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Abstract

Thanks to recent advances in deep neural networks (DNNs),
face recognition systems have become highly accurate in
classifying a large number of face images. However, recent
studies have found that DNNs could be vulnerable to adver-
sarial examples, raising concerns about the robustness of such
systems. Adversarial examples that are not restricted to small
perturbations could be more serious since conventional certi-
fied defenses might be ineffective against them. To shed light
on the vulnerability to such adversarial examples, we propose
a flexible and efficient method for generating unrestricted ad-
versarial examples using image translation techniques. Our
method enables us to translate a source image into any de-
sired facial appearance with large perturbations to deceive
target face recognition systems. Our experimental results in-
dicate that our method achieved about 90 and 80% attack suc-
cess rates under white- and black-box settings, respectively,
and that the translated images are perceptually realistic and
maintain the identifiability of the individual while the pertur-
bations are large enough to bypass certified defenses.

Introduction

Deep neural networks (DNNs) have become more accurate
than humans in image classification (Krizhevsky, Sutskever,
and Hinton 2012) and machine translation (Bahdanau, Cho,
and Bengio 2014). However, recent studies have shown
that DNNs could be vulnerable to adversarial examples
(Szegedy et al. 2014; Goodfellow, Shlens, and Szegedy
2015; Carlini and Wagner 2017). Specifically, DNNs could
be intentionally deceived by an input data point that has been
slightly modified. To understand the mechanism of such a
vulnerability and make DNNs more robust, it is important to
study methods for generating adversarial examples.

The vulnerability to adversarial examples raises concerns
about face recognition systems widely used in applications
such as biometric authentication and public safety (Masi et
al. 2018). Since the recent success of face recognition sys-
tems rely on DNNs, a potential attacker could exploit adver-
sarial examples for incorrect recognition or impersonating
another person. Therefore, it is important to consider the risk
of adversarial examples attacking face recognition systems.
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Figure 1: Adversarial image translation against face recogni-
tion systems. Our method translates (a) original images into
(b) adversarial images with desired domain labels to classify
them as (c) target images. Corresponding domain labels are
blond hair, makeup, and eyeglasses from top to bottom.

Typical methods for creating adversarial examples for
deceiving target classifiers involve adding small carefully
crafted perturbations on a source image (Szegedy et al. 2014;
Goodfellow, Shlens, and Szegedy 2015; Carlini and Wag-
ner 2017). To reduce the risk of adversarial examples based
on small perturbations, several defenses have been pro-
posed with theoretical certification. These defenses provide
a lower bound of class-changing perturbations based on
the global Lipschitz constant of DNNs (Cisse et al. 2017;
Gouk et al. 2018; Tsuzuku, Sato, and Sugiyama 2018) and
randomized smoothing (Li et al. 2018; Cohen, Rosenfeld,
and Kolter 2019; Lecuyer et al. 2019). These studies indi-
cate that small-perturbation-based attacks may no longer be
effective with these defenses.

In spite of these certified defenses, there remains a sig-
nificant risk of adversarial examples. Song et al. and Brown
et al. independently introduced a novel concept called unre-
stricted adversarial examples (Song et al. 2018; Brown et al.
2018). While such adversarial examples are not restricted to
small perturbations, they do not confuse human observers.
For instance, an image of a stop sign is still recognized as a
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stop sign by human observers, though the adversarial pertur-
bations are large enough to bypass certified defenses. These
adversarial examples could be a serious security issue and
shed light on the mechanism of this type of vulnerability.

In the context of face recognition systems, how can we
define unrestricted adversarial examples in a reasonable
scenario? Spatial transformation, such as adversarial rota-
tion (Brown et al. 2018) and distortion (Goswami et al.
2018), are impractical for attacks against face recognition
systems since adversaries are unable to control the spa-
tial transformations in biometric authentication and pub-
lic surveillance (e.g. rotated images cannot be presented in
a passport-control scenario). Therefore, we focus on unre-
stricted adversarial examples without spatial transformation.
We consider the following conditions: our adversarial exam-
ples (1) should be perceptually realistic enough to maintain
the identifiability of the individual in the original image and
(2) have large enough perturbations to bypass defenses that
are based on small perturbations.

