.

Theorem 7.1 Let 0 ≤ t ≤ m. Then the probability that out of 2m independent coin tosses,
the number of heads is less than m − t or larger than m + t, is at most m/t2.

Let us discuss this a little. If t <
√

m then the assertion does not say anything, since
we know anyhow that the probability of any event is at most 1, and the upper bound given
is larger than 1. But is we choose, say, t = 10

√
m, then we get an interesting special case:

Corollary 7.1 With probability at least .99, the number of heads among 2m independent
coin tosses is between m − 10

√
m and m + 10

√
m.

Of course, we need that m > 10
√

m, or m > 100, for this to have any meaning. But
after all, we are talking about Large Numbers! If m is very large, then 10

√
m is much

smaller than m, so we get that the number of heads is very close to m. For example, if
m = 1,000,000 then 10

√
m = m/100, and so it follows that with probability at least .99,

the number of heads is within 1 percent of m = n/2.
We would like to show that the Law of Large Numbers is not a mysterious force, but a

simple consequence of the properties of binomial coefficients.

53

Let Ak denote the event that we toss exactly k heads. It is clear that the events Ak are
mutually exclusive. It is also clear that for every outcome of the experiment, exactly one
of the Ak occurs.

The number of outcomes for which Ak occurs is the number of sequences of length n
consisting of k ‘heads’ and n − k ‘tails’. If we specify which of the n positions are ‘heads’,
we are done. This can be done in

(

n
k

)

ways, so the set Ak has
(

n
k

)

elements. Since the total
number of outcomes is 2n, we get the following.

P(Ak) =

(

n
k

)

2n
.

What is the probability that the number of heads is far from the expected, which is m =
n/2? Say, it is less than m − t or larger than m + t, where t is any positive integer not
larger than m? Using exercise 7.1, we see that the probability that this happens is

1

22m

((

2m

0

)

+

(

2m

1

)

+ . . .+

(

2m

m − t − 1

)

+

(

2m

m + t + 1

)

+ . . .+

(

2m

2m − 1

)

+

(

2m

2m

))

.

Now we can use Theorem 5.2, with k = t2/m, and get that

(

2m

0

)

+

(

2m

1

)

+ . . .+

(

2m

m − t − 1

)

<
m

2t2
22m.

By the symmetry of the Pascal Triangle, we also have

(

2m

m + t + 1

)

+ . . .+

(

2m

2m − 1

)

+

(

2m

2m

)

<
m

2t2
22m.

Hence we get that the probability that we toss either less than m − t or more than m + t
heads is less than m/t2. This proves the theorem.

54

8 Integers, divisors, and primes

In this chapter we discuss properties of integers. This area of mathematics is called number
theory, and it is a truly venerable field: its roots go back about 2500 years, to the very
beginning of Greek mathematics. One might think that after 2500 years of research, one
would know essentially everything about the subject. But we shall see that this is not the
case: there are very simple, natural questions which we cannot answer; and there are other
simple, natural questions to which an answer has only been found in the last years!

8.1 Divisibility of integers

We start with some very basic notions concerning integers. Let a and b be two integers.
We say that a divides b, or a is a divisor of b, or b is a multiple of a (these phrases mean
the same thing), if there exists an integer m such that b = am. In notation: a|b. If a is not
a divisor of b, then we write a 6 |b. If a 6= 0, then this means that the ratio b/a is an integer.

If a 6 |b, and a > 0, then we can still divide b by a with remainder. The remainder r of
the division b : a is an integer that satisfies 0 ≤ r < a. If the quotient of the division with
remainder is q, then we have

b = aq + r.

This is a very useful way of thinking about a division with remainder.
You have probably seen these notions before; the following exercises should help you

check if you remember enough.

8.1 Check (using the definition) that 1|a, −1|a, a|a and −a|a for every integer a.

8.2 What does it mean for a, in more everyday terms, if (a) 2|a; (b) 2 6 |a; (c) 0|a.

8.3 (a) Prove that

(a) if a|b and b|c then a|c;
(b) if a|b and a|c then a|b + c and a|b − c;

(c) if a,b > 0 and a|b then a ≤ b;

(d) if a|b and b|a then either a = b or a = −b.

8.4 Let r be the remainder of the division b : a. Assume that c|a and c|b. Prove that
c|r.

8.5 Assume that a|b, and a,b > 0. Let r be the remainder of the division c : a, and let
s be the remainder of the division c : b. What is the remainder of the division s : a?

8.6 (a) Prove that for every integer a, a− 1|a2 − 1.

(b) More generally, for every integer a and positive integer m,

a− 1|an − 1.

55

8.2 Primes and their history

An integer p > 1 is called a prime if it is not divisible by any integer other than 1,−1,p and
−p. Another way of saying this is that an integer p > 1 is a prime if it cannot be written as
the product of two smaller positive integers. An integer n > 1 that is not a prime is called
composite (the number 1 is considered neither prime, nor composite). Thus 2,3,5,7,11 are
primes, but 4 = 2 ·2, 6 = 2 ·3, 8 = 2 ·4, 9 = 3 ·3, 10 = 2 ·5 are not primes. Table 1 contains
the first 500 primes.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103,

107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,

223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331,

337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449,

457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587,

593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709,

719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853,

857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991,

997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097,

1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223,

1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321,

1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459,

1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571,

1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693,

1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811,

1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949,

1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069,

2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203,

2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311,

2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423,

2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579,

2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693,

2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801,

2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939,

2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079,

3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221,

3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347,

3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491,

3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571

Table 1: The first 500 primes

Primes have fascinated people ever since ancient times. Their sequence seems very
irregular, yet on closer inspection it seems to carry a lot of hidden structure. The ancient
Greeks already knew that there are infinitely many such numbers. (Not only did they know
this; they proved it!)

It was not easy to prove any further facts about primes. Their sequence has holes and

56

0 200 400 600 800 1000

Figure 11: A bar chart of primes up to 1000

dense spots (see also figure 11). How large are these holes? For example, is there a prime
number with any given number of digits? The answer to this question will be important
for us when we discuss cryptography. The answer to this question is in the affirmative, but
this fact was not proved until the mid-19th century, and many similar questions are open
even today.

A new wave of developments in the theory of prime numbers came with the spread of
computers. How do you decide about a positive integer n whether it is a prime? Surely
this is a finite problem (you can try out all smaller positive integers to see if any of them
is a proper divisor), but such simple methods become impractical as soon as the number of
digits is more than 20 or so.

It is only in the last 20 years since much more efficient algorithms (computer programs)
exist to test if a given integer is a prime. We will get a glimpse of these methods later.
Using these methods, one can now rather easily determine about a number with 1000 digits
whether it is a prime or not.

If an integer larger than 1 is not a prime itself, then it can be written as a product of
primes: we can write it as a product of two smaller positive integers; if one of these is not
a prime, we write it as the product of two smaller integers etc; sooner or later we must end
up with only primes. The ancient Greeks also knew (and proved!) a subtler fact about this
representation: that it is unique. What this means is that there is no other way of writing
n as a product of primes (except, of course, we can multiply the same primes in a different
order). To prove this takes some sophistication, and to recognize the necessity of such a
result was quite an accomplishment; but this is all more than 2000 years old!

It is really surprising that, even today, no efficient way is known to find such a decom-
position. Of course, powerful supercomputers and massively parallel systems can be used
to find decompositions by brute force for fairly large numbers; the current record is around
a 140 digits, and the difficulty grows very fast (exponentially) with number of digits. To

57

find the prime decomposition of a number with 400 digits, by any of the known methods,
is way beyond the possibilities of computers in the foreseeable future.

8.3 Factorization into primes

We have seen that every integer larger than 1 that is not a prime itself can be written
as a product of primes. We can even say that every positive integer can be written as a
product of primes: primes can be considered as “products with one factor”, and the integer
1 can be thought of as the “empty product”. With this in mind, we can state and prove
the following theorem, announced above, sometimes called the “Fundamental Theorem of
Number Theory”.

Theorem 8.1 Every positive integer can be written as the product of primes, and this
factorization is unique up to the order of the prime factors.

We prove this theorem by a version of induction, which is sometimes called the “minimal
criminal” argument. The proof is indirect: we suppose that the assertion is false, and using
this assumption, we derive a logical contradiction.

So assume that there exists an integer with two different factorizations; call such an
integer a “criminal”. There may be many criminals, but we consider the smallest one.
Being a criminal, this has at least two different factorizations:

n = p1 · p2 · . . . · pm = q1 · q2 · . . . · qk .

We may assume that p1 is the smallest prime occurring in these factorizations. (Indeed, if
necessary, we can interchange the left hand side and the right hand side so that the smallest
prime in any of the two factorizations occurs on the left hand side; and then change the
order of the factors on the left hand side so that the smallest factor comes first. In the usual
slang of mathematics, we say that we may assume that p1 is the smallest prime without
loss of generality.)

The number p1 cannot occur among the factors qi, otherwise we can divide both sides
by p1 and get a smaller criminal.

Divide each qi by p1 with residue: qi = piai + ri, where 0 ≤ ri < p1. We know that
ri 6= 0, since a prime cannot be a divisor of another prime.

Let n′ = r1 · . . . · rk. We show that n′ is a smaller criminal. Trivially n′ = r1r1 . . . rk <
q1q2 . . . qk = n. We show that n′ too has two different factorizations into primes. One of
these can be obtained from the definition n′ = r1r2 . . . rk. Here the factors may not be
primes, but we can break them down into products of primes, so that we end up with a
decomposition of n′.

To get another decomposition, we observe that p1|n′. Indeed, we can write the definition
of n′ in the form

n′ = (q1 − a1p1)(q2 − a2p1) . . .(qk − akp1),

and if we expand, then every term will be divisible by p1. Now we divide n′ by p1 and then
continue to factor n′/p1, to get a factorization of n′.

But are these two factorizations different? Yes! The prime p1 occurs in the second, but
it cannot occur in the first, where every prime factor is smaller than p1.

58

Thus we have found a smaller criminal. Since n was supposed to be the smallest among
all criminals, this is a contradiction. The only way to resolve this contradiction is to
conclude that there are no criminals; our “indirect assumption” was false, and no integer
can have two different prime factorizations.

As an application of Theorem 8.1, we prove a fact that was known to the Pythagoreans
(students of Pythagoras) in the 6th century B.C.

Theorem 8.2 The number
√

2 is irrational.

(A real number is irrational if it cannot be written as the ratio of two integers. For
the Pythagoreans, the question arose from geometry: they wanted to know whether the
diagonal of a square is “commeasurable” with its side, i.e., is there any segment which
would be contained in both an integer number of times. The above theorem answered this
question in the negative, causing a substantial turmoil in their ranks.)

We give an indirect proof again: we suppose that
√

2 is rational, and derive a contra-
diction. What the indirect assumption means is that

√
2 can be written as the quotient of

two positive integers:
√

2 = a
b . Squaring both sides and rearranging, we get 2b2 = a2.

Now consider the prime factorization of both sides, and in particular, the prime number
2 on both sides. Suppose that 2 occurs m times in the prime factorization of a and n times
in the prime factorization of b. Then it occurs 2m times in the prime factorization of a2

and thus it occurs 2m + 1 times in the prime factorization of 2a2. On the other hand, it
occurs 2n times in the prime factorization of b2. Since 2a2 = b2 and the prime factorization
is unique, we must have 2m + 1 = 2n. But this is impossible since 2m + 1 is odd but 2n is
even. This contradiction proves that

√
2 must be irrational.

8.7 Are there any even primes?

8.8 (a) Prove that if p is a prime, a and b are integers, and p|ab, then either p|a or p|b
(or both).

(b) Suppose that a and b are integers and a|b. Also suppose that p is a prime and p|b
but p 6 |a. Prove that p is a divisor of the ratio b/a.

8.9 Prove that the prime factorization of a number n contains at most log2 n factors.

8.10 Let p be a prime and 1 ≤ a ≤ p − 1. Consider the numbers a,2a,3a, . . . ,(p − 1)a.
Divide each of them by p, to get residues r1,r2, . . . ,rp−1. Prove that every integer from
1 to p − 1 occurs exactly once among these residues.

[Hint: First prove that no residue can occur twice.]

8.11 Prove that if p is a prime, then
√

p is irrational. More generally, prove that if n
is an integer that is not a square, then

√
n is irrational.

8.12 Try to formulate and prove an even more general theorem about the irrationality
of the numbers k

√
n.

8.4 On the set of primes

The following theorem was also known to Euclid.

59

Theorem 8.3 There are infinitely many primes.

What we need to do is to show that for every positive integer n, there is a prime number
larger than n. To this end, consider the number n! + 1, and any prime divisor p of it. We
show that p > n. Again, we use an indirect proof, supposing that p ≤ n and deriving a
contradiction. If p ≤ n then p|n!, since it is one of the integers whose product is n!. We
also know that p|n! + 1, and so p is a divisor of the difference (n! + 1)−n! = 1. But this is
impossible, and thus p must be larger than n.

If we look at various charts or tables of primes, our main impression is that there is a
lot of irregularity in them. For example, figure 11 represents each prime up to 200 by a bar.
We see large “gaps” and then we also see primes that are very close. We can prove that
these gaps get larger and larger as we consider larger and larger numbers; somewhere out
there is a string of 100 consecutive composite numbers, somewhere (much farther away)
there is a string of a 1000, etc. To state this in a mathematical form:

Theorem 8.4 For every positive integer k, there exist k consecutive composite integers.

We can prove this theorem by an argument quite similar to the proof of theorem 8.3.
Let n = k + 1 and consider the numbers

n! + 2, n! + 3, . . . , n! +n.

Can any of these be a prime? The answer is no: the first number is even, since n! and 2
are both even. The second number is divisible by 3, since n! and 3 are both divisible by 3
(assuming that n > 2). In general n! + i is divisible by i, for every i = 2,3, . . . ,n. Hence
these numbers cannot be primes, and so we have found n − 1 = k consecutive composite
numbers.

What about the opposite question, finding primes very close to each other? Since all
primes except 2 are odd, the difference of two primes must be at least two, except for
2 and 3. Two primes whose difference is 2 are called twin primes. Thus (3, 5), (5, 7),
(11,13), (17,19) are twin primes. Looking at the table of the first 500 primes, we find
many twin primes; extensive computation shows that there are twin primes with hundreds
of digits. However, it is not known whether there are infinitely many twin primes! (Almost
certainly there are, but no proof of this fact has been found, in spite of the efforts of many
mathematicians for over 2000 years!)

Another way of turning Theorem 8.4 around: how large can be these gaps? Could it
happen that there is no prime at all with, say, 100 digits? This is again a very difficult
question, but here we do know the answer. (No, this does not happen.)

One of the most important questions about primes is: how many primes are there up to
a given number n? We denote the number of primes up to n by π(n). Figure 12 illustrates
the graph of this function in the range of 1 to 100, and Figure 13, in the range of 1 to
2000. We can see that the function grows reasonably smoothly, and that its slope decreases
slowly. An exact formula for π(n) is certainly impossible to obtain. Around the turn of the
century, a powerful result called the Prime Number Theorem was proved by two French
mathematicians, Hadamard and de la Vallée-Poussain. From this result it follows that

60

0

5

10

15

20

25

20 40 60 80 100

Figure 12: The graph of π(n) from 1 to 100

0

50

100

150

200

250

300

200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 13: The graph of π(n) from 1 to 2000

61

we can find prime numbers with a prescribed number of digits, and up to a third of the
digits also prescribed. For example, there exist prime numbers with 30 digits starting with
1234567890.

Theorem 8.5 (The Prime Number Theorem) Let π(n) denote the number of primes
among 1,2, . . . ,n. Then

π(n) ∼ n

lnn

(Here lnn means the “natural logarithm”, i.e., logarithm to the base e = 2.718281 Also
recall that the notation means that

π(n)
n

lnn

will be arbitrarily close to 1 if n is sufficiently large.)

The proof of the prime number theorem is very difficult; the fact that the number of
primes up to n is about n/ lnn was observed empirically in the 18th century, but it took
more than 100 years until Hadamard and de la Vallée-Poussin proved it in 1896.

As an illustration of the use of this theorem, let us find the answer to a question that
we have posed in the introduction: how many primes with (say) 200 digits are there? We
get the answer by subtracting the number of primes up to 10199 from the number of primes
up to 10200. By the Prime Number Theorem, this number is about

10200

200ln10
− 10199

199ln10
≈ 1.95 · 10197.

This is a lot of primes! Comparing this with the total number of positive integers with 200
digits, which we know is 10200 − 10199 = 9 · 10199, we get

9 · 10199

1.95 · 10197
≈ 460.

Thus among the integers with 200 digits, one in every 460 is a prime.

(Warning: This argument is not precise; the main source of concern is that in the prime
number theorem, we only stated the π(n) is close to n/ lnn if n is sufficiently large. One
can say more about how large n has to be to have, say, an error less than 1 percent, but
this leads to even more difficult questions, which are even today not completely resolved.)

There are many other simple observations one can make by looking at tables of primes,
but they tend to be very difficult and most of them are not resolved even today, in some
cases after 2,500 years of attempts. We have already mentioned the problem whether there
are infinitely many twin primes.

Another famous unsolved problem is Goldbach’s conjecture. This states that every even
integer larger than 2 can be written as the sum of two primes. (Goldbach also formulated
a conjecture about odd numbers: every odd integer larger than 5 can be written as the
sum of three primes. This conjecture was essentially proved, using very deep methods, by
Vinogradov in the 1930’s. We said “essentially” since the proof only works for numbers
that are very large, and the possibility of a finite number of exceptions remains open.)

62

P. L. Chebyshev

Suppose that we have an integer n and want to know how soon
after n can we be sure to find a prime. For example, how small, or
large, is the first prime with at least 100 digits? Our proof of the
infinity of primes gives that for every n, there is a prime between
n and n! + 1. This is a very week statement; it says for example
that there is a prime between 10 and 10! + 1 = 3628801, while of
course the next prime is 11. Chebychev proved in the last century
that there is always a prime between n and 2n. It is now proved
that there is always a prime between two consecutive cubes (say,
between 27 = 33 and 64 = 43). But it is another old and famous
unsolved problem whether there is always a prime between two
consecutive squares. (Try this out: you’ll in fact find many primes.
For example, between 100 = 102 and 121 = 112 we find 101, 103,
107, 109, 113. Between 1002 = 10,000 and 1012 = 10201 we find
10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103, 10111,
10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193.)

8.13 Show that among k-digit numbers, one in about every 2.3k is a prime.

8.5 Fermat’s “Little” Theorem

P. de Fermat

Primes are important because we can compose every integer
from them; but it turns out that they also have many other,
often surprising properties. One of these was discovered by
the French mathematician Pierre de Fermat (1601–1655), now
called the “Little” Theorem of Fermat.

Theorem 8.6 If p is a prime and a is an integer, then p|ap−a.

To prove this theorem, we need a lemma, which states an-
other divisibility property of primes (but is easier to prove):

Lemma 8.1 If p is a prime and 1 < k < p, then p|
(

p
k

)

.

Proof. We know by theorem 4.2 that
(

p

k

)

=
p(p − 1) · . . . · (p − k + 1)

k(k − 1) · . . . · 1 .

Here p divides the numerator, but not the denominator, since
all factors in the denominator are smaller than p, and we know
by exercise 8.3(a) that if a prime p does not divide any of these
factors, then it does not divide the product. Hence it follows
(see exercise 8.3(b)) that p is a divisor of

(

p
k

)

. �

Now we can prove Fermat’s Theorem by induction on a. The assertion is trivially true
if a = 0. Let a > 0, and write a = b + 1. Then

ap − a = (b + 1)p − (b + 1) = bp +

(

p

1

)

bp−1 + . . .+

(

p

p − 1

)

b + 1− b − 1

63

= (bp − b) +

(

p

1

)

bp−1 + . . .+

(

p

p − 1

)

b.

Here the expression bp −b in parenthesis is divisible by p by the induction hypothesis, while
the other terms are divisible by p by lemma 8.1. It follows that ap − a is also divisible by
p, which completes the induction. �

A.J. Wiles

Let us make a remark about the history of mathematics here.
Fermat is most famous for his “Last” theorem, which is the fol-
lowing assertion:

If n > 2, then the sum of the n-th powers of two
positive integers is never the n-th power of a positive
integer.

(The assumption that n > 2 is essential: there are many exam-
ples of two squares whose sum is a third square: for example,
32 + 42 = 52, or 52 + 122 = 132.)

Fermat claimed in a note that he proved this, but never wrote
down the proof. This statement remained perhaps the most fa-
mous unsolved problem in mathematics until 1995, when Andrew
Wiles (in one part with the help of Robert Taylor) finally proved it.

8.14 Show by examples that neither the assertion in lemma 8.1 nor Fermat’s Little
Theorem remain valid if we drop the assumption that p is a prime.

8.15 Consider a regular p-gon, and all k-subsets of the set of its vertices, where 1 ≤
k ≤ p1. Put all these k-subsets into a number of boxes: we put two k-subsets into the
same box if they can be rotated into each other. For example, all k-subsets consisting
of k consecutive vertices will belong to one and the same box.

(a) Prove that if p is a prime, then each box will contain exactly p of these sets.

(b) Show by an example that (a) does not remain true if we drop the assumption that
p is a prime.

(c) Use (a) to give a new proof of Lemma 8.1.