To generate unrestricted adversarial examples that satisfy
these two conditions, we propose a method that takes advan-
tage of recent image translation techniques into different do-
mains (Choi et al. 2018). Our method enables us to translate
the facial appearance in a source image into several domains
so that face recognition systems can be deceived. While the
translation provides perceptible perturbations on the face, it
avoids damaging the identifiability of the individual of the
source for human observers.

Figure 1 illustrates the flow of our method: (a) the origi-
nal images are translated into (b) adversarial images with re-
spect to several domains to be classified as (c) the target im-
ages. From top to bottom, we translate in three different do-
main labels: blond hair, makeup, and eyeglasses. They show
that changing hair-color and adding face accessories, such
as makeup and eyeglasses, deceive face recognition systems.
Translating a given image into any desired facial appearance
in this way enables us to evaluate the risk of diverse unre-
stricted adversarial examples.

In our experiments, we found that our method achieved
about 90% attack success rate on average against publically
available face recognition models in VGGFace and its latest
version VGGFace2. Our method can also generate realistic
adversarial images with the desired facial appearance and
maintain the identifiability of the individual even with large
perturbations. We applied our method to a black-box setting
and evaluated black-box attacks based on the transferability
phenomenon and dynamic distillation strategy (Szegedy et
al. 2014; Xiao et al. 2018).

Our contributions are listed as follows.

• We propose a flexible and efficient method for generating
unrestricted adversarial examples against face recognition
systems.

• We confirm that the generated adversarial examples are
perceptually realistic enough to maintain the identifiabil-
ity of the individual to avoid confusing human observers.

• We experimentally demonstrated that our method can de-
ceive face recognition systems with high attack success
rates under white- and black-box settings.

• We confirm that generated adversarial examples bypass a
state-of-the-art certified defense.

This paper is organized as follows. In Section 2, we re-
view related studies on image translation methods based on
generative adversarial networks (GANs) and adversarial ex-
amples in face recognition systems. In Section 3, we provide
details of our proposed method. In Section 4, we report the
settings and results of our experiments. We conclude this pa-
per in Section 5.

Related Studies

In this section, we review several related studies on unre-
stricted adversarial examples, GANs, and adversarial face
accessories.

Unrestricted Adversarial Examples

Song et al. proposed a method for generating unrestricted
adversarial examples from scratch instead of adding small
perturbations on a source image and demonstrated that their
generated examples successfully bypassed several certified
defenses that are based on small perturbations (Song et al.
2018). They adopted two classifiers: a target classifier that
they wish to deceive and an auxiliary classifier that provides
correct predictions. These classifiers encourage the exam-
ples generated from scratch to deceive the target classifier
without changing any semantics. They confirmed that their
method successfully created unrestricted adversarial exam-
ples without confusing human observers by using Amazon
Mechanical Turk (AMTurk). While their work is notable,
more effort is required to deceive face recognition systems.

Generative Adversarial Networks (GANs)

GANs have achieved significant results especially in image
generation tasks (Goodfellow et al. 2014; Karras et al. 2018;
Karras, Laine, and Aila 2018). They consist of two compo-
nents: a generator and discriminator. The generator is trained
to provide fake images that are indistinguishable from real
ones by the discriminator, while the discriminator is trained
to distinguish fake images from real images. This competi-
tive setting is represented by an adversarial loss.

Xiao et al. proposed a method for exploiting GANs to
generate realistic adversarial images (Xiao et al. 2018). With
their method, the generator is trained to provide adversarial
images that are indistinguishable from real ones by the dis-
criminator. They demonstrated that their generated adver-
sarial examples were perceptually realistic through human
evaluation. The generator also efficiently provides adversar-
ial examples once it is trained. This could be beneficial to
potentially improve the robustness of target models.

Choi et al. introduced a framework called StarGAN that
enables us to translate an input image into multiple domains
using GANs (Choi et al. 2018). In addition to conventional
GANs, they introduced two loss functions: auxiliary classi-
fication loss and reconstruction loss. The first one is to guar-
antee that the output image can be classified into the cor-
responding domain label (Odena, Olah, and Shlens 2017).
The second one is to preserve the content of the input im-
age in the translated image as cycle consistency loss (Zhu



et al. 2017) since StarGAN formulation consists of only a
single generator. They demonstrated that StarGAN is useful
in translating face images into any desired domain or facial
expression in a flexible manner.

Deceiving Face Recognition Systems

Some studies modified the facial appearances of source im-
ages by adding adversarial face accessories and deceived
face recognition systems for the purpose of impersonation
or privacy preservation (Sharif et al. 2016; 2017; Feng and
Prabhakaran 2013). For instance, Sharif et al. created adver-
sarial eyeglasses by iteratively updating their color. These
eyeglasses allow adversaries to impersonate another person
with high success rates in several state-of-the-art face recog-
nition systems. While these studies demonstrated the signif-
icant risk of adversarial examples, they have limited scala-
bility to understand the mechanism of such vulnerability.

We take advantage of recent studies on image translation
with GANs to translate the facial appearance of source im-
ages in an adversarial manner. This translation introduces
large perturbations on the source images; therefore, trans-
lated images are unrestricted adversarial examples against
face recognition systems.

Our Method

We first provide problem definitions and notations for our
method then introduce our formulation to translate hair
color, makeup, and eyeglasses of a peoples facial images so
that the target face recognition models can be deceived from
the impersonation of others.

Problem Definition

Given an instance (xi, yi, ci), which is composed of a face
image xi ∈ X sampled according to some unknown distri-
bution, class label yi ∈ Y corresponding to the person of
the image, and domain label ci representing the existence of
each binary domain. Here, ci is a binary vector whose j-th
component is 1 when the corresponding image exhibits the
j-th binary domain. The target face recognition models learn
a classifier φ : X → Y that assigns class labels into each
face image. Our objective is to generate adversarial example
x̂i classified as φ(x̂i) = t(t 6= yi), where t is our target class
label. In addition, x̂i should have the desired domain label.

Formulation

Our method is mainly based on a framework of recent GANs
and consists of four components: a generator G, discrimina-
tor Ds, auxiliary classifier Dc, and target model φ. The G
provides images indistinguishable for the D by optimizing
an adversarial loss Lwgan. The generated images are encour-
aged to have any desired domain label by minimizing a clas-

sification loss Lr
cla, L

f
cla. The target loss Ltar is minimized

to deceive the target models (i.e. face recognition systems)
through impersonation.

Adopted from StarGAN (Choi et al. 2018), we train a sin-
gle G to translate input face images into output images with
any desired domain label. The G takes a face image x and a

desired domain label cout as an input and generates an out-
put image x̂ whose domain label is cout, G : x, cout → x̂.
The Ds takes x̂ and provides a probability distribution over
sources, Ds(x̂). The goal with these components is to opti-
mize the adversarial loss defined as

Lgan = Ex[logDs(x)]+Ex[log(1−Ds(G(x, cout)))], (1)

where the G attempts to minimize the loss while the Ds at-
tempts to maximize it to generate realistic images.

To take advantage of recent techniques for stabilizing
GAN training, we adopt the Wasserstein GAN with gradi-
ent penalty (Gulrajani et al. 2017) defined as

Lwgan = Ex[Ds(x)] + Ex[(1−Ds(G(x, cout)))]

−λwganLpen, (2)

where λwgan represents a hyper parameter that controls the
magnitude of the penalty term Lpen. To enforce the Lips-
chitz constant, the penalty term is defined as

Lpen = Ex[(‖∇xq
Ds(xq)‖2 − 1)2], (3)

where xq is sampled uniformly along straight lines between
real and generated images. We set λwgan to 10.