8.16 Imagine numbers written in base a, with at most p digits. Put two numbers in
the same box if they arise by cyclic shift from each other. How many will be in each
class? Give a new proof of Fermat’s theorem this way.

8.17 Give a third proof of Fermat’s “Little Theorem” based on exercise 8.3.

[Hint: consider the product a(2a)(3a) . . .((p − 1)a).]

8.6 The Euclidean Algorithm

So far, we have discussed several notions and results concerning integers. Now we turn our
attention to the question of how to do computations in connection with these results. How
to decide whether or not a given number is a prime? How to find the prime factorization
of a number?

64

We can do basic arithmetic: addition, subtraction, multiplication, division with remain-
der efficiently, and will not discuss this here.

The key to a more advanced algorithmic number theory is an algorithm that computes
the greatest common divisor of two positive integers a and b. This is defined as the largest
positive integer that is a divisor of both of them. (Since 1 is always a common divisor,
and no common divisor is larger than either integer, this definition makes sense.) We say
that two integers are relatively prime if their greatest common divisor is 1. The greatest
common divisor of a and b is denoted by gcd(a,b). Thus

gcd(1,6) = 1, gcd(2,6) = 2, gcd(3,6) = 3, gcd(4,6) = 2,

gcd(5,6) = 1, gcd(6,6) = 6.

Two numbers whose greatest common divisor is 1 are called relatively prime. It will be
convenient to also define gcd(a,0) = a for every a ≥ 0.

A somewhat similar notion is the least common multiple of two integers, which is the
least positive integer that is a multiple of both integers, and denote by lcm(a, b). For
example,

lcm(1,6) = 6, lcm(2,6) = 6, lcm(3,6) = 6, lcm(4,6) = 12,

lcm(5,6) = 30, lcm(6,6) = 6

The greatest common divisor of two positive integers can be found quite simply by using
their prime factorizations: look at the common prime factors, raise them to the smaller of
the two exponents, and take the product of these prime powers. For example, 300 = 22 ·3·52

and 18 = 2 · 33, and hence gcd(300,18) = 2 · 3 = 6.
The trouble with this method is that it is very difficult to find the prime factorization

of large integers. The algorithm to be discussed in this section will compute the greatest
common divisor of two integers in a much faster way, without finding their prime factor-
ization. This algorithm is an important ingredient of almost all other algorithms involving
computation with integers. (And, as we see it from its name, it goes back to the great
Greek mathematicians!)

8.18 Show that if a and b are positive integers with a|b, then gcd(a,b) = a.

8.19 (a) gcd(a,b) = gcd(a,b− a).

(b) Let r be the remainder if we divide b by a. Then gcd(a,b) = gcd(a,r).

8.20 (a) If a is even and b is odd, then gcd(a,b) = gcd(a/2, b).

(b) If both a and b are even, then gcd(a,b) = 2gcd(a/2, b/2).

8.21 How can you express the least common multiple of two integers, if you know the
prime factorization of each?

8.22 Suppose that you are given two integers, and you know the prime factorization
of one of them. Describe a way of computing the greatest common divisor of these
numbers.

65

8.23 Prove that for any two integers a and b,

gcd(a,b)lcm(a,b) = ab.

Now we turn to Euclid’s Algorithm. Let a and b be two positive integers, and suppose
that a < b. The algorithm is based on two simple facts, already familiar as exercises 8.6
and 8.6.

Suppose that we are given two positive integers a and b, and we want to find their g.c.d.
Here is what we do:

1. If a > b then we interchange a and b.

2. If a > 0, divide b by a, to get a remainder r. Replace b by r and return to 1.

3. Else (if a = 0), return b as the g.c.d. and halt.

When you carry out the algorithm, especially by hand, there is no reason to interchange
a and b if a < b: we can simply divide the larger number by the smaller (with remainder),
and replace the larger number by the remainder if the remainder is not 0. Let us do some
examples.

gcd(300,18) = gcd(12,18) = gcd(12,6) = 6.

gcd(101,100) = gcd(1,100) = 1.

gcd(89,55) = gcd(34,55) = gcd(34,21) = gcd(13,21) = gcd(13,8) = gcd(5,8)

= gcd(5,3) = gcd(2,3) = gcd(2,1) = 1.

You can check in each case (using a prime factorization of the numbers) that the result is
indeed the g.c.d.

If we describe an algorithm, the first thing to worry about is whether it terminates at
all. So why is the euclidean algorithm finite? This is easy: the numbers never increase, and
one of them decreases any time step 2 is executed, so it cannot last infinitely long.

Then of course we have to make sure that our algorithm yields what we need. This
is clear: step 1 (interchanging the numbers) trivially does not change the g.c.d., step 3
(replacing the larger number by the remainder of a division) does not change the g.c.d. by
exercise 8.6(b). And when we halt at step 2, the number returned is indeed the g.c.d. of
the two current numbers by exercise 8.6.

A third, and more subtle, question you should ask when designing an algorithm: how
long does it take? How many steps will it make before it terminates? We can get a bound
from the argument that proves finite termination: since one or the other number decreases
any time the 1-2 loop is executed, it will certainly halt in less than a + b iterations. This
is really not a great time bound: if we apply the euclidean algorithm to two numbers with
100 digits, then it says that it will not last longer than 2 ·10100 steps, which is astronomical
and therefore useless. But this is only a most pessimistic bound; the examples seem to
show that the algorithm terminates much faster than this.

But the examples also suggest that question is quite delicate. We see that the euclidean
algorithm may be quite different in length, depending on the numbers in question. Some of
the possible observations made from this examples are contained in the following exercises.

8.24 Show that the euclidean algorithm can terminate in two steps for arbitrarily large
positive integers, even if their g.c.d. is 1.

66

8.25 Describe the euclidean algorithm applied to two consecutive Fibonacci numbers.
Use your description to show that the euclidean algorithm can last arbitrarily many
steps.

So what can we say about how long does the euclidean algorithm last? The key to the
answer is the following lemma:

Lemma 8.2 During the execution of the euclidean algorithm, the product of the two current
numbers drops by a factor of two in each iteration.

To see that this is so, consider the step when the pair (a,b) (a < b) is replaced by the
pair (r,a), where r is the remainder of b when divided by a. Then we have r < a and hence
b ≥ a+ r > 2r. Thus ar < 1

2ab as claimed.

Suppose that we apply the euclidean algorithm to two numbers a and b and we make
k steps. It follows by Lemma 8.2 that after the k steps, the product of the two current
numbers will be at most ab/2k. Since this is at least 1, we get that

ab ≥ 2k,

and hence
k ≤ log2(ab) = log2 a+ log2 b.

Thus we have proved the following.

Theorem 8.7 The number of steps of the euclidean algorithm, applied to two positive
integers a and b, is at most log2 a+ log2 b.

We have replaced the sum of the numbers by the sum of the logarithms of the numbers
in the bound on the number of steps, which is a really substantial improvement. For
example, the number of iterations in computing the g.c.d. of two 300-digit integers is less
than 2log210300 = 600log210 < 2000. Quite a bit less than our first estimate of 10100. Note
that log2a is less than the number of bits of a (when written in base 2), so we can say that
the euclidean algorithm does not take more iterations than the number of bits needed to
write down the numbers in base 2.

The theorem above gives only an upper bound on the number of steps the euclidean
algorithm takes; we can be much more lucky: for example, when we apply the euclidean
algorithm to two consecutive integers, it takes only one step. But sometimes, one cannot
do much better. If you did exercise 8.6, you saw that when applied to two consecutive
Fibonacci numbers Fk and Fk+1, the euclidean algorithm takes k − 1 steps. On the other
hand, the lemma above gives the bound

log2 Fk + log2 Fk+1 ≈ log2





1√
5

(

1 +
√

5

2

)k


 log2





1√
5

(

1 +
√

5

2

)k+1




= − log2 5 + (2k + 1)log2

(

1 +
√

5

2

)

≈ 1.388k − 1.628,

67

so we have overestimated the number of steps only by a factor of about 1.388.
Fibonacci numbers are not only good to give examples of large numbers for which we

can see how the euclidean algorithm works; they are also useful in obtaining an even better
bound on the number of steps. We state the result as an exercise. Its contents is that, in
a sense, the euclidean algorithm is longest on two consecutive Fibonacci numbers.

8.26 Suppose that a < b and the euclidean algorithm applied to a and b takes k steps.
Prove that a ≥ Fk and b ≥ Fk+1.

8.27 Consider the following version of the euclidean algorithm to compute gcd(a, b):
(1) swap the numbers if necessary to have a ≤ b; (2) if a = 0, then return b; (3) if a 6= 0,
then replace b by b − a and go to (1).

(a) Carry out this algorithm to compute gcd(19,2).

(b) Show that the modified euclidean algorithm always terminates with the right answer.

(c) How long does this algorithm take, in the worst case, when applied to two 100-digit
integers?

8.28 Consider the following version of the euclidean algorithm to compute gcd(a, b).
Start with computing the largest power of 2 dividing both a and b. If this is 2r, then
divide a and b by 2r. After this “preprocessing”, do the following:

(1) Swap the numbers if necessary to have a ≤ b.

(2) If a 6= 0, then check the parities of a and b; if a is even, and b is odd, then replace
a by a/2; if both a and b are odd, then replace b by b − a; in each case, go to (1).

(3) if a = 0, then return 2rb as the g.c.d.

Now come the exercises:

(a) Carry out this algorithm to compute gcd(19,2).

(b) It seems that in step (2), we ignored the case when both a and b are even. Show
that this never occurs.

(c) Show that the modified euclidean algorithm always terminates with the right answer.

(d) Show that this algorithm, when applied to two 100-digit integers, does not take
more than 1500 iterations.

The Euclidean Algorithm gives much more than just the g.c.d. of the two numbers. The
main observation is that if we carry out the Euclidean Algorithm to compute the greatest
common divisor of two positive integers a and b, all the numbers we produce along the
computation can be written as the sum of an integer multiple of a and an integer multiple
of b. Indeed, suppose that this holds for two numbers consecutive numbers we computed,
so that one is a′ = am + bn, and the other is b′ = ak + bl, where m,n,k, l are integers (not
necessarily positive). Then in the next steps we compute (say) the remainder of b′ modulo
a′, which is

a′ − qb′ = (am+ bn) − q(ak + bl) = a(m − qk) + b(n − ql),

which is of the right form again.
In particular, we get the following:

68

Theorem 8.8 Let d be the greatest common divisor of the integers a and b. Then d can
be written in the form

d = am+ bn

where m and n are integers.

By maintaining the representation of integers in the form an + bm during the compu-
tation, we see that the expression for d in the theorem not only exists, but it is easily
computable.

8.7 Testing for primality

Returning to a question proposed in the introduction of this chapter: how do you decide
about a positive integer n whether it is a prime? You can try to see if n can be divided,
without remainder, by any of the smaller integers (other than 1). This is, however, a very
clumsy and inefficient procedure! To determine this way whether a number with 20 digits
is a prime would take astronomical time.

You can do a little better by noticing that it is enough to try to divide n by the positive
integers less than

√
n (since if n can be written as the product of two integers larger than

1, then one of these integers will necessarily be less than
√

n). But this method is still
hopelessly slow if the number of digits goes above 20.

A much more promising approach is offered by Fermat’s “Little” Theorem. Its simplest
nontrivial case says that if p is a prime, then p|2p − 2. If we assume that p is odd (which
only excludes the case p = 2), then we also know that p|2p−1 − 1.

What happens if we check the divisibility relation n|2n−1 −1 for composite numbers? It
obviously fails if n is even (no even number is a divisor of an odd number), so let’s restrict
our attention to add numbers. Here are some results:

9 6 |28 − 1 = 255, 15 6 |214 − 1 = 16,383, 21 6 |220 − 1 = 1,048,575,

25 6 |224 − 1 = 16,777,215.

This suggests that perhaps we could test whether or not the number n is a prime by checking
whether or not the relation n|2n−1 − 1 holds. This is a nice idea, but it has several major
shortcomings.

First, it is easy to write up the formula 2n−1 − 1, but it is quite a different matter to
compute it! It seems that to get 2n−1, we have to multiply n − 2 times by 2. For a 100
digit number, this is about 10100 steps, which we will never be able to carry out.

But, we can be tricky when we compute 2n−1. Let us illustrate this on the example of
224: we could start with 23 = 8, square it to get 26 = 62, square it again to get 212 = 4096,
and square it once more to get 224 = 16,777,216. Instead of 23 multiplications, we only
needed 5.

It seems that this trick only worked because 24 was divisible by such a large power of
2, and we could compute 224 by repeated squaring, starting from a small number. So let
us show how to do a similar trick if the exponent is a less friendly integer. Let us compute,
say, 229:

22 = 4,23 = 8,26 = 64,27 = 128,214 = 16,384,228 = 268,435,456,229 = 536,870,912.

69

It is perhaps best to read this sequence backwards: if we have to compute an odd power
of 2, we obtain it by multiplying the previous power by 2; if we have to compute an even
power, we obtain it by squaring the appropriate smaller power.

8.29 Show that if n has k bits in base 2, then 2n can be computed using less than 2k
multiplications.

Thus we have shown how to overcome the first difficulty; but the computations we did
above reveal the second: the numbers grow too large! Let’s say that n has 100 digits; then
2n−1 is not only astronomical: the number of its digits is astronomical. We could never
write it down, let alone check whether it is divisible by n.

The way out is to divide by n as soon as we get any number that is larger than n, and
just work with the remainder of the division. For example, if we want to check whether
25|224 − 1, then we have to compute 224. As above, we start with computing 23 = 8, then
square it to get 26 = 64. We immediately replace it by the remainder of the division 64 : 25,
which is 14. Then we compute 212 by squaring 26, but instead we square 14 to get 196,
which we replace by the remainder of the division 196 : 25, which is 21. Finally, we obtain
224 by squaring 212, but instead we square 21 to get 441, and then divide this by 25 to get
the remainder 16. Since 16−1 = 15 is not divisible by 25, it follows that 25 is not a prime.

This does not sound like an impressive conclusion, considering the triviality of the result,
but this was only an illustration. If n has k bits in base 2, then as we have seen, it takes only
2k multiplications to compute 2n, and all we have to do is one division (with remainder) in
each step to keep the numbers small. We never have to deal with numbers larger than n2.
If n has 100 digits, then n2 has 199 or 200 — not much fun to multiply by hand, but quite
easily manageable by computers.

But here comes the third shortcoming of the primality test based on Fermat’s Theorem.
Suppose that we carry out the test for a number n. If it fails (that is, n is not a divisor
of 2n−1 − 1), then of course we know that n is not a prime. But suppose we find that
n|2n−1−1. Can we conclude that n is a prime? Fermat’s Theorem certainly does not justify
this conclusion. Are there composite numbers n for which n|2n−1 − 1? Unfortunately, the
answer is yes. The smallest such number is 341 = 11 · 31.

Here is an argument showing that 341 is a pseudoprime, without using a computer. We
start with noticing that 11 divides 25 + 1 = 33, and that 31 divides 25 − 1 = 31. Therefore
341 = 11 · 31 divides (25 + 1)(25 − 1) = 210 − 1. To finish, we invoke the result of exercise
8.1: it implies that 210 − 1 is a divisor of (210)34 − 1 = 2340 − 1.

Such numbers are sometimes called pseudoprimes (fake primes). While such numbers
are quite rare (there are only 22 of them between 1 and 10,000), they do show that our
primality test can give a “false positive”, and thus (in a strict mathematical sense) it is not
a primality test at all.

Nevertheless, efficient primality testing is based on Fermat’s Theorem. Below we sketch
how it is done; the mathematical details are not as difficult as in the case of, say, the Prime
Number Theorem, but they do go beyond the scope of this book.

One idea that comes to rescue is that we haven’t used the full force of Fermat’s Theorem:
we can also check that n|3n − 3, n|5n − 5, etc. These can be carried out using the same
tricks as described above. And in fact already the first of these rules out the “fake prime”
341. Unfortunately, some pseudoprimes are worse than others; for example, the number

70

561 = 3 · 11 · 17 has the property that

561|a561 − a

for every integer a. These pseudoprimes are called Carmicheal numbers, and it was believed
that their existence kills every primality test based on Fermat’s theorem.

But in the late 70’s, M. Rabin and G. Miller found a very simple way to strengthen
Fermat Theorem just a little bit, and thereby overcome the difficulty caused by Carmicheal
numbers. We illustrate the method on the example of 561. We use some high school math,
namely the identity x2 − 1 = (x− 1)(x+ 1), to factor the number a561 − 1:

a561 − a = a(a560 − 1) = a(a280 − 1)(a280 + 1) (15)

= a(a140 − 1)(a140 + 1)(a280 + 1) (16)

= a(a140 − 1)(a140 + 1)(a280 + 1) (17)

= a(a70 − 1)(a70 + 1)(a140 + 1)(a280 + 1) (18)

= a(a35 − 1)(a35 + 1)(a70 + 1)(a140 + 1)(a280 + 1) (19)

Now suppose that 561 were a prime. Then by Fermat’s Theorem, it must divide a561 − a,
whatever a is (this in fact happens). Now if a prime divides a product, it divides one of
the factors (exercise 8.3), and hence at least one of the relations

561|a 561|a35 − 1 561|a35 + 1 561|a70 + 1 561|a140 + 1 561|a280 + 1

must hold. But already for a = 2, none of these relations hold.
The Miller-Rabin test is an elaboration of this idea. Given an odd integer n > 1 that

we want to test for primality. We choose an integer a from the range 0 ≤ a ≤ n − 1 at
random, and consider an −a. We factor it as a(an−1 −1), and then go on to factor it, using
the identity x2 −1 = (x−1)(x+1), as long as we can. Then we test that one of the factors
must be divisible by n.

If the test fails, we can be sure that n is not a prime. But what happens if it succeeds?
Unfortunately, this can still happen even if n is composite; but the crucial point is that this
test gives a false positive with probability less than 1/2 (remember we chose a random a).

Reaching a wrong conclusion half of the time does not sound good enough; but we can
repeat the experiment several times. If we repeat it 10 times (with a new, randomly chosen
a), the probability of a false positive is less than 2−10 < 1/1000 (since to conclude that n is
prime, all 10 runs must give a false positive, independently of each other). If we repeat the
experiment 100 times, the probability of a false positive drops below 2−100 < 10−30, which
is astronomically small.

Thus this test, when repeated sufficiently often, tests primality with error probability
that is much less than the probability of, say, hardware failure, and therefore it is quite
adequate for practical purposes. It is widely used in programs like Maple or Mathematica
and in cryptographic systems.

Suppose that we test a number n for primality and find that it is composite. Then we
would like to find its prime factorization. It is easy to see that instead of this, we could ask
for less: for a decomposition of n into the product of two smaller positive integers: n = ab.

71

If we have a method to find such a decomposition efficiently, then we can go on and test a
and b for primality. If they are primes, we have found the prime factorization of n; if (say)
a is not a prime, we can use our method to find a decomposition of a into the product of
two smaller integers etc. Since n has at most log2n prime factors (exercise 8.3), we have to
repeat this at most log2 n times (which is less than the number of its bits).

But, unfortunately (or fortunately? see the next chapter on cryptography) no efficient
method is known to write a composite number as a product of two smaller integers. It would
be very important to find an efficient factorization method, or to give a mathematical proof
that no such method exists; but we don’t know what the answer is.

8.30 Show that 561|a561 −a, for every integer a. [Hint: since 561 = 3 ·11 ·17, it suffices
to prove that 3|a561 − a, 11|a561 − 1 and 17|a561 − a. Prove these relations separately,
using the method of the proof of the fact that 341|2340 − 1.]

72

9 Graphs

9.1 Even and odd degrees

We start with the following exercise (admittedly of no practical significance).

Prove that at a party with 51 people, there is always a person who knows an even number
of others. (We assume that acquaintance is mutual. There may be people who don’t know
each other. There may even be people who don’t know anybody else — of course, such
people know an even number of others, so the assertion is true if there is such a person.)

If you don’t have any idea how to begin a solution, you should try to experiment. But
how to experiment with such a problem? Should we find 51 names for the participants, then
create, for each person, a list of those people he knows? This would be very tedious, and
we would be lost among the data. It would be good to experiment with smaller numbers.
But which number can we take instead of 51? It is easy to see that 50, for example, would
not do: if, say, we have 50 people all know each other, then everybody knows 49 others, so
there is no person with an even number of acquaintances. For the same reason, we could
not replace 51 by 48, or 30, or any even number. Let’s hope that this is all; let’s try to
prove that

at a party with an odd number of people, there is always a person who knows an even
number of others.

Now we can at least experiment with smaller numbers. Let us have, say, 5 people: Alice,
Bob, Carl, Diane and Eve. When they first met, Alice new everybody else, Bob and Carl
new each other, and Carl also new Eve. So the numbers of acquaintances are : Alice 4,
Bob 2, Carl 3, Diane 1 and Eve 2. So we have not only one but three people with an even
number of acquaintances.

It is still rather tedious to consider examples by listing people and listing pairs knowing
each other, and it is quite easy to make mistakes. We can, however, find a graphic illustra-
tion that helps a lot. We represent each person by a point in the plane (well, by a small
circle, to make the picture nicer), and we connect two of these points by a segment if the
people know each other. This simple drawing contains all the information we need (Figure
14).

A picture of this kind is called a graph. More exactly, a graph consists of a set of nodes
(or points, or vertices, all these names are in use), and some pairs of these (not necessarily
all pairs) are connected by edges (or lines). It does not matter whether these edges are
straight of curvy; all that is important is which pair of nodes they connect. The set of nodes
of a graph G is usually denoted by V ; the set of edges, by E. Thus we write G = (V,E) to
indicate that the graph G has node set V and edge set E.

The only thing that matters about an edge is the pair of nodes it connects; hence the
edges can be considered as 2-element subsets of V . This means that the edge connecting
nodes u and v is just the set {u,v}. We’ll further simplify notation and denote this edge
by uv.

Coming back to our problem, we see that we can represent the party by a graph very
conveniently. Our concern is the number of people known by a given person. We can read
this off the graph by counting the number of edges leaving a given node. This number is
called the degree (or valency) of the node. The degree of node v is denoted by d(v). So A

73

A

CD

E B

Figure 14: The graph depicting aquaitence between our friends

����

����

����

��������

���� ����

����

����

����

����

����

����

����

����

����

����

����

����

Figure 15: Some graphs with an odd number of nodes, with nodes of even degree marked

has degree 4, B has degree 2, etc. If Frank now arrives, and he does not know anybody,
then we add a new node that is not connected to any other node. So this new node has
degree 0.

In the language of graph theory, we want to prove:

if a graph has an odd number of nodes than it has a node with even degree.

Since it is easy to experiment with graphs, we can draw a lot of graphs with an odd number
of nodes, and count the number of nodes with even degree (Fig. 15). We find that they
contain 1,5,3,3,7 such nodes. So we observe that not only is there always such a node, but
the number of such nodes is odd.

Now this is a case when it is easier to prove more: if we formulate the following stronger
statement:

if a graph has an odd number of nodes then the number of nodes with even degree is odd,

then we made an important step towards the solution! (Why is this statement stronger?
Because 0 is not an odd number.) Let’s try to find an even stronger statement by looking
also at graphs with an even number of nodes. Experimenting on several small graphs again
(Fig 16), we find that the number of nodes with even degree is 2,0,4,2,0. So we conjecture
that the following is true:

if a graph has an even number of nodes then the number of nodes with even degree is
even.

74

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

����

����

���� ��������

����

��������

��������

����

Figure 16: Some graphs with an even number of nodes, with nodes of even degree marked

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Figure 17: Building up a graph one edge at a time

This is nicely parallel to the statement about graphs with an odd number of nodes, but
it would be better to have a single common statement for the odd and even case. We get
such a version if we look at the number of nodes with odd, rather than even, degree. This
number is obtained by subtracting the number of nodes with even degree from the total
number of nodes, and hence both statements will be implied by the following:

Theorem 9.1 In every graph, the number of nodes with odd degree is even.

We still have to prove this theorem. It seems that having made the statement stronger
and more general in several steps, we made our task harder and harder. But in fact we got
closer to the solution.

One way of proving the theorem is to build up the graph one edge at a time, and observe
how the parities of the degrees change. An example is shown in Figure 17. We start with
a graph with no edge, in which every degree is 0, and so the number of nodes with odd
degree is 0, which is an even number.

Now if we connect two nodes by a new edge, we change the parity of the degrees at
these nodes. In particular,

— if both endpoints of the new edge had even degree, we increase the number of nodes
with odd degree by 2;

— if both endpoints of the new edge had odd degree, we decrease the number of nodes
with odd degree by 2;

75

— if one endpoint of the new edge had even degree and the other had odd degree, then
we don’t change the number of nodes with odd degree.

Thus if the number of nodes with odd degree was even before adding the new edge,
it remained even after this step. This proves the theorem. (Note that this is a proof by
induction on the number of edges.)

Graphs are very handy in representing a large variety of situations, not only parties. It
is quite natural to consider the graph whose nodes are towns and whose edges are highways
(or railroads, or telephone lines) between these towns. We can use a graph to describe an
electrical network, say the printed circuit on a card in your computer.

In fact, graphs can be used any situation where a “relation” between certain objects
is defined. Graphs are used to describe bonds between atoms in a molecule; connections
between cells in the brain; descendence between species, etc. Sometimes the nodes represent
more abstract things: for example, they may represent stages of a large construction project,
and an edge between two stages means that one arises from the other in a single phase of
work. Or the nodes can represent all possible positions in a game (say, chess, although you
don’t really want to draw this graph), where we connect two nodes by an edge if one can
be obtained from the other in a single move.

9.1 Find all graphs with 2,3 and 4 nodes.

9.2 (a) Is there a graph on 6 nodes with degrees 2,3,3,3,3,3?

(b) Is there a graph on 6 nodes with degrees 0,1,2,3,4,5?

(c) How many graphs are there on 4 nodes with degrees 1,1,2,2?

(d) How many graphs are there on 10 nodes with degrees 1,1,1,1,1,1,1,1,1,1?

9.3 At the end of the party, everybody knows everybody else. Draw the graph repre-
senting this situation. How many edges does it have?

9.4 Draw the graphs representing the bonds between atoms in (a) a water molecule;
(b) a methane molecule; (c) two water molecules.

9.5 (a) Draw a graph with nodes representing the numbers 1,2, . . . ,10, in which two
nodes are connected by an edge if and only if one is a divisor of the other.

(b) Draw a graph with nodes representing the numbers 1,2, . . . ,10, in which two nodes
are connected by an edge if and only if they have no common divisor larger than 1.

(c) Find the number of edges and the degrees in these graphs, and check that theorem
9.1 holds.

9.6 What is the largest number of edges a graph with 10 nodes can have?

9.7 How many graphs are there on 20 nodes? (To make this question precise, we have
to make sure we know what it means that two graphs are the same. For the purposes
of this exercise, we consider the nodes given, and labeled say, as Alice, Bob, . . . The
graph consisting of a single edge connecting Alice and Bob is different from the graph
consisting of a single edge connecting Eve and Frank.)

9.8 Formulate the following assertion as a theorem about graphs, and prove it: At
every party one can find two people who know the same number of other people (like
Bob and Eve in our first example).

76

Figure 18: Two paths and two cycles

It will be instructive to give another proof of the theorem formulated in the last section.
This will hinge on the answer to the following question: How many edges does a graph have?
This can be answered easily, if we think back to the problem of counting handshakes: for
each node, we count the edges that leave that node (this is the degree of the node). If we
sum these numbers, we count every edge twice. So dividing the sum by two, we get the
number of edges. Let us formulate this observation as a theorem:

Theorem 9.2 The sum of degrees of all nodes in a graph is twice the number of edges.

In particular, we see that the sum of degrees in any graph is an even number. If we
omit the even terms from this sum, we still get an even number. So the sum of odd degrees
is even. But this is only possible if the number of odd degrees is even (since the sum of an
odd number of odd numbers is odd). Thus we have obtained a new proof of Theorem 9.1.

9.2 Paths, cycles, and connectivity

Let us get acquainted with some special kinds of graphs. The simplest graphs are the empty
graphs, having any number of nodes but no edges.

We get another very simple kind of graphs if we take n nodes and connect any two of
them by an edge. Such a graph is called a complete graph (or a clique). A complete graph
with n nodes has

(

n
2

)

edges (recall exercise 9.1).
Let us draw n nodes in a row and connect the consecutive ones by an edge. This way

we obtain a graph with n − 1 edges, which is called a path. The first and last nodes in the
row are called the endpoints of the path. If we also connect the last node to the first, we
obtain a cycle (or circuit). Of course, we can draw the same graph in many other ways,
placing the nodes elsewhere, and we may get edges that intersect (Figure 18).

A graph H is called a subgraph of a graph G if it can be obtained from G by deleting
some of its edges and nodes (of course, if we delete a node we automatically delete all the
edges that connect it to other nodes).

9.9 Find all complete graphs, paths and cycles among the graphs in the previous figures.

9.10 How many subgraphs does an empty graph on n nodes have? How many subgraphs
does a triangle have?

77

Figure 19: A path in a graph connecting two nodes

A key notion in graph theory is that of a connected graph. It is heuristically clear what
this should mean, but it is also easy to formulate the property as follows: a graph G is
connected if every two nodes of the graph can be connected by a path in G. To be more
precise: a graph G is connected if for every two nodes u and v, there exists a path with
endpoints u and v that is a subgraph of G (Figure 19).

It will be useful to include a little discussion of this notion. Suppose that nodes a and
b can be connected by a path P in our graph. Also suppose that nodes b and c can be
connected by a path Q. Can a and c be connected by a path? The answer seems to be
obviously “yes”, since we can just go from a to b and then from b to c. But there is a
difficulty: concatenating (joining together) the two paths may not yield a path from a to c,
since P and Q may intersect each other (Figure 20). But we can construct a path from a
to c easily: Let us follow the path P to its first common node d with Q; then let us follow
Q to c. Then the nodes we traversed are all distinct. Indeed, the nodes on the first part
of our walk are distinct because they are nodes of the path P ; similarly, the nodes on the
second part are distinct because they are nodes of the path Q; finally, any node of the first
part must be distinct from any node of the second part (except, of course, the node d),
because d is the first common node of the two paths and so the nodes of P that we passed
through before d are not nodes of Q at all. Hence the nodes and edges we have traversed
form a path from a to c as claimed.3

9.11 Is the proof as given above valid if (a) the node a lies on the path Q; (b) the paths
P and Q have no node in common except b.

9.12 (a) We delete an edge e from a connected graph G. Show by an example that the

3We have given the more details of this proof than was perhaps necessary. One should note, however,
that when arguing about paths and cycles in graphs, it is easy to draw pictures (on paper or mentally) that
make implicit assumptions and are, therefore, misleading. For example, when joining together two paths,
one’s first mental image is a single (longer) path, which may not be the case.

78

a

b

c

a

b

c

a

b

c

Figure 20: How to select a path from a to c, given a path from a to b and a path from b to
c?

79

remaining graph may not be connected.

(b) Prove that if we assume that the deleted edge e belongs to a cycle that is a subgraph
of G, then the remaining graph is connected.

9.13 Let G be a graph and let u and v be two nodes of G. A walk in G from u to v is
a sequence of nodes (w0,w1, . . . ,wk) such that w0 = u, wk = v, and consecutive nodes
are connected by an edge, i.e., wiwi+1 ∈ E for i = 0,1, . . . ,k − 1.

(a) Prove that if there is a walk in G from u to v, then G contains a path connecting
u to v.

(b) Use part (a) to give another proof of the fact that if G contains a path connecting
a and b, and also a path connecting b to c, then it contains a path connecting a to c.

9.14 Let G be a graph, and let H1 = (V1,E1) and H2 = (V2,E2) be two subgraphs of G
that are connected. Assume that H1 and H2 have at least one node in common. Form
their union, i.e., the subgraph H = (V ′,E′), where V ′ = V1 ∪ V2 and E′ = E1 ∪ E2.
Prove that H is connected.

Let G be a graph that is not necessarily connected. G will have connected subgraphs; for
example, the subgraph consisting of a single node (and no edge) is connected. A connected
component H is a maximal subgraph that is connected; in other words, H is a connected
component if it is connected but every other subgraph of G that contains H is disconnected.
It is clear that every node of G belongs to some connected component. It follows by exercise
9.2 that different connected components of G have no node in common (else, their union
would be a connected subgraph containing both of them). In other words, every node of G
is contained in a unique connected component.

9.15 Determine the connected components of the graphs constructed in exercise 9.1.

9.16 Prove that no edge of G can connect nodes in different connected components.

9.17 Prove that a node v is a node of the connected component of G containing node
u if and only if g contains a path connecting u to v.

9.18 Prove that a graph with n nodes and more than
(

n−1

2

)

edges is always connected.

80

Figure 21: Five trees

10 Trees

We have met trees when studying enumeration problems; now we have a look at them as
graphs. A graph G = (V,E) is called a tree if it is connected and contains no cycle as a
subgraph. The simplest tree has one node and no edges. The second simplest tree consists
of two nodes connected by an edge. Figure 21 shows a variety of other trees.

Note that the two properties defining trees work in the opposite direction: connectedness
means that the graph cannot have “too few” edges, while the exclusion of cycles means that
it cannot have “too many”. To be more precise, if a graph is connected, then adding a new
edge to it, it remains connected (while deleting an edge, it may or may not stay connected).
If a graph contains no cycle, then deleting any edge, the remaining graph will not contain
a cycle either (while adding a new edge may or may ot create a cycle). The following
theorem shows that trees can be characterized as “minimally connected” graphs as well as
“maximally cycle-free” graphs.

Theorem 10.1 (a) A graph G is a tree if and only if it is connected, but deleting any of
its edges results in a disconnected graph.

(b) A graph G is a tree if and only if it contains no cycles, but adding any new edge
creates a cycle.

We prove part (a) of this theorem; the proof of part (b) is left as an exercise.
First, we have to prove that if G is a tree then it satisfies the condition given in the

theorem. It is clear that G is connected (by the definition of a tree). We want to prove that
deleting any edge, it cannot remain connected. The proof is indirect: assume that deleting
the edge uv from a tree G, the remaining graph G′ is connected. Then G′ contains a path
P connecting u and v. But then, if we put the edge uv back, the path P and the edge uv
will form a cycle in G, which contradicts the definition of trees.

Second, we have to prove that if G satisfies the condition given in the theorem, then it
is a tree. It is clear that G is connected, so we only have to argue that G does not contain
a cycle. Again by an indirect argument, assume that G does contain a cycle C. Then
deleting any edge of C, we obtain a connected graph (exercise 9.2). But this contradicts
the condition in the theorem.

10.1 Prove part (b) of theorem 10.1.

81

10.2 Prove that connecting two nodes u and v in a graph G by a new edge creates a
new cycle if and only if u and v are in the same connected component of G.

10.3 Prove that in a tree, every two nodes can be connected by a unique path. Con-
versely, prove that if a graph G has the property that every two nodes can be connected
by a path, and there is only one connecting path for each pair, then the graph is a tree.

10.1 How to grow a tree?

The following is one of the most important properties of trees.

Theorem 10.2 Every tree with at least two nodes has at least two nodes of degree 1.

Let G be a tree with at least two nodes. We prove that G has a node of degree 1, and
leave it to the reader as an exercise to prove that it has at least one more. (A path has
only two such nodes, so this is the best possible we can claim.)

Let us start from any node v0 of the tree and take a walk (climb?) on the tree. Let’s say
we never want to turn back from a node on the edge through which we entered it; this is
possible unless we get to a node of degree 1, in which case we stop and the proof is finished.

So let’s argue that this must happen sooner or later. If not, then eventually we must
return to a node we have already visited; but then the nodes and edges we have traversed
between the two visits form a cycle. This contradicts our assumption that G is a tree and
hence contains no cycle.

10.4 Apply the argument above to find a second node of degree 1.

A real tree grows by developing a new twig again and again. We show that graph-trees
can be grown in the same way. To be more precise, consider the following procedure, which
we call the Tree-growing Procedure:

— Start with a single node.

— Repeat the following any number of times: if you have any graph G, create a new
node and connect it by a new edge to any node of G.

Theorem 10.3 Every graph obtained by the Tree-growing Procedure is a tree, and every
tree can be obtained this way.

The proof of this is again rather straightforward, but let us go through it, if only to
gain practice in arguing about graphs.

First, consider any graph that can be obtained by this procedure. The starting graph
is certainly a tree, so it suffices to argue that we never create a non-tree; in other words,
if G is a tree, and G′ is obtained from G by creating a new node v and connecting it to
a node u of G, then G′ is a tree. This is straightforward: G′ is connected, since any two
“old” nodes can be connected by a path in G, while v can be connected to any other node
w by first going to u and then connecting u to w. Moreover, G cannot contain a cycle:
v has degree 1 and so no cycle can go through v, but a cycle that does not go through v
would be a cycle in the old graph, which is supposed to be a tree.

Second, let’s argue that every tree can be constructed this way. We prove this by
induction on the number of nodes.4 If the number of nodes is 1, then the tree arises by the

4The first part of the proof is also an induction argument, even though it was not phrased as such.

82

Figure 22: The descendence tree of trees

construction, since this is the way we start. Assume that G is a tree with at least 2 nodes.
Then by theorem 10.2, G has a node of degree 1 (at least two nodes, in fact). Let v be
a node with degree 1. Delete v from G, together with the edge with endpoint v, to get a
graph G′.

We claim that G′ is a tree. Indeed, G′ is connected: any two nodes of G′ can be
connected by a path in G, and this path cannot go through v as v has degree 1. So this
path is also a path in G′. Furthermore, G′ does not contain a cycle as G does not.

By the induction hypothesis, every tree with fewer nodes than G arises by the construc-
tion; in particular, G′ does. But then G arises from G′ by one more iteration of the second
step. This completes the proof of Theorem 10.3.

Figure 22 shows how trees with up to 4 nodes arise by this construction. Note that
there is a “tree of trees” here. The fact that the logical structure of this construction is a
tree does not have anything to do with the fact that we are constructing trees: any iterative
construction with free choices at each step results in a similar “descendence tree”.

The Tree-growing Procedure can be used to establish a number of properties of trees.
Perhaps most important of these concerns the number of edges. How many edges does a
tree have? Of course, this depends on the number of nodes; but surprisingly, it depends
only on the number of nodes:

Theorem 10.4 Every tree on n nodes has n − 1 edges.

Indeed, we start with one more node (1) than edge (0), and at each step, one new node
and one new edge is added, so this difference of 1 is maintained.

10.5 Let G be a tree, which we consider as the network of roads in a medieval country,
with castles as nodes. The King lives at node r. On a certain day, the lord of each

83

castle sets out to visit the King. Argue carefully that soon after they leave their castles,
there will be exactly one lord on each edge. Give a proof of Theorem 10.4 based on
this.

10.6 If we delete a node v from a tree (together with all edges that end there), we get
a graph whose connected components are trees. We call these connected components
the branches at node v. Prove that every tree has a node such that every branch at
this node contains at most half the nodes of the tree.

10.2 Rooted trees

Often we use trees that have a special node, which we call the root. For example, trees that
occured in counting subsets or permutations were built starting with a given node.

We can take any tree, select any of its nodes, and call it a root. A tree with a specified
root is called a rooted tree.

Let G be a rooted tree with root r. Given any node v different from r, we know that
the tree contains a unique path connecting v to r. The node on this path next to v is called
the father of v. The other neighbors of v are called the sons of v. The root r does not have
a father, but all its neighbors are called its sons.

Now a basic geneological assertion: every node is the father of its sons. Indeed, let v be
any node and let u be one of its sons. Consider the unique path P connecting v to r. The
node cannot lie on P : it cannot be the first node after v, since then it wold be the father
of v, and not its son; and it cannot be a later node, since then going from v to u on the
path P and then back to v on the edge uv we would traverse a cycle. But this implies that
adding the node u and the edge uv to P we get a path connecting u to r. Since v is the
forst node on this path after u, it follows that v is the father of u. (Is this argument valid
when v = r? Check!)

We have seen that every node different from the root has exactly one father. A node
can have any number of sons, including zero. A node with no sons is called a leaf. In other
words, a leaf is a node with degree 1, different from r. (To be precise, if the tree consists
of a single node r, then this is a leaf.)

10.3 How many trees are there?

We have counted all sorts of things in the first part of this book; now that we are familiar
with trees, it is natural to ask: how many trees are there on n nodes?

Before attempting to answer this question, we have to clarify an important issue: when
do we consider two trees different? There are more than one reasonable answers to this
question. Consider the trees in Figure 23. Are they the same? One could say that they are;
but then, if the nodes are, say, towns, and the edges represent roads to be built between
them, then clearly the inhabitants of the towns will consider the two plans very different.

So we have to define carefully when we consider two trees the same. The following are
two possibilities:

— We fix the set of nodes, and consider two trees the same if the same pairs of nodes
are connected in each. (This is the position the twon people would take when they consider
road construction plans.) In this case, it is advisable to give names to the nodes, so that

84

Figure 23: Are these trees the same?

we can distinguish them. It is convenient to use the numbers 0,1,2, . . . ,n − 1 as names (if
the tree has n nodes). We express this by saying that the vertices of the tree are labeled
by 0,1,2, . . .n − 1. Figure 24 shows a labelled tree. Interchanging the labels 2 and 4 (say)
would yield a different labelled tree.

— We don’t give names to the nodes, and consider two trees the same if we can rearrange
the nodes of one so that we get the other tree. More exactly, we consider two trees the same
(the mathematical term for this is isomorphic) if there exists a one-to-one correpondence
between the nodes of the first tree and the nodes of the second tree so that two nodes in
the first tree that are connected by an edge correspond to nodes in the second tree that are
connected by an edge, and vice versa. If we speak about unlabelled trees, we mean that we
don’t distinguish isomorphic trees from each other. For example, all paths on n nodes are
the same as unlabelled trees.

So we can ask two questions: how many labelled trees are there on n nodes? and how
many unlabelled trees are there on n nodes? These are really two different questions, and
we have to consider them separately.

10.7 Find all unlabelled trees on 2,3,4 and 5 nodes. How many labelled trees do you
get from each? Use this to find the number of labelled trees on 2,3,4 and 5 nodes.

10.8 How many labelled trees on n nodes are stars? How many are paths?

The number of labelled trees. For the case of labelled trees, there is a very nice solution.

Theorem 10.5 (Cayley’s Theorem) The number of labeled trees on n nodes is nn−2.