To encourage the generated image to have the desired
domain label cout, we adopt the auxiliary classification
loss (Odena, Olah, and Shlens 2017). Specifically, we op-
timize the Dc to classify the real images as corresponding
domain labels by minimizing the loss, which is defined as

Lr
cla = Ex,cin [− logDc(cin|x)], (4)

where Dc(cin|x) represents a probability distribution over
the domain labels and cin corresponds to the domain label
of an input. We then optimize the G to classify the generated
images as any target domain label by minimizing the loss,
which is defined as

L
f
cla = Ex,cout

[− logDc(cout|G(x, cout))]. (5)

Adopted from a common practice of image translation
to maintain the identifiability of the individual (Zhu et al.
2017), we add reconstruction loss, which is defined as

Lrec = Ex,cout,cin [‖x−G(G(x, cout), cin)‖1]. (6)

Note we adopt L1 norm to obtain less blurring images.
We add loss to encourage a target model φ to classify the

generated images as target labels t. This loss is defined as

Ltar = Ex[max(max
i 6=t

zi(x)− zt(x), κ)], (7)

where z is the output of φ except the final softmax layer (i.e.
logits) and κ is a hyper parameter set to negative values in
our experiments.

Finally, our full loss function is defined as

LG = Lwgan + λαL
f
cla + λβLrec + λγLtar, (8)

LD = −Lwgan + λαL
r
cla, (9)

where we obtain our G, Ds, and Dc by minimizing LG and
LD, respectively. Note λα, λβ , and λγ are hyper parameters
that control the relative importance of each loss function.



Table 1: Accuracy of target face recognition models on legitimate datasets, evaluated using images held aside for testing. Our
target face recognition models achieved high accuracy in all cases. VGG(A) and ResNet(A): VGG16 and ResNet50 for case A.
VGG(B) and ResNet(B): VGG16 and ResNet50 for case B. StarGAN: image translation without adversarial effect (λγ = 0).

VGG(A) ResNet(A) VGG(B) ResNet(B)

legitimate 0.97 1.00 0.95 0.96
StarGAN (Choi et al. 2018) 0.85 0.93 0.73 0.75

Table 2: Average, maximum, and minimum attack success rates. Our generated adversarial examples achieved about 90% attack
success rate on average against two models with different domain labels.

hair color (black/blond) makeup eyeglasses

VGG ResNet VGG ResNet VGG ResNet

A B A B A B A B A B A B

Ave. 0.85 0.98 0.95 0.96 0.83 0.98 0.94 0.96 0.83 0.96 0.93 0.86
Max. 0.95 0.99 1.00 0.98 0.90 0.99 1.00 0.98 0.94 0.98 1.00 0.97
Min. 0.70 0.97 0.75 0.92 0.65 0.96 0.66 0.94 0.74 0.94 0.78 0.50

Experiments Results

We first demonstrated that our method achieves more than a
90% attack success rate against two target models in a white-
box setting with high quality images. We then evaluated
black-box attacks based on the transferability phenomenon
of adversarial examples (Szegedy et al. 2014; Goodfellow,
Shlens, and Szegedy 2015; Papernot et al. 2016) and the
dynamic distillation strategy (Xiao et al. 2018). Finally, we
show that adversarial examples obtained with our method
satisfy two conditions: they are (1) realistic enough to main-
tain the identifiability of the individual and (2) have large
perturbations to bypass certified defenses.

Dataset

We used the CelebA dataset, which has 202,599 face images
with 40 binary attributes (Liu et al. 2015). To train the target
face recognition models, we randomly selected 10 persons
as case A and 100 persons as case B. We only used 20 im-
ages per person for the training dataset and the rest of the
images were held aside for the test dataset.

Target Face Recognition Models

Our target face recognition models were VGGFace (Parkhi,
Vedaldi, and Zisserman 2015) and VGGFace2 (Cao et
al. 2018). We downloaded publically available pre-trained
VGG16 1 for VGGFace and ResNet50 2 for VGGFace2.
These pre-trained models exhibit state-of-the-art results for
face recognition tasks. They take a 224x224 face image as
an input and provide a low-dimensional face descriptor in
which two images of the same person are designed to be
closer to each other.

On top of the pre-trained face descriptor, we constructed
a fully connected layer to define our own target face recog-
nition models with the CelebA dataset. We fine-tuned the
parameters from the fully connected layer using categorical

1https://github.com/yzhang559/vgg-face
2https://github.com/rcmalli/keras-vggface

cross entropy loss with the training dataset. Our fine-tuned
models achieved more than 95% accuracy on the test dataset,
as shown in Table 1. This table also shows the test accuracy
on translated images without any adversarial effect: in which
λγ = 0 in Equation (8), indicating that the models are robust
against simply changing domain labels in StarGAN.

Implementation Details

We adopted a similar architecture from image translation
studies (Zhu et al. 2017; Choi et al. 2018). In particu-
lar, we constructed two down-sampling blocks, six resid-
ual blocks, and two up-sampling blocks with rectified lin-
ear unit (ReLU) layers for the G, and five down-sampling
blocks with leaky ReLUs and fully connected blocks for the
D. We applied PatchGAN (Isola et al. 2017) to construct the
D following previous studies.

We trained both models using Adam with β1 = 0.5 and
β2 = 0.999. The learning rate linearly decreased (Choi et
al. 2018) and batch size was set to 32 in all experiments.
We used λα = 1, λβ = 10 for LG and LD and κ = −0.3
for Ltar. For cases A and B, we set λγ to 0.2 and 0.5 and
number of epochs to 300, 000 and 500, 000, respectively.

Attacks in White-Box Setting

We first evaluated our method under a white-box setting in
which the adversary has access to the model architecture and
its weights. Since we chose all individuals as targets of im-
personation, we evaluated ten different Gs and Ds for case
A. For case B, we randomly chose 5 of the 100 individu-
als as targets of impersonation. Our evaluation of the attack
success rate involved using the test dataset held aside from
training of our models for fair evaluation.

Theoretically, we can apply 40 types of domain labels
available in the CelebA dataset. However, we only ap-
plied three domain labels: hair color (black/blond), heavy
makeup, and eyeglasses since our goal was to efficiently
generate images in practical scenarios for attacking face



recognition systems (Sharif et al. 2016; 2017; Feng and
Prabhakaran 2013).

We report the average, maximum, and minimum attack
success rates among different models in both cases. Table 2
shows that our method achieved high attack success rates
in both models and domain labels. From the performance
results in Table 2, we can see that about 90% of test images
could be successful in deceiving our target face recognition
models by changing their facial appearance.

Figure 3 illustrates successful adversarial examples. The
left columns show the original images and middle ones
show the adversarial examples with several domain labels:
blond/black hair, makeup, and eyeglass from top to bottom.
The target images that we tried to impersonate are presented
in the right columns. These images demonstrate that our
method accurately translates source images into multiple do-
mains, enabling the target face recognition models to be de-
ceived. Moreover, the introduced perturbations are percep-
tible to human observers while avoiding the damages in the
identifiability of the individual of the source images.

Attacks in Black-Box Setting

Since most face recognition systems do not allow anyone
to acquire knowledge about their network architectures and
weights, it is important to analyze vulnerabilities in black-
box setting. We explored the attack strategies based on the
transferability phenomenon in which adversarial examples
generated in a model will also lead to successful attacks
against other models (Szegedy et al. 2014; Goodfellow,
Shlens, and Szegedy 2015; Papernot et al. 2016). We gen-
erated adversarial images with one target face recognition
model and evaluated the attack success rates against another
model.

Table 3 lists the results of transferability-based attacks be-
tween the two target face recognition models: VGG16 and
ResNet50. We found that about 30% of attacks transferred
from VGG16 to ResNet50, and vice versa. These results in-
dicate that publically available face recognition systems are
vulnerable to simple transferability-based attacks even with-
out any knowledge about the models.

We also evaluated our method based on the dynamic dis-
tillation strategy in a black-box setting (Xiao et al. 2018).
This enables us to obtain a distilled model that behaves sim-
ilar to a black-box model. As described in previous studies,
we repeated the following two steps in each iteration.

First step. Update the distilled model φ̂ with a fixed G
and D by minimizing the following objectives:

Ex[H(φ̂(x), b(x))] + Ex[H(φ̂(G(x, cout)), b(G(x, cout))]
(10)

where H denotes the cross-entropy loss and φ̂(x) and b(x)
denote the output of the distilled model and black-box
model, respectively. This step encourages the distilled model
to behave similar to the target black-box model on generated
adversarial examples.