The formula is elegant, but the surprising fact about it is that it is quite difficult to
prove! It is substantially deeper than any of the previous formulas for the number of this and
that. There are various ways to prove it, but each uses some deeper tool from mathematics
or a deeper idea. We’ll give a proof that is perhaps best understood by first discussing a
quite different question in computer science: how to store a tree?

10.4 How to store a tree?

Suppose that you want to store a labelled tree, say the tree in Figure 24, in a computer.
How would you do this? Of course, the answer depends on what you need to store the tree
for, what information about it you want to retrieve and how often, etc. Right now, we are

85

203

4
5

6

7 8

9
1

Figure 24: A labelled tree

only concerned with the amount of memory we need. We want to store the tree so that it
occupies the least amount of memory.

Let’s try some simple solutions.

(a) Suppose that we have a tree G with n nodes. One thing that comes to mind is
to make a big table, with n rows and n columns, and put (say) the number 1 in the j-th
position of the i-th row if nodes i and j are connected by an edge, and the number 0, if
they are not:

0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1 0 0
0 1 1 0 0 0 0 0 0 0

(20)

We need one bit to store each entry of this table, so this takes n2 bits. We can save a little
by noticing that it is enough to store the part below the diagonal, since the diagonal is
always 0 and the other half of the table is just the reflection of the half below the diagonal.
But this is still (n2 −n)/2 bits.

This method of storing the tree can, of course, be used for any graph. It is often very
useful, but, at least for trees, it is very wasteful.

(b) We fare better if we specify each tree by listing all its edges. We can specify each
edge by its two endpoints. It will be convenient to arrange this list in an array whose
columns correspond to the edges. For example, the tree in Figure 24 can be encoded by

7 8 9 6 3 0 2 6 6
9 9 2 2 0 2 4 1 5

Instead of a table with n rows, we get a table just with two rows. We pay a little for this:
instead of just 0 and 1, the table wil contain integers between 0 and n − 1. But this is

86

certainly worth it: even if we count bits, to write down the label of a node takes log2n bits,
so the whole table occupies only 2n log2 n bits, which is much less than (n2 − n)/2 if n is
large.

There is still a lot of free choice here, which means that the same tree may be encoded in
different ways: we have freedom in choosing the order of the edges, and also in choosing the
order in which the two endpoints of an edge are listed. We could agree on some arbitrary
conventions to make the code well defined (say, listing the two endnodes of an edge in
increasing order, and then the edges in increasing order of their first endpoints, breaking
ties according to the second endpoints); but it will be more useful to do this in a way that
also allows us to save more memory.

(c) The father code. From now on, the node with label 0 will play a special role; we’ll
consider it the “root” of the tree. Then we can list the two endnodes of an edge by listing
the endpoint further from the root first, and then the endpoint nearer to the root second.
So for every edge, the node written below is the father of the node written above. For the
order in which we list the edges, let us take the order of their first nodes. For the tree in
Figure 24, we get the table

1 2 3 4 5 6 7 8 9
6 0 0 2 6 2 9 9 2

Do you notice anything special about this table? The first row consists of the numbers
1,2,3,4,5,6,7,8,9, in this order. Is this a coincidence? Well, the order is certainly not (we
ordered the edges by the increasing order of their first endpoints), but why do we get every
number exactly once? After a little reflection, this should be also clear: if a node occurs
in the first row, then its father occurs below it. Since a node has only one father, it can
occur only once. Since every node other than the root has a father, every node other than
the root occurs in the first row.

Thus we know in advance that if we have a tree on n nodes, and write up the array
using this method, then the first row will consist of 1,2,3, . . . , n − 1. So we may as well
suppress the first row without loosing any information; it suffices to store the second. Thus
we can specify the tree by a sequence of n − 1 numbers, each between 0 and n − 1. This
takes (n − 1)⌈log2 n⌉ bits.

This coding is not optimal, in the sense that not every “code” gives a tree (see exercise
10.4). But we’ll see that this method is already nearly optimal.

10.9 Consider the following “codes”: (0, 1, 2, 3, 4, 5, 6, 7); (7, 6, 5, 4, 3, 2, 1, 0);
(0,0,0,0,0,0,0,0); (2,3,1,2,3,1,2,3). Which of these are “father codes” of trees?

10.10 Prove, based on the “father code” method of storing trees, that the number of
labelled trees on n nodes is at most nn−1.

(d) Now we describe a procedure, the so-called Prüfer code, that will assign to any n-
point labeled tree a sequence of length n−2, not n−1, consisting of the numbers 0,. . .,n−1.
The gain is little, but important: we’ll show that every such sequence corresponds to a tree.
Thus we will establish a bijection, a one-to-one correspondence between labelled trees on n
nodes and sequences of length n−2, consisting of numbers 0,1, . . . ,n−1. Since the number
of such sequences is nn−2, this will also prove Cayley’s Theorem.

87

The Prüfer code can be considered as a refinement of method (c). We still consider 0
as the root, we still order the two endpoints of an edge so that the father comes first, but
we order the edges (the columns of the array) not by the magnitude of their first endpoint
but a little differently, more closely related to the tree itself.

So again, we construct a table with two rows, whose columns correspond to the edges,
and each edge is listed so that the node farther from 0 is on the top, its father on the
bottom. The issue is the order in which we list the edges.

Here is the rule for this order: we look for a node of degree 1, different from 0, with the
smallest label, and write down the edge with this endnode. In our example, this means that
we write down 1

6 . Then we delete this node and edge from the tree, and repeat: we look for
the endnode with smallest label, different from 0, and write down the edge incident with
it. In our case, this means adding a column 3

0 to the table. Then we delete this node and
edge etc. We go until all edges are listed. The array we get is called the extended Prüfer
code of the tree (we call it extended because, as we’ll see, we only need a part of it as the
“real” Prüfer code). The extended Prüfer code of the tree in Figure 24 is:

1 3 4 5 6 7 8 9 2
6 0 2 6 2 9 9 2 0

Why is this any better than the “father code”? One little observation is that the last
entry in the second row is now always 0, since it comes from the last edge and since we
never touched the node 0, this last edge must be incident with it. But we have payed a lot
for this, it seems: it is not clear any more that the first row is superfluous; it still consists
of the numbers 1,2, . . . ,n− 1, but now they are not in increasing order any more.

The key lemma is that the first row is determined by the second:

Lemma 10.1 The second row of an extended Prüfer code determines the first.

Let us illustrate the proof of the lemma by an example. Suppose that somebody gives
us the second row of an extended Prüfer code of a labelled tree on 8 nodes; say, 2403310
(we have one fewer edges than nodes, so the second row consists of 7 numbers, and as we
have seen, it must end with a 0). Let us figure out what the first row must have been.

How does the first row start? Remember that this is the node that we delete in the
first step; by the rule of cinstructing the Prüfer code, this is the node with degree 1 with
smallest label. Could this node be the node 1? tree? No, because then we would have to
delete it in the first step, and it could not occur any more, but it does. By the same token,
no number occuring in the second row could be a leaf of the tree at the beginning. This
rules out 2,3 and 4.

What about 5? It does not occur in the second row; does this mean that it is a leaf of
the original tree? The answer is yes; else, 5 would have been the father of some other node,
and it would have been written in the second row when this other node was deleted. Thus
5 was its leaf with smallest label, and the first row of the extended Prüfer code must start
with 5.

Let’s try to figure out the next entry in the first row, which is, as we know, the leaf
with smallest label of the tree after 5 was deleted. The node 1 is still ruled out, since it
occurs later in the second row later; but 2 does not occur any more, which means (by the

88

0

15 2

6 3

7

4

Figure 25: A tree reconstructed from its Prüfer code

same argument as before), that 2 was the leaf with smallest label after deleting 5. Thus
the second entry in the first row is 2.

Similarly, the third entry must be 4, since all the smaller numbers either occur later or
have been used already. Going on in a similar fashion, we get that the full array must have
been:

5 2 4 6 7 3 1
2 4 0 3 3 1 0

This corresponds to the tree in Figure 25
The considerations above are completely general, and can be summed up as follows:

each entry in the first row of the extended Prüfer code is the smallest integer that does
not occur in the first row before it, nor in the second row below or after it.

Indeed, when this entry (say, the k-th entry in the first row) was recorded, then the
nodes before it in the first row were deleted (together with the edges corresponding to the
first k − 1 columns). The remaining entries in the second row are exactly those nodes that
are fathers at this time, which means that they are not leaves.

This describes how the first row can be reconstructed from the second. So we don’t
need the full extended Prüfer code to store the tree; it suffices to store the second row. In
fact, we know that the last entry in the second row is n, so we don’t have to store this
either. The sequence consisting of the first n − 2 entries of the second row is called the
Prüfer code of the tree. Thus the Prüfer code is a sequence of length n − 2, each entry of
which is a number between 0 and n − 1.

This is similar to the father code, just one shorter; not much gain here for all the work.
But the beauty of the Prüfer code is that it is optimal, in the sense that

every sequence of numbers between 0 and n−1, of length n−2, is a Prüfer code of some
tree on n nodes.

This can be proved in two steps. First, we extend this sequence to a table with two
rows: we add an n at the end, and then write above each entry in the first row the smallest
integer that does not occur in the first row before it, nor in the second row below or after
it (note that it is always possible to find such an integer: the condition excludes at most
n − 1 values out of n).

Now this table with two rows is the Prüfer code of a tree. The proof of this fact, which
is not difficult any more, is left to the reader as an exercise.

89

10.11 Complete the proof.

Let us sum up what the Prüfer code gives. First, it proves Cayley’s Theorem. Second,
it provides a theoretically most efficient way of encoding trees. Each Prüfer code can be
considered as a natural number written in the base n number system; in this way, we order
a “serial number” between 0 and nn−2 to the n-point labeled trees. Expressing these serial
numbers in base two, we get a code by 0− 1 sequences in of length at most ⌈(n− 2) logn⌉.

As a third use of the Prüfer code, let’s suppose that we want to write a program that
generates a random labeled tree on n nodes in such a way that all trees occur with the same
probability. This is not easy from scratch; but the Prüfer code gives an efficient solution.
We just have to generate n − 2 independent random integers between 0 and n − 1 (most
programming languages have a statement for this) and then “decode” this sequence as a
tree, as described.

The number of unlabelled trees. The number of unlabelled trees on n nodes, usually
denoted by Tn, is even more difficult to handle. No simple formula like Cayley’s theorem
is known for this number. Our goal is to get a rough idea about how large this number is.

There is only one unlabelled tree on 1,2 or 3 nodes; there are two on 4 nodes (the path
and the star). There are 3 on 5 nodes (the star, the path, and the tree in Figure 23. These
numbers are much smaller than the number of labelled trees with these numbers of nodes,
which are 1,1,3,16 and 125 by Cayley’s Theorem.

It is of course clear that the number of unlabelled trees is less than the number of
labelled trees; every unlabelled tree can be labelled in many ways. How many ways? If we
draw an unlabelled tree, we can label its nodes in n! ways. The labelled trees we get this
way are not necessarily all different: for example, if the tree is a “star”, i.e., it n− 2 leaves
and one more node connected to all leaves, then no matter how we permute the labels of
the leaves, we get the same labelled tree. So an unlabelled star yields n labelled stars.

But at least we know that each labeled tree can be labeled in at most n! ways. Since
the number of labelled trees is nn−2, it follows that the number of unlabeled trees is at
least nn−2/n!. Using Stirling’s formula (Theorem 2.5), we see that this number is about
en/n5/2

√
2π.

This number is musch smaller than the number of labelled trees, nn−2, but of course it
is only a lower bound on the number of unlabelled trees. How can we obtain an upper bound
on this number? If we think in terms of storage, the issue is: can we store an unlabelled
tree more economically than labelling its nodes and then storing it as a labelled tree? Very
informally, how should we describe a tree, if we only want the “shape” of it, and don’t care
which node gets which label?

Take an n-point tree G, and specify one of its leaves as its “root”. Next, draw G in the
plane without crossing edges; this can always be done, and we almost always draw trees
this way.

Now we imagine that the edges of the tree are walls, perpendicular to the plane. Starting
at the root, walk around this system of walls, keeping the wall always to your right. We’ll
call walking along an edge a “step”. Since there are n − 1 edges, and each edge has two
sides, we’ll make 2(n − 1) steps before returning to the root (Figure 26).

Each time we make a step away from the root (i.e., a step from a father to one of its
sons), we write down a 1; each time we make a step toward the root, we write down a 0.

90

Figure 26: Walking around a tree

This way we end up with a sequence of length 2(n − 1), consisting of 0’s and 1’s. We call
this sequence the planar code of the (unlabelled) tree. The planar code of the tree in figure
26 is 1110011010100100.

Now this name already indicates that the planar code has the following important
property:

Every unlabelled tree is uniquely determined by its planar code.

Let us illuminate the proof of this by assuming that the tree is covered by snow, and
we only have its code. We ask a friend of ours to walk around the tree just like above, and
uncover the walls, and we look at the code in the meanwhile. What do we see? Any time
we see a 1, he walks along a wall away from the root, and he cleans it from the snow. We
see this as growing a new twig. Any time we see a 0, he walks back, along an edge already
uncovered, toward to root.

Now this describes a perfectly good way to draw the tree: we look at the bits of the
code one by one, while keeping the pen on the paper. Any time we see a 1, we draw a new
edge to a new node (and move the pen to the new node). Any time we see a 0, we move
the pen back by one edge toward the root. Thus the tree is indeed determined by its planar
code.

Since the number of possible planar codes is at most 22(n−1) = 4n−1, we get that the
number of unlabelled trees is at most this large. Summing up:

Theorem 10.6 The number Tn of unlabelled trees with n nodes satisfies

nn−2

n!
< Tn < 4n−1.

The exact form of this lower bound does not matter much; we can conclude, just to
have a statement simpler to remember, that the number of unlabelled trees on n nodes is
larger than 2n if n is large enough (n > 30 if you work it out). So we get, at least for
n ≥ 30, the following bounds that are easier to remember:

2n ≤ Tn ≤ 4n.

The planar code is far from optimal; every unlabelled tree has many different codes
(depending on how we draw it in the plane and how we choose the root), and not every 0-1

91

sequence of length 2(n−1) is a code of a tree (for example, it must start with a 1 and have
the same number of 0’s as 1’s). Still, the planar code is quite an efficient way of encoding
unlabelled trees: it uses less than 2n bits for trees with n nodes. Since there are more than
2n unlabelled trees (at least for n > 30), we could not possibly get by with codes of length
n: there are just not enough of them.

Unlike for labelled trees, we don’t know a simple formula for the number of unlabelled
trees on n nodes, and probably none exists. According to a difficult result of George Pólya,
the number of unlabelled trees on n nodes is asymptotically an3/2bn, where a and b are real
numbers defined in a complicated way.

10.12 Does there exist an unlabelled tree with planar code (a) 1111111100000000; (b)
1010101010101010; (c) 1100011100?

92

11 Finding the optimum

11.1 Finding the best tree

A country with a n towns wants to construct a new telephone network to connect all towns.
Of course, they don’t have to build a separate line between every pair of towns; but they
do need to build a connected network; in our terms, this means that the graph of direct
connections must form a connected graph. Let’s assume that they don’t want to build a
direct line between town that can be reached otherwise (there may be good reasons for
doing so, as we shall see later, but at the moment let’s assume their only goal is to get a
connected network). Thus they want to build a minimal connected graph with these nodes,
i.e., a tree.

We know that no matter which tree they choose to build, they have to construct n − 1
lines. Does this mean that it does not matter which tree they build? No, because lines are
not equally easy to build. Some lines between towns may cost much more than some other
lines, depending on how far the towns are, whether there are mountains or lakes between
them etc. So the task is to find a spanning tree whose total cost (the sum of costs of its
edges) is minimal.

How do we know what these costs are? Well, this is not something mathematics can
tell you; it is the job of the engineers and economisits to estimate the cost of each possible
line in advance. So we just assume that these costs are given.

At this point, the tasks seems trivial (very easy) again: just compute the cost of each
tree on these nodes, and select the tree with smallest cost.

We dispute the claim that this is easy. The number of trees to consider is enormous:
We know (by Cayley’s Theorem 10.5) that the number of labelled trees on n nodes is nn−2.
So for 10 cities, we’d have to look at 108 (hundred million) possible trees; for 20 cities,
the number is astronomical (more than 1020). We have to find a better way to select an
optimal tree; and that’s the point where mathematics comes to the rescue.

There is this story about the pessimist and the optimist: they both get a box of assorted
candies. The optimist always picks the best; the pessimist always eats the worst (to save
the better candies for later). So the optimist always eats the best available candy, the
pessimist always eats the worst available candy — and yet, they end up with eating exactly
the same.

So let’s see how the optimistic government would build the telephone network. They
start with raising money; as soon as they have enough money to build a line (the cheapest
line), they build it. Then they wait until they have enough money to build a second
connection. Then they wait until they have enough money to build a third connection...
It may happen that the third cheapest connection forms a triangle with the first two (say,
three towns are close to each other). Then, of course, they skip this and raise enough money
to build the fourth cheapest connection.

At any time, the optimistic government will wait until they have enough money to build
a connection between two towns that are not yet connected by any path, and build this
connection.

Finally, they will get a connected graph on the n nodes representing the towns. The
graph does not contain a cycle, since the edge of the cycle constructed last would connect

93

Figure 27: Failure of the greedy method. Construction costs are proportional to the dis-
tance. The first figure shows a cheapest (shortest) cycle through all 4 towns; the second
shows the cycle obtained by the optimistic (greedy) method.

two towns that are already accessible from each other through the other edges of the cycle.
So, the graph they get is indeed a tree.

But is this network the cheapest possible? Could stinginess at the beginning backfire
and force them to spend much more at the end? We’ll prove below that our optimistic
government has undeserved success: the tree they build is as cheap as possible.

Before we jump into the proof, we should discuss why we said that the government’s
success was “undeserved”. We show that if we modify the task a little, the same optimistic
approach might lead to very bad results.

Let us assume that, for reasons of reliability, they require that between any two towns,
there should be at least two paths with no edge in common (this guarantees that when a line
if inoperational because of failure or maintanance, any two towns can still be connected).
For this, n − 1 lines are not enough (n − 1 edges forming a connected graph must form a
tree, but then deleting any edge, the rest will not be connected any more). But n lines
suffice: all we have to do is to draw a single cycle through all the towns. This leads to the
following task:

Find a cycle with given n towns as nodes, so that the total cost of constructing its edges
is minimum.

(This problem is one of the most famous tasks in mathematical optimization: it is called
the Travelling Salesman Problem. We’ll say more about it later.)

Our optimistic government would do the following: build the cheapest line, then the
second cheapest, then the third cheapest etc, skipping the construction of lines that are
superfluous: it will not build a third edge out of a town that already has two, and will not
build an edge completing a cycle unless this cycle connects all nodes. Eventually they get
a cycle through all towns, but this is not necessarily the best! Figure 27 shows an example
where the optimistic method (called “greedy” in this area of applied mathematics) gives a
cycle that is quite a bit worse than optimal.

So the greedy method can be bad for the solution of a problem that is only slightly
different from the problem of finding the cheapest tree. Thus the fact (to be proved below)
that the optimistic governments builds the best tree is indeed undeserved luck.

So let us return to the solution of the problem of finding a tree with minimum cost, and
prove that the optimistic method yields a cheapest tree. Let us call the tree obtained by
the greedy method the greedy tree, and denote it by F . In other words, we want to prove
that any other tree would cost at least as much as the greedy tree (and so no one could
accuse the government of wasting money, and justify the accusation by exhibiting another
tree that would have been cheaper).

94

11

6
4

10
9 8

7 5

3

2

1 e

f

Figure 28: The greedy tree is optimal

So let G be any tree different from the greedy tree F . Let us imagine the process of
contructing F , and the step when we first pick an edge that is not an edge of G. Let e be
this edge. If we add e to G, we get a cycle C. This cycle is not fully contained in F , so it
has an edge f that is not an edge of F (Figure 28). If we add the edge e to G and then
delete f , we get a (third) tree H. (Why is H a tree? Give an argument!)

We want to show that H is at most as expensive as G. This clearly means that e is at
most as expensive as f . Suppose (by indirect argument) that f is cheaper than e.

Now comes a crucial question: why didn’t the optimistic government select f instead of
e at this point in time? The only reason could be that f was ruled out because it would have
formed a cycle C ′ with the edges of F already selected. But all these previously selected
edges are edges of G, since we are inspecting the step when the first edge not in G was
added to F . Since f itself is an edge of G, it follows that all edges of C ′ are edges of G,
which is impossible since G is a tree. This contradiction proves that f cannot be cheaper
than e and hence G cannot be cheaper than H.

So we replace G by this tree H that is not more expensive. In addition, the new tree H
has the adventage that coincides with F in more edges, since we deleted from G an edge
not in F and added an edge in F . This implies that if H is different from F and we repeat
the same argument again and again, we get trees that are not more expensive than G, and
coincide with F in more and more edges. Sooner of later we must end up with F itself,
proving that F was no more expensive than G.

11.1 A pessimistic government could follow the following logic: if we are not careful,
we may end up with having to build that extremely expensive connection through the
mountain; so let us decide right away that building this connection is not an option,
and mark it as “impossible”. Similarly, let us find the second most expensive line and
mark it “impossible”, etc. Well, we cannot go on like this forever: we have to look at
the graph formed by those edges that are still possible, and this “possiblity graph” must
stay connected. In other words, if deleting the most expensive edge that is still possible
from the possibility graph would destroy the connectivity of this graph, then like it or
not, we have to build this line. So we build this line (the pessimistic government ends
up building the most expensive line among those that are still possible). Then they go
on to find the most expensive line among those that are still possible and not yet built,
mark it impossible if this does not disconnect the possibility graph etc.

Prove that the pessimistic government will have the same total cost as the optimistic.

95

11.2 In a more real-life government, optimists and pessimists win in unpredictable
order. This means that sometimes they build the cheapest line that does not create
a cycle with those lines already constructed; sometimes they mark the most expensive
lines “impossible” until they get to a line that cannot be marked impossible without
disconnecting the network, and then they build it. Prove that they still end up with
the same cost.

11.3 If the seat of the government is town r, then quite likely the first line constructed
will be the cheapest line out of r (to some town s, say), then the cheapest line that
connects either r or s to a new town etc. In general, there will be a connected graph
of telephone lines constructed on a subset S of the towns including the capital, and
the next line will be the cheapest among all lines that connect S to a node outside S.
Prove that the lucky government still obtains a cheapest possible tree.

11.4 Formulate how the pessimistic government will construct a cycle through all towns.
Show by an example that they don’t always get the cheapest solution.

11.2 Traveling Salesman

Let us return to the question of finding a cheapest possible cycle through all the given
towns: we have n towns (points) in the plane, and for any two of them we are given the
“cost” of connecting them directly. We have to find a cycle with these nodes so that the
cost of the cycle (the sum of the costs of its edges) is as small as possible.

This problem is one of the most important in the area of combinatorial optimization,
the field dealing with finding the best possible design in various combinatorial situations,
like finding the optimal tree discussed in the previous section. It is called the Travelling

Salesman Problem, and it appears in many disguises. Its name comes from the version
of the problem where a travelling salesman has to visit all towns in the region and then
return to his home, and of course he wants to minimize his travel costs. It is clear that
mathematically, this is the same problem. It is easy to imagine that one and the same
mathematical problem appears in connection with designing optimal delivery routes for
mail, optimal routes for garbage collection etc.

The following important question leads to the same mathematical problem, except on
an entirely different scale. A machine has to drill a number of holes in a printed circuit
board (this number could be in the thousands), and then return to the starting point. In
this case, the important quantity is the time it takes to move the drilling head from one
hole to the next, since the total time a given board has to spend on the machine determines
the number of boards that can be processed in a day. So if we take the time needed to
move the head from one hole to another as the “cost” of this edge, we need to find a cycle
with the holes as nodes, and with minimum cost.

The Travelling Salesman Problem is much more difficult than the problem of finding
the cheapest tree, and there is no algorithm to solve it that would be anywhere nearly as
simple, elegant and efficient as the “optimistic” algorithm discussed in the previous section.
There are methods that work quite well most of the time, but they are beyond the scope
of this book.

But we want to show at least one simple algorithm that, even though it does not give
the best solution, never looses more than a factor of 2. We describe this algorithm in the
case when the cost of an edge is just its length, but it would not make any difference to

96

consider any other measure (like time, or the price of a ticket), at least as long as the costs
c(ij) satisfy the triangle inequality:

c(ij) + c(jk) ≥ c(ik)

(Air fares sometimes don’t satisfy this inequality: it may be cheaper to fly from New York
to Chicago to Philadelphia then to fly from New York to Philadelphia. But in this case, of
course, we might consider the flight New York–Chicago–Philadelphia as one “edge”, which
does not count as a visit in Chicago.)

We begin by solving a problem we know how to solve: find a cheapest tree connecting
up the given nodes. We can use any of the algorithms discussed in the previous section for
this. So we find the cheapest tree T , with total cost c.

Now how does this tree help in finding a tour? One thing we can do is to walk around
the tree just like we did when constructing the “planar code” of a tree in the proof of
theorem 10.6 (see figure 26). This certainly gives a walk through each town, and returns
to the starting point. The total cost of this walk is exactly twice the cost c of T , since we
used every edge twice.

Of course this walk may pass through some of the towns more than once. But this is
just good for us: we can make shortcuts. If the walk takes us from i to j to k, and we have
seen j alread, we can proceed directly from i to k. The triangle inequality guarantees that
we have only shortened our walk by doing so. Doing such shortcuts as long as we can, we
end up with a tour through all the towns whose cost is not more than twice the cost of the
cheapest spanning tree (Figure 29).

But we want to relate the cost of the tour we obtained to the cost of the optimum tour,
not to the cost of the optimum spanning tree! Well, this is easy now: the cost of a cheapest
spanning tree is always less than the cost of the cheapest tour. Why? Because we can omit
any edge of the cheapest tour, to get a spanning tree. This is a very special kind of tree (a
path), and as a spanning tree it may or may not be optimal. However, its cost is certainly
not smaller than the cost of the cheapest tree, but smaller than the cost of the optimal
tour, which proves the assertion above.

To sum up, the cost of the tour we constructed is at most twice that of the cheapest
spanning tree, which in turn is less than twice the cost of a cheapest tour.

11.5 Is the tour in figure 29 shortest possible?

11.6 Prove that if all costs are proportional to distances, then a shortest tour cannot
intersect itself.

97

Figure 29: The cheapest tree connecting 15 given towns, the walk around it, and the tour
produced by shortcuts. Costs are proportional to distances.

12 Matchings in graphs

12.1 A dancing problem

At the prom, 300 students took part. They did not all know each other; in fact, every
girl new exactly 50 boys and every boy new exactly 50 girls (we assume, as before, that
acquaintance is mutual).

We claim that they can all dance simultaneously (so that only pairs who know each
other dance with each other).

Since we are talking about acquaintances, it is natural to describe the situation by
a graph (or at least, imagine the graph that describes it). So we draw 300 nodes, each
representing a student, and connect two of them if they know each other. Actually, we can
make the graph a little simpler: the fact that two boys, or two girls, know each other plays
no role whatsoever in this problem: so we don’t have to draw those edges that correspond
to such acquaintances. We can then arrange the nodes, conveniently, so that the nodes
representing boys are on the left, nodes representing girls are on the right; then every edge
will connect a node from the left to a node from the right. We shall denote the set of nodes
on the left by A, the set of nodes on the right by B.

This way we got a special kind of graph, called a bipartite graph. Figure 30 shows such
a graph (of course, depicting a smaller party). The thick edges show one way to pair up
people for dancing. Such a set of edges is called a perfect matching.

To be precise, let’s give the definitions of these terms: a graph is bipartite if its nodes
can be partitioned into two classes, say A and B so that every edge connects a node in A

98

Figure 30: A bipartite graph and a perfect matching in it

to a node in B. A perfect matching is a set of edges such that every node is incident with
exactly one of them.

After this, we can formulate our problem in the language of graph theory as follows:
we have a bipartite graph with 300 nodes, in which every node has degree 50. We want to
prove that it contains a perfect matching.

As before, it is good idea to generalize the assertion to any number of nodes. Let’s be
daring and guess that the numbers 300 and 50 play no role whatsoever. The only condition
that matters is that all nodes have the same degree (and this is not 0). Thus we set out to
prove the following theorem:

Theorem 12.1 If every node of a bipartite graph has the same degree d ≥ 1, then it
contains a perfect matching.

Before proving the theorem, it will be useful to solve some exercises, and discuss another
problem.

12.1 It is obvious that for a bipartite graph to contain a perfect matching, it is necessary
that |A| = |B|. Show that if every node has the same degree, then this is indeed so.

12.2 Show by examples that the conditions formulated in the theorem cannot be
dropped:

(a) A non-bipartite graph in which every node has the same degree need not contain a
perfect matching.

(b) A bipartite graph in which every node has positive degree (but not all the same)
need not contain a perfect matching.

12.3 Prove Theorem 12.1 for d = 1 and d = 2.

99

border between tribes

border between tortoises

E D
F

A

C

5

1
32

B

4 6

Figure 31: Six tribes and six tortoises on an island

12.2 Another matching problem

An island is inhabited by six tribes. They are on good terms and split up the island between
them, so that each tribe has a hunting territory of 100 square miles. The whole island has
an area of 600 miles.

The tribes decide that they all should choose new totems. They decide that each tribe
should pick one of the six species of tortoise that live on the island. Of course, they want
to pick different totems, and so that the totem fo each tribe should occur somewhere on
their territory.

It is given that the areas where the different species of tortoises live don’t overlap, and
they have they same area - 100 square miles (so it aso follows that some tortoise lives
everywhere on the island). Of course, the way the tortoises divide up the islands may be
entirely different from the way way the tribes do (Figure 31)

We want to prove that such a selection of totems is always possible.
To see the significance of the conditions, let’s assume that we did not stipulate that the

area of each tortoise species is the same. Then some species could occupy more - say, 200
square miles. But then it could happen that two of tribes are living on exactly these 200
square miles, and so their only possible choice for a totem would be one and same species.

Let’s try to illustrate our problem by a graph. We can represent each tribe by a node,
and also each species of tortoise by a node. Let us connect a tribe-node to a species-node is
the species occurs somewhere on the territory of the tribe (we could also say that he tribe
occurs on the territory of the species — just in case the tortoises want to pick totems too).
Drawing the tribe-nodes on the right, and the species-nodes on the left, makes it clear that

100

6

5

4

3

2

1

F

E

D

C

B

A

Figure 32: The graph of tribes and tortoises

we get a bipartite graph (Figure 32. And what is it that we want to prove? It is that this
graph has a perfect matching!

So this is very similar to the problem discussed (but not solved!) in the previous section:
we want to prove that a certain bipartite graph has a perfect matching. Theorem 12.1 says
that for this conclusion it suffices to know that every node has the same degree. But this is
too strong a condition; it is not at all fulfilled in our example (tribe A has only two tortoises
to choose from, while tribe D has four).

So what property of this graph should guarantee that a perfect matching exists? Turning
this question around: what would exclude a perfect matching?

For example, it would be bad if a tribe would not find any tortoise on its own territory.
In the graph, this would correposnd to a node with degree 0. Now this is not a danger,
since we know that tortoises occur everywhere on the island.

It would also be bad (as this has come up already) if two tribes could only choose one
and the same tortoise. But then this tortoise would have an area of at least 200 square
miles, which is not the case. A somewhat more subtle sort of trouble would arise if three
tribes had only two tortoises on their combined territory. But this, too, is impossible: the
two species of tortoises would cover an area of at least 300 square miles, so one of them
would have to cover more than 100. More generally, we can see that the combined territory
of any k tribes holds at least k species of tortoises. In terms of the graph, this means that
for any k nodes on the left, there are at least k nodes on the right connected to at least one
of them. We’ll see in the next section that this is all we need to observe about this graph.

12.3 The main theorem

Now we state and prove a fundamental theorem about perfect matchings. This will complete
the solution of the problem about tribes and tortoises, and (with some additional work) of
the problem about dancing at the prom.

101

k

n-k

Figure 33: The good graph is also good from right to left

Theorem 12.2 (The Marriage Theorem) A bipartite graph has a perfect matching if
and only if |A| = |B| and and any for subset of (say) k nodes of A there are at least k nodes
in B that are connected to one of them.

Before proving this theorem, let us discuss one more question. If we interchange “left”
and “right”, perfect matchings remain perfect matching. But what happens to the condition
stated in the theorem? It is easy to see that it remains valid (as it should). To see this, we
have to argue that if we pick any set S of k nodes in B, then they are connected to at least
k nodes in B. Let n = |A| = |B| and let us color the nodes in A connected to nodes in S
black, the other nodes white (Figure 33). Then the white nodes are connected to at most
n − k nodes (since they are not connected to any node in S). Since the condition holds
“from left to right”, the number of white nodes is at most n − k. But then the number of
black nodes is at most k, which proves that the condition also holds “from right to left”.

Now we can turn to the proof of theorem 12.2. We shall have to refer to the condition
given in the theorem so often that it will be convenient to call graphs satisfying this con-
ditions “good” (just for the duration of this proof). Thus a bipartite graph is “good” if it
has the same number of nodes left and right, and any k “left” nodes are connected to at
least k “right” nodes.

It is obvious that every graph with a perfect matching is “good”, so what we need to
prove is the converse: every “good” graph contains a perfect matching. For a graph on just
two nodes, being “good” means that these two nodes are connected. Thus for a graph to
have a perfect matching means that it can be partitioned into “good” graphs with 2 nodes.
(To partition a graph means that we divide the nodes into classes, and only keep an edge
between two nodes if they are in the same class.)

Now our plan is to partition our graph into two “good” parts, then partition each of
these into two “good” parts etc., until we get “good” parts with 2 nodes. Then the edges

102

ba

k

k-1

Figure 34: Goodness lost when two nodes are removed

that remain form a perfect matching. To carry out this plan, it suffices to prove that

if a “good” bipartite graph has more than 2 nodes, then it can be partitioned into two
good bipartite graphs.

Let us try a very simple partition first: select a node a ∈ A and b ∈ B that are connected
by an edge; let these two nodes be the first part, and the remaining nodes the other. There
is no problem with the first part: it is “good”. But the second part may not be good: it
can have some set S of k nodes on the left connected to fewer than k nodes on the right
(Figure 34). In the original graph, these k nodes were connected to at least k nodes in B;
this can only be if the k-th such node was the node b. Let T denote the set of neighbors of
S in the original graph. What is important to remember is that |S| = |T |.

Now we try another way of partitioning the graph: we take S ∪ T (together with the
edges between them) as one part and the rest of the nodes, as the other. (This rest is not
empty: the node a belongs to it, for example.)

Let’s argue that both these parts are “good”. Take the first graph first, take any subset
of, say, j nodes in S (the left hand side of the first graph). Since the original graph was
good, they are connected to at least j nodes, which are all in T by the definition of T .

For the second graph, it follows similarly that it is good, if we interchange “left” and
“right”. This completes the proof.

We still have to prove Theorem 12.1. This is now quite easy and is left to the reader as
the following exercise.

12.4 Prove that if in a bipartite graph every node has the same degree d 6= 0, then the
bipartite graph is “good” (and hence contains a perfect matching; this proves theorem
12.1).

103

12.4 How to find a perfect matching?

We have a condition for the existence of a perfect matching in a graph that is necessary
and sufficient. Does this condition settle this issue once and forever? To be more precise:
suppose that somebody gives as a bipartite graph; what is a good way to decide whether
or not it contains a perfect matching? and how to find a perfect matching if there is one?

We may assume that |A| = |B| (where, as before, A is the set of nodes on the left and
B is the set of nodes on the right). This is easy to check, and if it fails then it is obvious
that no perfect matching exists and we have nothing else to do.

One thing we can try is to look at all subsets of the edges, and see if any of these is a
perfect matching. It is easy enough to do so; but there are terribly many subsets to check!
Say, in our introductory example, we have 300 nodes, so |A| = |B| = 150; every node has
degree 50, so the number of edges is 150 · 50 = 7500; the number of subsets of a set of this
size is 27500 > 102257, a number that is more than astronomical...

We can do a little bit better if instead of checking all subsets of the edges, we look at
all possible ways to pair up elements of A with elements of B, and check if any of these
pairings matches only nodes that are connected to each other by an edge. Now the number
of ways to pair up the nodes is “only” 150! ≈ 10263. Still hopeless.

Can we use Theorem 12.2? To check that the necessary and sufficient condition for the
existence of a perfect matching is satisfied, we have to look at every subset S of A, and see
whether the number of it neighbors in B is at least as large as S itself. Since the set A has
2150 ≈ 1045 subsets, this takes a much smaller number of cases to check than any of the
previous possibilities, but still astronomical!

So theorem 12.2 does not really help too much in deciding whether a given graph has
a perfect matching. We have seen that it does help in proving that certain properties of a
graph imply that the graph has a perfect matching. We’ll come back to this theorem later
and discuss its significance. Right now, we have to find some other way to deal with our
problem.

Let us introduce one more expression: by a matching we mean a set of edges that have
no endpoint in common. A perfect matching is the special case when, in addition, the edges
cover all the nodes. But a matching can be much smaller: the empty set, or any edge in
itself, is a matching.

Let’s try to construct a perfect matching in our graph by starting with the empty set
and building up a matching one by one. So we select two nodes that are connected, and
mark the edge between them; then we select two other nodes that are connected, and mark
the edge between them etc. we can do this until no two unmatched nodes are connected
by an edge. The edges we have marked form a matching M . If we are lucky, then M is a
perfect matching, and we have nothing else to do. But what do we do if M is not perfect?
Can we conclude that the graph has no perfect matching at all? No, we cannot; it may
happen that the graph has a perfect matching, but we made some unlucky choices when
selecting the edges of M .

12.5 Show by an example that it may happen that a bipartite graph G has a perfect
matching but, if we are unlucky, the matching M constructed above is not perfect.

12.6 Prove that if G has a perfect matching, then M mathes up at least half of the
nodes.

104

vu

M

PM

not in

Edges inEdges in

Figure 35: An augmenting path in a bipartite graph

So suppose that we have constructed a matching M that is not perfect. We have to try
to increase its size by “backtracking”, i.e., by deleting some of its edges and replacing them
by more edges. But how to find the edges we want to replace?

The trick is the following. We look for a path P in G of the following type: P starts
and ends at nodes u and v that are unmatched by M ; and every second edge of P belongs
to M (Figure 35). Such a path is called an augmenting path. It is clear that an augmenting
path P contains an odd number of edges, and in fact the number of its edges not in M is
one larger than the number of its edges in M .

If we find an augmenting path P , we can delete those edges of P that are in M and
replace them by those edges of P that are not in M . It is clear that this results in a
matching M ′ that is larger than M by one edge. (The fact that M ′ is a matching follows
from the observation that the remaining edges of M cannot contain any node of P : the
two endpoints of P were supposed to be unmatched, while the interior nodes of P were
matched by edges of M that we deleted.) So we can repeat this until we either get a perfect
matching, or a matching M for which no augmenting path exists.

So we have two questions to answer: how to find an augmenting path, if it exists? and
if it does not exist, does this mean that there is no perfect matching at all? It will turn out
that an answer to the first question will also imply the (affirmative) answer to the second.

Let U be the set of unmatched nodes in A and let W be the set of unmatched nodes
in B. As we noted, any augmenting path must have an odd number of edges and hence

105

T

U W

r?

r?

S

s

q

Figure 36: Reaching nodes by almost augmenting paths. Only edges on these paths, and
of M , are shown.

it must connect a node in U to a node in W . Let us try to find such an augmenting path
starting from some node in U . Let’s say that a path Q is almost augmenting if it starts at
a node in U , ends at a node in A, and every second edge of it belonds to M . An almost
augmenting path must have an even number of edges, and must end with an edge of M .

What we want to do is to find the set of nodes in A that can be reached on an almost
augmenting path. Let’s agree that we consider a node in U as an almost augmenting path
in itself (of length 0); then we know that every node in U has this property. Starting with
S = U , we build up a set S gradually. At any stage, the set S will consist of nodes we
already know are reachable by some almost augmenting path. We denote by T the set
of nodes in B that are matched with nodes in S (Figure 36). Since the nodes of U have
nothing matched with them and they are all in S, we have

|S| = |T |+ |U |.

We look for an edge that connects a node s ∈ S to some node r ∈ B that is not in T .
Let Q be an almost augmenting path starting at some node u ∈ U and ending at s. Now
there are two cases to consider:

— If r is unmatched (which means that it belongs to W) then appending the edge sr
to Q we get an augmenting path P . So we can increase the size of M (and forget about S
and T).

— If r is matched with a node q ∈ A, then we can append the edges sr and rq to Q, to
get an almost augmenting path from u to q. So we can add u to S.

So if we find an edge connecting a node in S to a node not in T , we can either increase
the size of M or the increase the set S (and leave M as it was). Sooner of later we must
encounter a situation where either M is a perfect matching (and we are done), or M is not
perfect but no edge connects S to any node outside T .

So what to do in this case? Nothing! If this occurs, we can conclude that there is no
perfect matching at all. In fact, all neighbors of the set S are in T , and |T | = |S|−|U | < |S|.
We know that this implies that there is no perfect matching at all in the graph.

106

Figure 37 shows how this algorithm finds a matching in the bipartite graph that is a
subgraph if the “grid”.

To sum up, we do the following. At any point in time, we’ll have a matching M and a
set S of nodes in A that we know can be reached on almost augmenting paths. If we find
an edge connecting S to a node not matched with any node in S, we can either increase
the size of M or the set S, and repeat. If no such edge exists, either M is perfect or no
perfect matching exists at all.

Remark. In this chapter, we restricted our attention to matchings in bipartite graphs. One
can, of course, define matchings in general (nonbipartite) graphs. It turns out that both
the necessary and sufficient condition given in theorem 12.2 and the algorithm described
in this section can be extended to non-bipartite graphs. This requires, however, quite a bit
more involved methods, which lie beyond the scope of this book.

12.7 Follow how the algorithm works on the graph in Figure 38.

12.8 Show how the description of algorithm above contains a new proof of theorem
12.2.

12.5 Hamiltonian cycles

A Hamiltonian cycle is a cycle that contains all nodes of a graph. We have met a similar
notion before: tavelling salesman tours. Indded, travelling salesman tours can be viewed
as Hamiltonian cycles in the complete graph on the given set of nodes.

Hamiltonian cycles are quite similar to matchings: in a perfect matching, every node
belongs to exactly one edge; in a Hamiltonian cycle, every node belongs to exactly two edges.
But much less is known about them than about matchings. For example, no efficient way
is known to check whether a given graph has a Hamiltonian cycle (even if it is bipartite),
and no useful necessary and sufficient condition for the existence of a Hamiltonian cycle is
known. If you solve exercise 12.5, you’ll get a feeling about the difficulty of the Hamiltonian
cycle problem.

12.9 Decide whether or not the graphs in Figure 39 have a Hamiltonian cycle.

107

Figure 37: A graph for trying out the algorithm

108

Figure 38: A graph for trying out the algorithm

Figure 39: Do these graphs have a Hamilton cycle?

109

Figure 40: Two-coloring the regions formed by a set of circles

13 Graph coloring

13.1 Coloring regions: an easy case

We draw some circles on the plane (say, n in number). These divide the plane into a number
of regions. Figure 40 shows such a set of circles, and also an “alternating” coloring of the
regions with two colors; it gives a nice pattern. Now our question is: can we always color
these regions this way? We’ll show that the answer is yes; to state this more exactly:

Theorem 13.1 The regions formed by n circles in the plane can be colored with read and
blue so that any two regions that share a common boundary arc should be colored differently.

(If two regions have only one or two boundary points in common, then they may get the
same color.)

Let us first see why a direct approach does not work. We could start with coloring the
outer region, say blue; then we have to color its neighbors red. Could it happen that two
neighbors are at the same time neighbors of each other? Perhaps drawing some pictures
and then arguing carefully about them, you can design a proof that this cannot happen.
But then we have to color the neighbors of the neighbors blue again, and we would have to
prove that no two of these are neighbors of each other. This could get quite complicated!
And then we would have to repeat this for the neighbors of the neighbors of the neighbors...

We should find a better way to prove this and, fortunately, there is a better way! We
prove the assertion by induction on n, the number of circles. If n = 1, then we only get
two regions, and we can color one of them red, the other one blue. So let n > 1. Select
any of the circles, say C, and forget about it for the time being. The regions formed by
the remaining n − 1 circles can be colored with red and blue so that regions that share a
common boundary arc get different colors (this is just the induction hypothesis).

Now we take back the remaining circle, and change the coloring as follows: outside C,
we leave the coloring as it was; inside C, we interchange red and blue (Figure 41).

It is easy to see that the coloring we obtained satisfies what we wanted. In fact, look
at any small piece of arc of any of the circles. If this arc is outside C, then the two regions
on its two sides were different and their colors did not change. If the arc is inside C, then
again, the two regions on its both sides were differently colored, and even though their
colors were switched, they are still different. Finally, the arc could be on C itself. Then

110

Figure 41: Adding a new circle and recoloring

Figure 42: The proof of Euler’s Theorem

the two regions on both sides of the arc were one and the same before putting C back, and
so they had the same color. Now, one of them is inside C and this switched its color; the
other is outside, and this did not. So after the recoloring, their colors will be different.

Thus we proved that the regions formed by n circles can be colored with two colors,
provided the regions formed by n− 1 circles can be colored with 2 colors. By the Principle
of Induction, this proves the theorem.

13.1 Assume that the color of the outer region is blue. Then we can describe what the
color of a particular region R is, without having to color the whole picture, as follows:

— if R lies inside an even number of circles, it will be colored blue;

— if R lies inside an odd number of circles, it will be colored red.

Prove this assertion.

13.2 (a) Prove that the regions, into which n straight lines divide the plane, are col-
orable with 2 colors.

(b) How could you describe what the color of a given region is?

111

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Figure 43: 4-coloring the countries

u

w

uw

v

Figure 44: Proof of the 5-color theorem

112

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

Figure 45: 4-coloring the countries and 3-coloring the edges

Figure 46: A graph and its dual

113

Figure 47: Two non-3-colorable graphs

14 A Connecticut class in King Arthur’s court

In the court of King Arthur there dwelt 150 knights and 150 ladies-in-waiting. The king
decided to marry them off, but the trouble was that some pairs hated each other so much
that they would not even get married, let alone speak! King Arthur tried several times
to pair them off but each time he ran into conflicts. So he summoned Merlin the Wizard
and ordered him to find a pairing in which every pair was willing to marry. Now Merlin
had supernatural powers and he saw immediately that none of the 150! possible pairings
was feasible, and this he told the king. But Merlin was not only a great wizard, but a
suspicious character as well, and King Arthur did not quite trust him. “Find a pairing or
I shall sentence you to be imprisoned in a cave forever!” said Arthur.

Fortunately for Merlin, he could use his supernatural powers to browse forthcoming
scientific literature, and he found several papers in the early 20th century that gave the
reason why such a pairing could not exist. He went back to the King when all the knights
and ladies were present, and asked a certain 56 ladies to stand on one side of the king and
95 knights on the other side, and asked: “Is any one of you ladies, willing to marry any of
these knights?”, and when all said “No!”, Merlin said: “O King, how can you command
me to find a husband for each of these 56 ladies among the remaining 55 knights?” So the
king, whose courtly education did include the pigeon-hole principle, saw that in this case
Merlin had spoken the truth and he graciously dismissed him.

Some time elapsed and the king noticed that at the dinners served for the 150 knights
at the famous round table, neighbors often quarrelled and even fought. Arthur found this
bad for the digestion and so once again he summoned Merlin and ordered him to find a
way to seat the 150 knights around the table so that each of them should sit between two
friends. Again, using his supernatural powers Merlin saw immediately that none of the
150! seatings would do, and this he reported to the king. Again, the king bade him find
one or explain why it was impossible. “Oh I wish there were some simple reason I could
give to you! With some luck there could be a knight having only one friend, and so you too
could see immediately that what you demand from me is impossible. But alas!, there is no
such simple reason here, and I cannot explain to you mortals why no such seating exists,
unless you are ready to spend the rest of your life listening to my arguments!” The king
was naturally unwilling to do that and so Merlin has lived imprisoned in a cave ever since.

114

G H

Figure 48: A bigraph with a perfect matching and one without

(A severe loss for applied mathematics!)
The moral of this tale is that there are properties of graphs which, when they hold, are

easily proven to hold. If a graph has a perfect matching, or a Hamilton cycle, this can be
“proved”easily by exhibiting one. If a bipartite graph does not have a perfect matching,
then this can be “proved” by exhibiting a subset X of one color class which has fewer than
|X| neighbors in the other. The reader (and King Arthur!) are directed to Figure 48 in
which graph G has a perfect matching (indicated by the heavy lines), but graph H does
not. To see the latter, consider the four black points and their neighbors.

Most graph-theoretic properties which interest us have this logical structure. Such a
property is called (in the jargon of computer science) and NP-property (if you really want
to knwo, NP is and abbreviation of Nondeterministic Polynomial Time, but it would be
difficult to explain where this highly technical phrase comes from). The two problems that
Merlin had to face — the existence of a perfect matching and the existence of a Hamilton
cycle — are clearly NP-properties. But NP-properties also appear quite frequently in
other parts of mathematics. A very important NP-property of natural numbers is their
compositeness: if a natural number is composite then this can be exhibited easily by showing
a decomposition n = ab (a,b > 1).

The remarks we have made so far explain how Merlin can remain free if he is lucky and
the task assigned to him by King Arthur has a solution. For instance, suppose he could
find a good way to seat the knights for dinner. He could then convince King Arthur that
his seating plan was “good” by asking if there was anybody sitting beside and enemy of
his. This shows that the property of the corresponding “friendship graph” that it contains
a Hamilton cycle is an NP-property. But how could he survive Arthur’s wrath in the case
of the marriage problem and not in the case of the seating problem when these problems do
not have solutions? What distinguishes the non-existence of a Hamilton cycle in a graph
from the non-existence of a perfect matching in a bigraph? From our tale, we hope the
answer is clear: the non-existence of a perfect matching in a bigraph is also an NP-property
(this is a main implication of Frobenius’ Theorem), while the non-existence of a Hamilton
cycle in a graph is not! (To be precise, no proof of this latter fact is known, but there is
strong evidence in favor of it.

So for certain NP-properties the negation of the property is again an NP-property.

115

A theorem asserting the equivalence of an NP-property with the negation of another
NP-property is called a good characterization. There are famous good characterizations
throughout graph theory and elsewhere.

Many NP-properties are even better. Facing the problem of marrying off his knights
and ladies, Arthur himself (say, after attending this class) could decide himself whether or
not it was solvable: he could run the algorithm described in section 12.4. A lot of work,
but probably doable with the help of quite ordinary people, without using the supernatural
talents of Merlin. Properties which can be decided efficiently are called properties in the
class P (here P stand for Polynomial Time, an exact but quite technical definition of the
phrase “efficiently”). Many other simple properties of graphs discussed in this book also
belong to the class: connectivity, or the existence of a cycle.

116

15 A glimpse of cryptography

15.1 Classical cryptography

Ever since writing was invented, people have been interested not only in using it to com-
municate with their partners, but also in trying to conceal the content of their message
from their adversaries. This leads to cryptography (or cryptology), the science of secret
communication.

The basic situation is that one party, say King Arthur, wants to send a message to King
Bela. There is, however, a danger that the evil Caesar Caligula intercepts the message and
learns things that he is not supposed to know about. The message, understandable even for
Caligula, is called the plain text. To protect its content, King Arthur encrypts his message.
When King Bela receives it, he must decrypt it in order to be able to read it. For the Kings
to be able to encrypt and decrypt the message, they must know something that that the
Caesar does not know: this information is the key.

Many cryptosystems have been used in history; most of them, in fact, turn out to be
insecure, especially if the adversary can use powerful computing tools to break it.

Perhaps the simplest method is substitution code: we replace each letter of the alphabet
by another letter. The key is the table that contains for each letter the letter to be sub-
stituted for it. While a message encrypted this way looks totally scrambled, substitution
codes are in fact easy to break. Solving exercise 16.3 will make it clear how the length
and positions of the words can be used to figure out the original meaning of letters, if the
breaking into words is preserved (i.e., ”Space” is not replaced by another character). But
even if the splitting into words is hidden, an analysis of the frequency of various letter gives
enough information to break the substitution code.

16 One-time pads

There is another simple, frequently used method, which is much more secure: the use of
“one-time pads”. This method is very safe; it was used e.g. during World War II for commu-
nication between the American President and the British Prime Minister. Its disadvantage
is that it requires a very long key, which can only be used once.

A one-time pad is a randomly generated string of 0’s and 1’s. Say, here is one:

11000111000010000110010100100100101100110010101100001110110000010

Both Kings Arthur and Bela has this sequence (it was sent well in advance by a messenger).
Now King Arthur wants to send the following message to King Bela:

ATTACK MONDAY

First, he has to convert it to 0’s and 1’s. It is not clear that medieval kings had the
knowledge to do so, but the reader should be able to think of various ways: using ASCII
codes, or Unicodes of the letters, for example. But we want to keep things simple, so we
just number the letters from 1 to 26, and then write down the binary representation of the
numbers, putting 0’s in front so that we get a string of length 5 for each letter. Thus we

117

have “00001” for A, “00010” for B, etc. We use “00000” for “Space”. The above message
becomes:

00001100101001000001000110101100000011010111101110001000000111001

This might look cryptic enough, but Caligula (or rather one the excellent Greek scientist
he keeps in his court) could easily figure out what it stands for. To encode it, Arthur adds
the one-time pad to the message bit-by-bit. To the first bit of the message (which is 0)
he adds the first bit of the pad (1) and writes down the first bit of the encoded message:
0+1 = 1. He computes the second, third, etc. bits similarly: 0+1 = 1, 0+0 = 0, 0+0 = 0,
1 + 0 = 1, 1 + 1 = 0,. . . (What is this 1 + 1 = 0? Isn’t 1 + 1 = 2? Or, if we want to use the
binary number system, 1 + 1 = 10? Well, all that happens is that we ignore the “carry”,
and just write down the last bit. We could also say that the computation is done modulo
2). Another way of saying what King Arthur does is the following: if the k-th bit of the
pad is 1, he flips the k-th bit of the text; else, he leaves it as it was.

So Arthur computes the encoded message:

11001011101011000111010010001000101111100101000010000110110111011

He sends this to King Bela, who looking at the one-time pad, can easily flip back the
appropriate bits, and recover the original message.

But Caligula (and even his excellent scientists) does not know the one-time pad, so he
does not know which bits were flipped, and so he is helpless. The message is safe.

It can be expensive to make sure that Sender and Receiver both have such a common
key; but note that the key can be sent at a safer time and by a completely different method
than the message; moreover, it may be possible to agree on a key even without actually
passing it.

16.1 How to save the last move in chess?

Modern cryptography started in the late 1970’s with the idea that it is not only lack of
information that can protect our message against an unauthorized eavesdropper, but also
the computational complexity of processing it. The idea can is illustrated by the following
simple example.

Alice and Bob are playing chess over the phone. They want to interrupt the game for
the night; how can they do it so that the person to move should not get the improper
advantage of being able to think about his move whole night? At a tournament, the last
move is not made on the board, only written down, put in an envelope, and deposited with
the referee. But now the two players have no referee, no envelope, no contact other than
the telephone line. The player making the last move (say, Alice) has to send Bob some
message. The next morning (or whenever they continue the game) she has to give some
additional information, some “key”, which allows Bob to reconstruct the move. Bob should
not be able to reconstruct Alice’s move without the key; Alice should not be able to change
her mind overnight and modify her move.

Surely this seems to be impossible! If she gives enough information the first time to
uniquely determine her move, Bob will know the move too soon; if the information given

118

the first time allows several moves, then she can think about it overnight, figure out the
best among these, and give the remaining information, the “key” accordingly.

If we measure information in the sense of classical information theory, then there is no
way out of this dilemma. But complexity comes to our help: it is not enough to communicate
information, it must also be processed.

So here is a solution to the problem, using elementary number theory! (Many other
schemes can be designed.) Alice and Bob agree to encode every move as a 4-digit number
(say, ‘11’ means ‘K’, ‘6’ means ‘f’, and ‘3’ means itself, so ‘1163’ means ‘Kf3’). So far, this
is just notation.

Next, Alice extends the four digits describing her move to a prime number p = 1163 . . .
with 200 digits. She also generates another prime q with 201 digits and computes the
product N = pq (this would take rather long on paper, but is trivial using a personal
computer). The result is a number with 400 or 401 digits; she sends this number to Bob.

Next morning, she sends both prime factors p and q to Bob. He reconstructs Alice’s
move from the first four digits of the smaller prime. To make sure that Alice was not
cheating, he should check that p and q are primes and that their product is N .

Let us argue that this protocol does the job.
First, Alice cannot change her mind overnight. This is because the number N contains

all the information about her move: this is encoded as the first four digits of the smaller
prime factor of N . So Alice commits herself to the move when sending N .

But exactly because the number N contains all the information about Alice’s move,
Bob seems to have the advantage, and he indeed would have if he had unlimited time or
unbelievably powerful computers. What he has to do is to find the prime factors of the
number N . But since N has 400 digits (or more), this is a hopelessly difficult task with
current technology.

Can Alice cheat by sending a different pair (p′, q′) of primes the next morning? No,
because Bob can easily compute the product p′q′, and check that this is indeed the number
N that was sent the previous night. (Note the role of the uniqueness of prime factorization,
Theorem 8.1.)

All the information about Alice’s move is encoded in the first 4 digits of the smaller
prime factor p. We could say that the rest of p and the other prime factor q serve as
a “deposit box”: they hide this information from Bob, and can be opened only if the
appropriate key (the factorization of N) is available. The crucial ingredient of this scheme
is complexity: the computational difficulty to find the factorization of an integer.

With the spread of electronic communication in business, many solutions of traditional
correspondence and trade must be replaced by electronic versions. We have seen an elec-
tronic “deposit box” above. Other schemes (similar or more involved) can be found for
electronic passwords, authorization, authentication, signatures, watermarking, etc. These
schemes are extremely important in computer security, cryptography, automatic teller ma-
chines, and many other fields. The protocols are often based on simple number theory; in
the next section we discuss (a very simplified version of) one of them.

119

16.2 How to verify a password—without learning it?

In a bank, a cash machine works by name and password. This system is safe as long as the
password is kept in secret. But there is one week point in security: the computer of the
bank must store the password, and the administrator of this computer may learn it and
later misuse it.

Complexity theory provides a scheme where the bank can verify that the customer does
indeed know the password—without storing the password itself! At the first glance this
looks impossible—just as the problem with filing the last chess move was. And the solution
(at least the one we discuss here) uses the same kind of construction as our telephone chess
example.

Suppose that the password is a 100-digit prime number p (this is, of course, too long for
everyday use, but it illustrates the idea best). When the customer chooses the password,
he chooses another prime q with 101 digits, forms the product N = pq of the two primes,
and tells the bank the number N . When the teller is used, the customer tells his name and
the password p. The computer of the bank checks whether or not p is a divisor of N ; if
so, it accepts p as a proper password. The division of a 200 digit number by a 100 digit
number is a trivial task for a computer.

Let us assume that the system administrator learns the number N stored along with
the files of our customer. To use this in order to impersonate the customer, he has to
find a 100-digit number that is a divisor of N ; but this is essentially the same problem as
finding the prime factorization of N , and this is hopelessly difficult. So—even though all
the necessary information is contained in the number N—the computational complexity of
the factoring problem protects the password of the customer!

16.3 How to find these primes?

In our two simple examples of “modern cryptography”, as well as in almost all the others,
one needs large prime numbers. We know that there are arbitrarily large primes (Theorem
8.3), but are there any with 200 digits, starting with 1163 (or any other 4 given digits)?
Maple found (in a few seconds on a laptop!) the smallest such prime number:

1163000
000
000371

The smallest 200 digit integer starting with 1163 is 1163 · 10196. This is of course not
a prime, but above we found a prime very close by. There must be zillions of such primes!
In fact, a computation very similar to what we did in section 8.4 shows that the number of
primes Alice can choose from is about 1.95 · 10193.

This is a lot of possibilities, but how to find one? It would not be good to use the prime
above (the smallest eligible): Bob could guess this and thereby find out Alice’s move. What
Alice can do is to fill in the missing 196 digits randomly, and then test whether the number
she obtains is a prime. If not, she can throw it away and try again. As we computed in
section 8.4, one in every 460 200-digit numbers is a prime, so on the average in about 460
trials she gets a prime. This looks like a lot of trials, but of course she uses a computer;
here is one we computed for you with this method (in a few seconds again):

120

1163146712876555763279909704559660690828365476006668873814489354662
4743604198911046804111038868958805745715572480009569639174033385458
418593535488622323782317577559864739652701127177097278389465414589

So we see that in the “envelope” scheme above, both computational facts mentioned in
section 8.7 play a crucial role: it is easy to test whether a number is a prime (and thereby it
is easy to compute the encryption), but it is difficult to find the prime factors of a composite
number (and so it is difficult to break the cryptosystem).

16.1 For the following message, the Kings used substitution code. Caligula intercepted
the message and quite easily broke it. Can you do it too?

U GXUAY LS ZXMEKW AMG TGGTIY HMD TAMGXSD LSSY, FEG
GXSA LUGX HEKK HMDIS. FSKT

16.2 At one time, Arthur made the mistake of using the one-time pad shifted: the first
bit of the plain text he encoded using the second bit of the pad, the second bit of the
plain text he encoded using the third bit of the pad etc. He noticed his error after
he sent the message off. Being afraid that Bela will not understand his message, he
encoded it again (now correctly) using the same one-time pad, and sent it to Bela by
another courier, explaining what happened.

Caligula intercepted both messages, and was able to recover the plain text. How?

16.3 The Kings were running low on one-time pads, and so Bela had to use the same
pad to encode his reply as they used for Arthur’s message. Caligula intercepted both
messages, and was able to reconstruct the plain texts. Can you explain how?

16.4 Motivated by the one-time pad method, Alice suggests the following protocol
for saving the last move in their chess game: in the evening, she encrypts her move
(perhaps with other text added, to make it reasonably long) using a randomly generated
0-1 sequence as the key (just like in the one-time pad method). The next morning she
sends the key to Bob, so that he can decrypt the message. Should Bob accept this
suggestion?

16.5 Alice modifies her suggestion as follows: instead of the random 0-1 sequence,
she offers to use a random, but meaningful text as the key. For whom would this be
advantageous?

121

16.4 Public key cryptography

Cryptographic systems used in real life are more complex than those described in the
previous section—but they are based on similar principles. In this section we sketch the
math behind the most commonly used system, the RSA code (named after its inventors,
Rivest, Shamir and Adleman).

the protocol. Let Alice generate two 100-digit prime numbers, p and q and computes their
product m = pq. Then she generates two 200-digit numbers d and e such that (p−1)(q−1)
is a divisor ed − 1. (We’ll come back to the question how this is done.)

The numbers m and e she publishes on her web site, or in the phone book, but the
prime factors p and q and the number d remain her closely guarded secrets. The number
d is called her private key, and the number e, her public key (the number p and q she may
even forget—they will not be needed to operate the system, just to set it up.

Suppose first that Bob wants to send a message to Alice. He writes the message as
a number x (we have seen before how to do so). This number x must be a non-negative
integer less than m (if the message is longer, he can just break it up into smaller chunks).

The next step is the trickiest: Bob computes the remainder of xe modulo m. Since
both x and e are huge integers (200 digits), the number xd has more that 10200 digits - we
could not even write it down, let alone compute it! Luckily, we don’t have to compute this
number, only its remainder when dividing with m. This is still a large number - but at
least it can be written down in 2-3 lines. We’ll return to computing it in the exercises.

So let r be this remainder; this is sent to Alice. When she receives it, she can decrypt it
using her private key d by doing essentially the same procedure as Bob did: she computes
the remainder of rd modulo m. And—a black magic of number theory, until you see the
explanations—this remainder is just the plain text x.

What if Alice wants to send a message to Bob? He also needs to go through the trouble
of generating his private and public keys. He has to pick two primes p′ and q′, compute
their product m′, select two positive integers d′ and e′ so that (p′ − 1)(q′ − 1) s a divisor or
e′d′ − 1, and finally publish m′ and e′. Then Alice can send him a secure message.

The black math magic behind the protocol. The key fact from mathematics we use
is Fermat’s Theorem 8.6. Recall that x is the plain text (written as an integer) and the
encrypted message r is the remainder of xe modulo m. So we can write

r = xe − km

with an appropriate integer k (the value of k is irrelevant for us). To decrypt, Alice raises
this to the d-th power, to get

rd = (xe − km)d = xed + k′m,

where k′ is again some integer. To be more precise, she computes the remainder of this
modulo m, which is the same as the remainder of xed modulo m. We want to show that
this is just x. Since 0 ≤ x < m, it suffices to argue that xed − x is divisible by m. Since
m = pq is the product of two distinct primes, it suffices to prove that xed −x is divisible by
each of p and q.

122

Let us consider divisibility by p, for example. The main property of e and d is that
ed − 1 is divisible by (p − 1)(q − 1), and hence also by p. This means that we can write
ed = (p − 1)l + 1, where l is a positive integer. we have

xed −x = x(x(p−1)l − 1bigr).

Here x(p−1)l − 1 is divisible by xp−1 − 1 (see exercise 8.1), and so x(x(p−1)l − 1
bigr) is divisible by xp −x, which in turn is divisible by p by Fermat’s “Little” Theorem.

How to do all this computation? We already discussed how to find primes, and Alice
can follow the the method described in section 8.7.

The next issue is the computation of the two keys e and d. One of them, say e, Alice can
choose at random, from the range 1..(p−1)(q −1)−1. She has to check that it is relatively
prime to (p−1)(q−1); this can be done efficiently with the help of the Euclidean Algorithm
discussed in section 8.6. If the number she chose is not relatively prime to (p − 1)(q − 1),
she just throws it out, and tries another one. This is similar to the method we used for
finding a prime, and it is not hard to see that she’ll find a good number on more trials than
she can find a prime.

But if the euclidean algorithm finally succeeds, then, as in section 8.6, it also gives two
integers m and n so that

em+ (p − 1)(q − 1)n = 1.

So em−1 is divisible by (p−1)(q−1). Let d denote the remainder of m modulo (p−1)(q−1),
then ed − 1 is also divisible by (p − 1)(q − 1), and so we have found a suitable key d.

Finally, we have to address the question: how to compute the remainder of xe modulo
m, when just to write down xe would fill the universe? The answer is easy: after each
operation, we can replace the number we get by its remainder modulo m. This way we
never get numbers with more than 400 digits, which is manageable.

But there is another problem: xe denotes x multiplied by itself e ≈ 10200 times; even if
we carry out 1 billion multiplications every second, we will not finish before the end of the
universe!

The first hint that something can be done comes if we think of the special case when
e = 2k is a power of 2. In this case, we don’t have to multiply with x 2k −1 times; instead,
we can repeatedly square x just k times: we get x2, (x2)2 = x4, (x4)2 = x8 etc.

If e is not a power of 2, but say the sum of two powers of 2: e = 2k + 2l, then we
can separately compute x2k

and x2l
by this repeated squaring, and then multiply these 2

numbers (not forgetting that after each squaring and multiplication, we replace the number
by its remainder modulo m). This works similarly if m is the sum of a small number of
powers of 2.

But every number is the sum of a small number of powers of 2: just think of its
representation in binary. The binary representation 1011001012 actually means that the
number is 28 + 26 + 25 + 22 + 20. A 200 digit number is the sum of at most 665 powers of
2. We can easily compute (with a computer, of course) x2k

for every k ≤ 664 by repeated
squaring, and then the product of these numbers.

16.6 Let e = e0e1 . . . ek be the expression of e in binary (ei = 0 or 1, e0 is always 1).

123

Let x0 = x, and for j = 1, . . . ,k, let

xj =

{

x2
j−1, if ej = 0,

x2
j−1x, if ej = 1.

Show that xk = xe.

Signatures, etc. There are many other nice things this system can do. For example,
suppose that Alice gets a message from Bob as described above. How can she know that it
indeed came from Bob? Just because it is signed “Bob”, it could have come from anybody.
But Bob can do the following. First, he encrypts the message with his private key, then
adds “Bob”, and encrypts it again with Alice’s public key. When Alice receives it, she can
decrypt it with her private key. She’ll see a still encrypted message, signed “Bob”. She can
cut away the signature, look up Bob’s public key in the phonebook, and use it to decrypt
the message.

One can use similar tricks to implement many other electronic gadgets, using RSA.

Security. The security of the RSA protocol is a difficult issue, and since its inception
in 1977, thousands of researchers have investigated it. The fact that no attack has been
generally successful is a good sign; but unfortunately no exact proof of it security has been
found (and it appears that current mathematics lacks the tools to provide such a proof in
the foreseeable future.

We can give, however, at least some arguments that support its security. Suppose that
you intercept the message of Bob, and want to decipher it. You know the remainder r (this
is the intercepted message). You also know Alice’s public key e, and the number m. One
could think of two lines of attack: either you can figure out her private key d and then
decrypt the message just as she does, or you could somehow more directly find the integer
x, knowing the remainder of xe modulo m.

Unfortunately there is no theorem stating that either of this is impossible in less than
astronomical time. But one can justify the security of the system with the following fact:
if one can break the RSA system, then one can use the same algorithm to find the prime
factors of m (see exercise ??). Since the factorization problem has been studied by so many
and no efficient method has been found, this makes the security of RSA quite probable.

16.7 Suppose that Bob develops an algorithm that can break RSA in the first, more
direct way described above: knowing Alice’s public key m and e, he can find her private
key d.

(a) Show that he can use this to find the number (p − 1)(q − 1);

(b) from this, he can find the prime factorization m = pq.

The real word. How practical could such a complicated system be? It seems that only
a few mathematicians could ever use it. But in fact you have probably used it yourself
hundreds of times! RSA is used in SSL (Secure Socket Layer), which in turn is used in
https (secure http). Any time you visit a “secure site” of the internet, your computer
generates a public and private key for you, and uses them to make sure that your credit
card number and other personal data remain secret. It does not have to involve you in this
at all—all you notice is that the connection is a bit slower.

124

In practice, the two 100 digit primes are not considered sufficiently secure. Commercial
applications use more than twice this length, military applications, more than 4 times.

While the hairy computations of raising the plain text x to an exponent which itself
has hundreds of digits are surprisingly efficient, it would still be too slow to encrypt and
decrypt each message this way. A way out is to send, as a first message, the key to a simpler
system (think of a one-time pad, although one uses a more efficient system in practice, like
DES, the Digital Encryption Standard). This key is then used for a few minutes to encode
the messages going back and force, then thrown away. The idea is that in a short session,
the number of encoded messages is not enough for an eavesdropper to break the system.

125

Answers to exercises

2 Let us count!

2.1 A party

2.1. 7!.

2.1. Carl: 15 · 23 = 120. Diane: 15 · 3! = 90.

2.2 Sets

2.2. (a) all houses in a street; (b) an Olympic team; (c) class of ’99; (d) all trees in a forest;
(e) the set of rational numbers; (f) a circle in the plane.

2.2. (a) soldiers; (b) people; (c) books; (d) animals.

2.2. (a) all cards in a deck; (b) all spades in a deck; (c) a deck of Swiss cards; (d) non-
negative integers with at most two digits; (e) non-negative integers with exactly two digits;
(f) inhabitants of Budapest, Hungary.

2.2. Alice, and the set whose only element is the number 1.

2.2. 6 · 5/2 = 15.

2.2. No.

2.2. ∅,{0},{1},{3},{0,1},{0,3},{1,3},{0,1,3}. 8 subsets.

2.2. women; people at the party; students of Yale.

2.2. Z or Z+. The smallest is {0,1,3,4,5}.
2.2. (a) {a,b,c,d,e}. (b) The union operation is associative. (c) The union of any set of sets
consists of those elements which are lements of at least one of the sets.

2.2. The union of a set of sets {A1,A2, . . . ,Ak} is the smallest set containing each Ai as a
subset.

2.2. 6,9,10,14.

2.2. The cardinality of the union is at least the larger of n and m and at most n + m.

2.2. (a) {1,3}; (b) ∅; (c) {2}.
2.2. The cardinality of the intersection is at most the minimum of n and m.

2.2. The common elements of A and B are counted twice on both sides; the elements in
either A or B but not both are counted once on both sides.

2.2 (a) The set of negative even integers and positive odd integers. (b) B.

2.3 The number of subsets

2.3. Powers of 2.

2.3. 2n−1.

2.3. (a) 2 · 10n − 1; (b) 2 · (10n − 10n−1.

2.3. 101.

2.3 1 + ⌊n lg2⌋.

126

2.4 Sequences

2.4. The trees have 9 and 8 leaves, respectively.

2.4. 5 · 4 · 3 = 60.

2.4. 313.

2.4. 6 · 6 = 36.

2.4. 1220.

2.4. (220)12.

2.5 Permutations

2.5. n!.

2.5. (b) 7 · 5 · 3 = 105. In general, (2n − 1) · (2n − 3) · . . . · 3 · 1.
2.5. (a) n(n − 1)/2 is larger for n ≥ 4. (b) 2n is larger for n ≥ 5.

2.5. (a) This is true for n ≥ 10. (b) 2n/n2 > n for n ≥ 10.

3 Induction

3.1 The sum of odd numbers

3.1. One of n and n+1 is even, so the product n(n+1) is even. By induction: true for n = 1;
if n > 1 then n(n + 1) = (n − 1)n + 2n, and n(n − 1) is even by the induction hypothesis, 2n is
even, and the sum of two even numbers is even.

3.1. True for n = 1. If n > 1 then

1 + 2 + . . . + n = (1 + 2 + . . . + (n − 1)) + n =
(n − 1)n

2
+ n =

n(n + 1)

2
.

3.1. The youngest person will count n − 1 handshakes. The 7-th oldest will count 6 hand-
shakes. So they count 1+2+ . . .+(n− 1) handshakes. We also know that there are n(n− 1)/2

handshakes.

3.1. Compute the area of the rectangle in two different ways.

3.1. By induction on n true for n = 1. For n > 1, we have

1 · 2 + 2 · 3 + 3 · 4 + . . . + (n − 1) · n =
(n − 2) · (n − 1) · n

3
+ (n − 1) · n =

(n − 1) · n · (n + 1)

3
.

3.1. If n is even, then 1 + n = 2 + (n − 1) = ... =
(

n
2

− 1
)

+ n
2

= n + 1, so the sum is
n

2
(n+1)=n(n+1)

2
.

If n is odd then we have to add the middle term separately.

3.1. If n is even, then 1 + (2n − 1) = 3 + (2n − 3) = . . . = (n − 1) + (n + 1) = 2n, so the sum is
n
2
(2n) = n2. Again, is n is odd the solution is similar, but we have to add the middle term

separately.

3.1. By induction. True for n = 1. If n > 1 then

12 + 22 + . . . + (n − 1)2 = (12 + 22 + . . . + (n − 1)2) + n2 =
(n − 1)n(2n − 1)

6
+ n2 =

n(n + 1)(2n + 1)

6
.

3.1. By induction. True for n = 1. If n > 1 then

20 + 21 + 22 + . . . + 2n−1 = (20 + 21 + . . . + 2n−2) + 2n−1 = (2n−1 − 1) + 2n−1 = 2n − 1.

127

3.2 Subset counting revisited

3.2. (Strings) True for n = 1. If n > 1 then to get a string of length n we can start with
a string of length n − 1 (this can be chosen in kn−1 ways by the induction hypothesis) and
append an element (this can be chosen in k ways). So we get kn−1 · k = kn.

(Permutations) True for n = 1. To seat n people, we can start with seating the oldest (this
can be done in n ways) and then seating the rest (this can be done in (n − 1)! ways be the
induction hypothesis). We get n · (n − 1)! = n!.

3.2. True if n = 1. Let n > 1. The number of handshakes between n people is the number
of handshakes by the oldest person (n − 1) plus the number of handshakes between the
remaining n − 1 (which is (n − 1)(n − 2)/2 by the induction hypothesis). We get (n − 1) + (n −
1)(n − 2)/2 = n(n − 1)/2.

13.1. By induction. True if n = 1. Let n > 1. Assume the description of the coloring is valid
for the first n − 1 circles. If we add the n-th, the color and the parity don’t change outside
this circle; both change inside the circle. So the description remains valid.

13.1. (a) By induction. True for 1 line. Adding a line, we recolor all regions on one side.

(b) One possible description: designate a direction as “up”. Let p any point not on any of
the lines. Start a semiline “up” from P . Count how many of the given lines intersect it.
Color according to the parity of this intersection number.

3.2. We did not check the base case n = 1.

3.2. The proof uses that there are at least four lines. But we only checked n = 1,2 as base
cases. The assertion is false for n = 3 and also for every value after that.

3.3 Counting regions

3.3. True for n = 1. Let n > 1. Delete any line. The remaining lines divide the plane into
(n− 1)n/2+1 regions by the induction hypothesis. The last line cuts n of these into two. So
we get

(n − 1)n

2
+ 1 + n =

n(n + 1)

2
+ 1.

4 Counting subsets

4.1 The number of ordered subsets

4.1. (I don’t think you could really draw the whole tree; it has almost 1020 leaves. It has
11 levels of nodes.)

4.1. (a) 100!. (b) 90!. (c) 100!/90! = 100 · 99 · . . . · 91.

4.1. n!
(n−k)!

= n(n − 1) · (n − k + 1).

4.1. In one case, repetition is not allowed, while in the other case, it is allowed.

4.2 The number of subsets of a given size

4.2. Handshakes; lottery; hands in bridge.

4.2. See next chapter.

4.2.
n(n − 1)

2
+

(n + 1)n

2
= n2.

128

4.2. Solution of (b) ((a) is a special case)). The identity is
(

n

k

)

=

(

n − 1

k

)

+

(

n − 1

k − 1

)

.

The right hand side counts k-subsets of an n-element set by separately counting those that
do not contain a given element and those that do.

4.2. The number of k-element subsets is the same as the number of (n−k)-element subsets,
since the complement of a k-subset is an (n − k)-subset and vice versa.

4.2. Both sides count all subsets of an n-element set.

4.2. Both sides count the number of ways to divide an a-element set into three sets with
a − b, b − c, and c elements.

4.3 The Binomial Theorem

4.3.

(x + y)n = (x + y)n−1(x + y)

=

(

xn−1 +

(

n − 1

1

)

xn−2y + . . .

+

(

n − 1

n − 2

)

xyn−2 +

(

n − 1

n − 1

)

yn−1

)

(x + y)

= xn−1(x + y) +

(

n − 1

1

)

xn−2y(x + y) + . . .

+

(

n − 1

n − 2

)

xyn−2(x + y) +

(

n − 1

n − 1

)

yn−1(x + y)

= (xn + xn−1y) +

(

n − 1

1

)

(xn−1y + xn−2y2) + . . . +

(

n − 1

n − 2

)

(x2yn−2 + xyn−1)

+

(

n − 1

n − 1

)

(xyn−1 + yn)

= xn +

(

1 +

(

n − 1

1

))

(xn−1y + xn−2y) + . . .

+

((

n − 1

n − 2

)

+

(

n − 1

n − 1

))

xyn−1 + yn

= xn +

(

n

1

)

xn−1y +

(

n

2

)

xn−2y2 + . . . +

(

n

n − 1

)

xyn−1 + yn.

4.3. (a) (1 − 1)n = 0. (b) By
(

n

k

)

=
(

n

n−k

)

.

4.3. Both sides count all subsets of an n-element set.

4.4 Distributing presents

4.4.
(

n

n1

)

·
(

n − n1

n2

)

· . . . ·
(

n

nk

)

129

=
n!

n1!(n − n1)!

(n − n1)!

n2!(n − n1 − n2)!
. . .

(n − n1 − . . . − nk−2)!

nk−1!(n − n1 − . . . − nk−1)!
=

n!

n1!n2! . . .nk!
,

since n − n1 − . . . − nk−1 = nk.

4.4. (a) n! (distribute positions instead of presents). (b) n(n − 1) . . . (n − k + 1) (distribute as
“presents” the first k positions at the competition and n − k participation certificates). (c)
(

n

n1

)

. (d) Chess seating in Diane’s sense (distribute players to boards).

4.4. (a) [n = 8] 8!. (b) 8! ·
(

8
4

)

. (c) (8!)2.

4.5 Anagrams

4.5. 13!/23.

4.5. COMBINATORICS.

4.5. Most: any word with 13 different letters; least: any word with 13 identical letters.

4.5. (a) 266.

(b)
(

26
4

)

ways to select the four letters that occur; for each selection,
(

4
2

)

ways to select the
two letters that occur twice; for each selection, we distribute 6 positions to these letters (2
of them get 2 positions), this gives 6!

2!2!
ways. Thus we get

(

26
4

)(

4
2

)

6!
2!2!

. (There are many other
ways to arrive at the same number!)

(c) Number of ways to partition 6 into the sum of positive integers:

6 = 6 = 5 + 1 = 4 + 2 = 4 + 1 + 1 = 3 + 3 = 3 + 2 + 1 = 3 + 1 + 1 + 1 = 2 + 2 + 2

= 2 + 2 + 1 + 1 = 2 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1

which makes 11 possibilities.

(d) This is too difficult in this form. What I meant is the following: how many words of
length n are there such that none is an anagram of another? This means distributing n

pennies to 26 children, and so the answer is
(

n+25
26

)

.

4.6 Distributing money

4.6.
(

n−k−1
k−1

)

.

4.6.
(

n+k−1
ℓ+k−1

)

.

4.6.
(

kp+k−1
k−1

)

.

5 Pascal’s Triangle

5. This is the same as
(

n

k

)

=
(

n

n−k

)

.

5.
(

n

0

)

=
(

n

n

)

= 1 (e.g. by the general formula for the binomial coefficients).

5.1.

1 +

(

n

1

)

+

(

n

2

)

+ . . . +

(

n

n − 1

)

+

(

n

n

)

= 1 +

((

n − 1

0

)

+

(

n − 1

1

))

+

((

n − 1

1

)

+

(

n − 1

2

))

+ . . . +

((

n − 1

n − 2

)

+

(

n − 1

n − 1

))

+ 1

= 2

((

n − 1

0

)

+

(

n − 1

1

)

+ . . . +

(

n − 1

n − 2

)

+

(

n − 1

n − 1

))

= 2 · 2n−1 = 2n.

130

5.1 Identities in the Pascal Triangle

5.1.

1 +

(

n

1

)

+

(

n

2

)

+ . . . +

(

n

n − 1

)

+

(

n

n

)

= 1 +

((

n − 1

0

)

+

(

n − 1

1

))

+

((

n − 1

1

)

+

(

n − 1

2

))

+ . . . +

((

n − 1

n − 2

)

+

(

n − 1

n − 1

))

+ 1

= 2

((

n − 1

0

)

+

(

n − 1

1

)

+ . . . +

(

n − 1

n − 2

)

+

(

n − 1

n − 1

))

= 2 · 2n−1 = 2n.

5.1. The coefficient of xnyn in

((

n

0

)

xn +

(

n

1

)

(xn−1y + xn−2y) + . . . +

(

n

n − 1

)

xyn−1 +

(

n

n

)

yn

)2

is
(

n

0

)(

n

n

)

+

(

n

1

)(

n

n − 1

)

+ . . . +

(

n

n − 1

)(

n

1

)

+

(

n

n

)(

n

0

)

.

5.1. The left hand side counts all k-element subsets of an (n+m)-element set by distinguish-
ing them according to how many elements they pick up from the first n.

5.1. If the largest element is j, the rest can be chosen
(

j−1
k

)

ways.

5.2 A bird’s eye view at the Pascal Triangle

5.2. n = 3k + 2.

5.2. k = ⌊(n −
√

2n)/2⌋. (This is not easy: one looks at the difference of differences:

((

n

k + 1

)

−
(

n

k

))

−
((

n

k

)

−
(

n

k − 1

))

,

and determines the value of k where it turns negative.)

5.2. (a) 2n is a sum with positive terms in which
(

n

4

)

is only one of the terms.

(b) Assume that n > 200. Then

2n

n3
≥
(

n

4

)

n3
=

(n − 1)(n − 2)(n − 3)

24n2
>

(n/2)3

24n2
=

n

192
> 1.

5.2.
(

n

n/2

)

=
n!

((n/2)!)2
∼

(

n
e

)n √
2πn

(

(

n
2e

)(
n/2)

√
πn
)2 =

2n
√

2√
πn

.

5.2. Using
(

2m

m

)/(

2m

m − t

)

>
t2

m
,

it is enough to find a t > 0 for which t2/m ≥ 1/c. Solving for t, we get that t = ⌈
√

m/c⌉ is a
good choice.

131

5. (a): see (c).

(b) We prove by induction on s that for 0 ≤ s ≤ m − t,

(

2m

m − s

)/(

2m

m − t − s

)

>
t2

m
.

For s = 0 this is just the theorem we already know. Let s > 0, then then

(

2m

m − s

)

=
m − s + 1

m + s

(

2m

m − s + 1

)

and
(

2m

m − t − s

)

=
m − s − t + 1

m + s + t

(

2m

m − s − t + 1

)

.

Hence
(

2m

m − s

)/(

2m

m − t − s

)

=
(m − s + 1)(m + s + t)

(m + s)(m − s − t + 1)

((

2m

m − s + 1

)/(

2m

m − t − s + 1

))

.

Since
(m − s + 1)(m + s + t)

(m + s)(m − s − t + 1)
> 1,

it follows that
(

2m

m − s

)/(

2m

m − t − s

)

>

(

2m

m − s + 1

)/(

2m

m − t − s + 1

)

>
t2

m

by the induction hypothesis.

(c)
(

2m

m−s

)

(

2m

m−t−s

) =

(2m)!
(m−s)!(m+s)!

(2m)!
(m−t−s)!(m+t+s)!

=
(m + t + s)(m + t + s − 1) . . .(m + s + 1)

(m − s)(m − s − 1) . . .(m − s − t + 1)

=
m + t + s

m − s
· m + t + s − 1

m − s − 1
· . . . · m + s + 1

m − t − s + 1

=

(

1 +
t + 2s

m − s

)

·
(

1 +
t + 2s

m − s − 1

)

· . . . ·
(

1 +
t

m − s − t + 1

)

≥
(

1 +
t + 2s

m

)t

> 1 + t
t + 2s

m
.

7 Combinatorial probability

7.1 Events and probabilities

7.1. The union of two events A and B corresponds to “A or B”.

7.1. It is the sum of some of the probabilities of outcomes, and even if add all we get just
1.

7.1. P(E) = 1
2
, P(T) = 1

3
.

7.1. The same probabilities P(s) are added up on both sides.

132

7.1. Every probability P(s) with s ∈ A∩B is added twice to sides; every probability P(s) with
s ∈ A ∪ B but s /∈ A ∩ B is added once to both sides.

7.2 Independent repetition of an experiment

7.2. The pairs (E,T),(O,T),(L,T) are independent. The pair (E,O) is exclusive.

7.2. P(∅∩A) = P(∅) = 0 = P(∅)P(A). The set S also has this property: P(S∩A) = P(A) = P(S)P(A).

7.2. P(A) = |S|n−1

|S|n
= 1

|S|
, P(B) = |S|n−1

|S|n
= 1

|S|
, P(A ∩ B) = |S|n−2

|S|n
= 1

|S|2
= P(A)P(B).

6 Fibonacci numbers

6.1 Fibonacci’s exercise

6.1. Because we use the two previous elements to compute the next.

6.1. Fn+1.

6.2. It is clear from the recurrence that two odd members are followed by an even, then by
two odd.

6.2. We formulate the following nasty looking statement: if n is divisible by 5, then so is Fn; if n

has remainder 1 when divided by 5, then Fn has remainder 1; if n has remainder 2 when divided by 5, then

Fn has remainder 1; if n has remainder 3 when divided by 5, then Fn has remainder 2; if n has remainder

4 when divided by 5, then Fn has remainder 3. This is then easily proved by induction on n.

6.2. By induction. All of them are true for n = 1 and n = 2. Assume that n ≥ 3.

(a) F1 + F3 + F5 + . . . + F2n−1 = (F1 + F3 + . . . + F2n−3) + F2n−1 = F2n−2 + F2n−1 = F2n.

(b) F0 −F1 +F2 −F3 + . . .−F2n−1 +F2n(F0 −F1 +F2 − . . .+F2n−2)−(F2n−1 +F2n) = (F2n−3 −1)+F2n−2 =

F2n−1 − 1.

(c) F 2
0 + F 2

1 + F 2
2 + . . . + F 2

n(F 2
0 + F 2

1 + . . . + F 2
n−1) + F 2

n = Fn−1Fn + F 2
n = Fn(Fn−1 + Fn) == Fn · Fn+1.

(d) Fn−1Fn+1 − F 2
n = Fn−1(Fn−1 + Fn) − F 2

n = F 2
n−1 + Fn(Fn−1 − Fn) = F 2

n−1 − FnFn−2 = −(−1)n−1 =

(−1)n.

6.2. The identity is

(

n

0

)

+

(

n − 1

1

)

+

(

n − 2

2

)

+ . . . +

(

n − k

k

)

= Fn+1,

where k = ⌊n/2⌋. Proof by induction. True for n = 0 and n = 1. Let n ≥ 2. Assume that n is
odd; the even case is similar, just the last term below needs a little different treatment.

(

n

0

)

+

(

n − 1

1

)

+

(

n − 2

2

)

+ . . . +

(

n − k

k

)

= 1 +

((

n − 2

0

)

+

(

n − 2

1

))

+

((

n − 3

1

)

+

(

n − 3

2

))

+ . . . +

((

n − k − 1

k − 1

)

+

(

n − k − 1

k

))

=

((

n − 1

0

)

+

(

n − 2

1

)

+

(

n − 3

2

)

+ . . . +

(

n − k − 1

k

))

+

((

n − 2

0

)

+

(

n − 3

1

)

+ . . . +

(

n − k − 1

k − 1

))

= Fn + Fn−1 = Fn+1.

133

6.2. The “diagonal” is in fact a very long and narrow parallelogram with area 1. The trick
depends on the fact Fn+1Fn−1 − F 2

n = (−1)n is very small compared to F 2
n.

6.3 A formula for the Fibonacci numbers

6.3. True for n = 0,1. Let n ≥ 2. Then by the induction hypothesis,

Fn = Fn−1 + Fn−2

=
1√
5

(

(

1 +
√

5

2

)n−1

− (

(

1 −
√

5

2

)n−1
)

. +
1√
5

(

(

1 +
√

5

2

)n−2

− (

(

1 −
√

5

2

)n−2
)

.

=
1√
5

[

(

1 +
√

5

2

)n−2(
1 +

√
5

2
+ 1

)

+

(

1 −
√

5

2

)n−2(
1 −

√
5

2
+ 1

)

]

=
1√
5

((

1 +
√

5

2

)n

− (

(

1 −
√

5

2

)n)

.

6.3. For n = 0 and n = 1, if we require that Hn is of the given form we get

H0 = 1 = a + b, H1 = 3 = a
1 +

√
5

2
+ b

1 −
√

5

2
.

Solving for a and b, we get

a =
1 +

√
5

2
, b =

1 −
√

5

2
.

Then

Hn =

(

1 +
√

5

2

)n+1

+

(

1 −
√

5

2

)n+1

follows by induction on n just like in the previous problem.

6.3.
In =

1

2
√

5

(

(2 +
√

5)n − (2 −
√

5)n

)

.

8 Integers, divisors, and primes

8.1 Divisibility of integers

8.1. a = a · 1 = (−a) · (−1).

8.1. (a) even; (b) odd; (c) a = 0.

8.1. (a) If b = am and c = bn then c = amn. (b) If b = am and c = an then b + c = a(m + n) and
b − c = a(m − n). (c) If b = am and a,b > 0 then m > 0, hence m ≥ 1 and so b ≥ a. (d) Trivial if
a = 0. Assume a 6= 0. If b = am and a = bn then a = amn, so mn = 1. Hence either m = n = 1

or m = n = −1.

8.1. We have a = cn and b = cm, hence r = b − aq = c(m − nq).

8.1. We have b = am, c = aq + r and c = bt + s. Hence s = c − bt = (aq + r) − (am)t = (q − mt)a + r.
Since 0 ≤ r < a, the remainder of the division s : a is r.

8.1. (a) a2 − 1 = (a − 1)(a + 1). (b) an − 1 = (a − 1)(an−1 + . . . + a + 1).

8.3 Factorization into primes

134

8.3. Yes, the number 2.

8.3. (a) p occurs in the prime factorization of ab, so it must occur in the prime factorization
of a or in the prime factorization of b.

(b) p|a(b/a), but p 6 |a, so by (a), we must have p|(b/a).

8.3. Let n = p1p2 . . .pk; each pi ≥ 2, hence n ≥ 2k.

8.3. If ri = rj then ia − ja is divisible by p. But ia − ja = (i − j)a and neither a nor i − j are
divisible by p. Hence the ri are all different. None of them is 0. Their number is p − 1, so
every value 1,2, . . . ,p − 1 must occur among the ri.

8.3. For a prime p, the proof is the same as for 2. If n is composite but not a square, then
there is a prime p that occurs in the prime factorization of n an odd number of times. We
can repeat the proof by looking at this p.

8.3. Fact: If k
√

n is not an integer then it is irrational. Proof: there is a prime that occurs in
the prime factorization of n, say t times, where k 6 |t. If (indirect assumption) k

√
n = a/b then

nbk = ak, and so the number of times p occurs in the prime factorization of the ;left hand
side is not divisible by k, while the number of times it occurs in the prime factorization of
the right hand side is divisible by k. A contradiction.

8.5 Fermat’s “Little” Theorem

8.5. 4 6 |
(

4
2

)

= 6. 4 6 |24 − 2 − 14.

8.5. (a) What we need that each of the p rotated copies of a set are different. Suppose that
there is a set which occurs a times. Then trivially every other set occurs a times. But then
a|p, so we must have a = 1 or p. If all p rotated copies are the same then trivially either k = 0

or k = p, which were excluded. So we have a = 1 as claimed. (b) Consider the set of two
opposite vertices of a square. (c) If each box contains p subsets of size k, the total number
of subsets must be divisible by k.

8.5. We consider each number to have p digits, by adding zeros at the front if necessary. We
get p numbers from each number a by cyclic shift. These are all the same when all digits of
a are the same, but all different otherwise (why? the assumption that p is a prime is needed
here!). So we get ap − a numbers that are divided into classes of size p. Thus p|ap − a.

8.5. Assume that gcd(a,p) = 1. Consider the product a(2a)(3a) . . .((p−1)a) = (p−1)!ap−1. Let ri

be the remainder of ia when divided by p. Then the product above has the same remainder
when divided by p as the product r1r2 . . . rp−1. But this product is just (p − 1)!. Hence p is
a divisor of (p − 1)!ap−1 − (p − 1)! = (p − 1)!(ap−1 − 1). Since p is a prime, it is not a divisor of
(p − 1)!, and so it is a divisor of ap−1 − 1.

8.6 The Euclidean Algorithm

8.6. gcd(a,b) ≤ a, but a is a common divisor, so gcd(a,b) = a.

8.6. Let d = gcd(a,b). Then d|a and d|b, and hence d|b − a. Thus d is a common divisor of a

and b − a, and hence gcd(a,b) = d ≤ gcd(a,b). A similar argument show the reverse inequality.

8.6. (a) gcd(a/2, b)|(a/2) and hence gcd(a/2, b)|a. So gcd(a/2, b) is a common divisor of a and b

and hence gcd(a/2, b) ≤ gcd(a,b). The reverse inequality follows similarly, using that gcd(a,b)

is odd, and hence gcd(a,b)|(a/2).

135

(b) gcd(a/2, b/2)|(a/2) and hence 2gcd(a/2, b/2)|a. Similarly, 2gcd(a/2, b/2)|b, and hence
2gcd(a/2,b/2) ≤ gcd(a,b). Conversely, gcd(a,b)|a and hence 1

2
gcd(a,b)|a/2. Similarly, 1

2
gcd(a,b)|b/2,

and hence 1
2
gcd(a,b) ≤ gcd(a/2, b/2).

8.6. Consider each prime that occurs in either one of them, raise it to the larger of the two
exponents, and multiply these prime powers.

8.6. If a and b are the two integers, and you know the prime factorization of a, then take the
prime factors of a one by one, divide b with them repeatedly to determine their exponent
in the prime factorization of b, raise them to the smaller of their exponent in the prime
factorizations of a and b, and multiply these prime powers.

8.6. By the descriptions of the gcd and lcm above, each prime occurs the same number of
times in the prime factorization of both sides.

8.6. gcd(a,a + 1) = gcd(a,1) = gcd(0,1) = 1.

8.6. The remainder of Fn+1 divided by Fn is Fn−1. Hence gcd(Fn+1,Fn) = gcd(Fn,Fn−1) = . . . =

gcd(F3,F2) = 1. This lasts n − 1 steps.

8.6. By induction on k. True if k = 1. Suppose that k > 1. Let b = aq + r, 1 ≤ r < a. Then
the euclidean algorithm for computing gcd(a,r) lasts k − 1 steps, hence a ≥ Fk and r ≥ Fk−1

by the induction hypothesis. But then b = aq + r ≥ a + r ≥ Fk + Fk−1 = Fk+1.

8.6. (a) Takes 10 steps. (b) Follows from gcd(a, b) = gcd(a − b, b). (c) gcd(10100 − 1,10100 − 2)

takes 10100 − 1 steps.

8.6. (a) Takes 8 steps. (b) At least one of the numbers remains odd all the time. (c) Follows
from exercises 8.6 and 8.6. (d) The product of the two numbers drops by a factor of two in
one of any two iterations.

8.7 Testing for primality

8.7. By induction on k. True if k = 1. Let n = 2m+a, where a is 0 or 1. Then m has k−1 bits,
so by induction, we can compute 2m using at most 2(k − 1) multiplications. Now 2n = (2m)2

if a = 0 and 2n = (2m)2 · 2 if a = 1.

8.7. If 3|a then clearly 3|a561 − a. If 3 6 |a, then 3|a2 − 1 by Fermat, hence 3|(a2)280 − 1 = a560 − 1.
Similarly, if 11 6 |a, then 11|a10 − 1 and hence 11|(a10)56 − 1 = a560 − 1. Finally, if 17 6 |a, then
17|a16 − 1 and hence 17|(a16)35 − 1 = a560 − 1.

9 Graphs

9.1 Even and odd degrees

9.1. There are 2 graphs on 2 nodes, 8 graphs on 3 nodes (but only four “essentially
different”), 16 graphs on 4 nodes (but only 11 “essentially different”).

9.1. (a) No; sum of degrees must be even. (b) No; node with degree 5 must be connected
to all other nodes, so we cannot have a node with degree 0. (c) 12. (d) 9 · 7 · 5 · 3 · 1 = 945.

9.1. This graph, the complete graph has
(

n

2

)

edges if it has n nodes.

9.1. (a) a path with 3 nodes; (b) a star with 4 endpoints; (c) the union of two paths with
3 nodes.

9.1. In graph (a), the number of edges is 17, the degrees are 9,5,3,3,2,3,1,3,2,3. In graph
(b), the number of edges is 31, the degrees are 9,5,7,5,8,3,9,5,7,4.

136

9.1.
(

10
2

)

= 45.

9.1. 2(20
2
) = 2190.

9.1. Every graph has two nodes with the same degree. Since each degree is between 0 and n − 1, if
all degrees were different then they would be 0,1,2,3, . . .n − 1 (in some order). But the node
with degree n−1 must be connected to all the others, in particular to the node with degree
0, which is impossible.

9.2 Paths, cycles, and connectivity

9.2. There are 8 such graphs.

9.2. The empty graph on n nodes has 2n subgraphs. The triangle has 18 subgraphs.

9.2. Yes, the proof remains valid.

9.2 (a) Delete any edge from a path. (b) Consider two nodes u and v. the original graph
contains a path connecting them. If this does not go through e, the it remains a path after
e is deleted. If it goes through e, then let e = xy, and assume that the path reaches x first
(when traversed from u to v). Then in the graph after e is deleted, there is a path from u to
x, and also from x to y (the remainder of the cycle), so there is one from u to y. but there
is also one from y to v, so there is also a path from u to v.

9.2. (a) Consider a shortest walk from u to v; if this goes through any nodes more than
once, the part of it between two passes through this node can be deleted, to make it shorter.
(b) The two paths together form a walk from a to c.

9.2. Let w be a common node of H1 and H2. If you want a path between nodes u and v in
H, then we can take a path from u to w, followed by a path from w to v, to get a walk from
u to w.

9.2. Both graphs are connected.

9.2. The union of this edge and one of these components would form a connected graph
that is strictly larger than the component, contradicting the definition of a component.

9.2. If u and v are in the same connected component, then this component, and hence G

too, contains a path connecting them. Conversely, if there is a path P in G connecting u and
v, then this path is a connected subgraph, and a maximal connected subgraph containing
P is a connected component containing u and v.

9.2. Assume that the graph is not connected and let a connected component H of it have k

nodes. Then H has at most
(

k

2

)

edges. The rest of the graph has at most
(

n−k

2

)

edges. Then
the number of edges is at most

(

k

2

)

+

(

n − k

2

)

=

(

n − 1

2

)

− (k − 1)(n − k − 1)

2
≤
(

n − 1

2

)

.

10 Trees

10. If G is a tree than it contains no cycles (by definition), but adding any new edge creates
a cycle (with the path in the tree connecting the endpoints of the new edge). Conversely, if
a graph has no cycles but adding any edge creates a cycle, then it is connected (two nodes
u and v are either connected by an edge, or else adding an edge connecting them creates a
cycle, which contains a path between u and v in the old graph), and therefore it is a tree.

137

10. If u and v are in the same connected component, then the new edge uv forms a cycle
with the path connecting u and v in the old graph. If joining u and v by a new edge creates
a cycle, then the rest of this cycle is path between u and v, and hence u and v are in the
same component.

10. Assume that G is a tree. Then there is at least one path between two nodes, by
connectivity. But there cannot be two paths, since then we would get a cycle (find the node
v when the two paths branch away, and follow the second path until it hits the first path
again; follow the first path back to v, to get a cycle).

Conversely, assume that there is a unique path between each pair of nodes. Then the graph
is connected (since there is a path) and cannot contain a cycle (since two nodes on the cycle
would have at least two paths between them).

10.1 How to grow a tree?

10.1. Start the path from a node of degree 1.

10.1. Any edge has only one lord, since if there were two, they would have to start from
different ends, and they would have then two ways to get to the King. Similarly, and edge
with no lord would have to lead to two different ways.

10.1. Start at any node v. If one of the branches at this node contains more than half of all
nodes, move along the edge leading to this branch. Repeat. You’ll never backtrack because
this would mean that there is an edge whose deletion results in two connected components,
both containing more than half of the nodes. You’ll never cycle back to a node already sen
because the graph is a tree. Therefore you must get stuck at a node such that each branch
at this node contains at most half of all nodes.

10.2 Rooted trees

10.3. The number of unlabeled trees on 2,3,4,5 nodes is 1,1,2,3. They give rise to a total of
1,2,16,125 labeled trees.

10.3. There are n stars and n!/2 paths on n nodes.

10.4 How to store a tree?

10.4. The first is the father code of a path; the third is the father code of a star. The other
two are not father codes of trees.

10.4. This is the number of possible father codes.

10.4. Define a graph on {1, . . . ,n} by connecting all pairs of nodes in the same column. If
we do it backwards, starting with the last column, we get a procedure of growing a tree by
adding new node and an edge connecting it to an old node.

10.4. (a) encodes a path; (b) encodes a star; (c) does not encode any tree (there are more
0’s than 1’s among the first 5 elements, which is impossible in the planar code of any tree).

11 Finding the optimum

11.1 Finding the best tree

11.1. Let H be an optimal tree and let G be the tree contructed by the pessimistic gov-
ernment. Look at the first step when an edge e = uv of H is eliminated. Deleting e from

138

H we get two components; since G is connected, it has an edge f connecting these two
components. The edge f cannot be more expensive than e, else the pessimistic government
would have chosen f to eliminate instead of e. But then we can replace e by f in H without
increasing its cost. Hence we conclude as in the proof given above.

11.1. [Very similar.]

11.1. [Very similar.]

11.1. Take nodes 1,2,3,4 and costs c(12) = c(23) = c(34) = c(41) = 3, c(13) = 4, c(24) = 1. The
pessimistic government builds (12341), while the best solution is 12431.

11.2 Traveling Salesman

11.2. No, because it intersects itself (see next exercise).

11.2. Replacing two intersecting edges by two other edges pairing up the same 4 nodes,
just differently, gives a shorter tour by the triangle inequality.

12 Matchings in graphs

12.1 A dancing problem

12.1. If every degree is d, then the number of edges is d · |A|, but also d · |B|.
12.1. (a) A triangle; (b) a star.

12.1. A graph in which every node has degree 2 is the union of disjoint cycles. If the graph
is bipartite, these cycles have even length.

12.3. Let X ⊆ A and let Y denote the set of neighbors of X in B. There are exactly d|X|
edges starting from X. Every node in Y accommodates no more than d of these; hence
|Y | ≥ |X|.
12.4. On a path with 4 nodes, we may select the middle edge.

12.4. The edges in M must meet every edge in G, in particular every edge in the perfect
matching matching. So every edge in the perfect matching has at most one endpoint
unmatched by M .

12.4. The largest matching has 5 edges.

12.4. If the algorithm terminates without a perfect matching, then the set S shows that
the graph is not “good”.

12.5. The first graph does; the second does not.

139