Second step. Update our G and D with φ̂ using Equa-
tions (8) and (9). In this step, we can uses our method on the
distilled models, as described in a white-box setting.

Table 4 shows that with the dynamic distillation, our
method achieved a more than 80% attack success rate for
VGG16 and about 70% for ResNet50 on average with
200, 000 epochs. These results indicate that the dynamic dis-
tillation strategy is beneficial for our method in a black-box
setting. Note that we only discuss the evaluation of the dy-
namic distillation for case B due to time constraints.

Human Perceptual Study

We evaluated the quality of the images generated with our
method using AMTurk to confirm that the images satisfy
condition (1): they should be perceptually realistic enough
to maintain the identifiability of the individual as an origi-
nal image. We selected 100 pairs of original and adversar-
ial images and asked workers the question, Do the two im-
ages have the same personal identity? Note we assigned each
pair to five different workers for fair comparison. For this
question, 76.6% of workers answered that personal identi-
ties in the original and adversarial images were the same.
This result indicates that our method successfully translates
images while maintaining the identifiability of the individual
to avoid confusing human observers.

A Comparison between Perturbations and
Certified Radius

To meet condition (2): our adversarial examples have large
enough perturbations to bypass defenses based on small per-
turbations, we evaluated a state-of-the-art certified defense
with randomized smoothing (Cohen, Rosenfeld, and Kolter
2019). This defense provides certified regions where the
classifier has constant output around each data point.

Setup. We constructed smoothed target face recognition

model φ̃ that return the most likely class when x is perturbed
as follows:

φ̃ = argmaxy∈YP (φ(x+ ǫ) = y), (11)

where ǫ is Gaussian noise with the standard deviation σ and
φ is a base classifier trained with Gaussian data augmenta-
tion (Lecuyer et al. 2019).

To compute the certified regions, we used Cohen’s
method with n0 = 100, n = 1000, and α = 0.001 (Co-
hen, Rosenfeld, and Kolter 2019). Each certified region is
represented by its radius. The ball centered at each image
with the radius is guaranteed to have constant output inside
the ball.

We used VGG16 and ResNet50 trained with Gaussian
data augmentation as the base classifiers for case A. The
models were set to publically available pre-trained param-
eters as initial parameters and trained using stochastic gradi-
ent descent with 1000 epochs. We set the learning rate and
momentum to 0.0001 and 0.9, respectively.

Result. Figure 2 shows the certified accuracy of our
smoothed target face recognition models with radius thresh-
old T . The certified accuracy represents the proportion of
images classified correctly and whose certified radius is less
than T for all images. In both VGG16 (left) and ResNet50
(right), all certified radii were less than 630. We calculated
the average perturbations of our method in L2. The average



Table 3: Average attack success rates in transferability-based attacks between two target face recognition models. About 30%
of attacks transferred from VGG16 to ResNet50, and vice versa.

Model Domain VGG(A/B) ResNet(A/B)

hair color - 0.26/0.28
VGG(A/B) makeup - 0.22/0.33

eyeglasses - 0.27/0.36

hair color 0.35/0.32 -
ResNet(A/B) makeup 0.29/0.30 -

eyeglasses 0.22/0.38 -

VGG(A) ResNet(A)

Figure 2: Certified accuracy and radius threshold T for VGG(A) (left) and ResNet(A) (right). Horizontal axis represents T and
vertical axis represents certified accuracy: proportion of images classified correctly and whose certified radius is less than T . In
both settings, σ = 125 and 255 respectively, and certified radii were much less than perturbations introduced with our method.

Table 4: Average attack success rates in dynamic-
distillation-based attacks

Domain VGG(B) ResNet(B)

hair color 0.89 0.73
makeup 0.82 0.69
eyeglasses 0.84 0.71

perturbations for VGGFace(A) were 14,739, 461,290,430,
and 3,589,136 for hair color, makeup, and eyeglasses, re-
spectively. The average perturbations for ResNet(A) were
15,342, 461,290,700, and 3,589,382 for hair color, makeup,
and eyeglasses, respectively. Note all pixels have values
ranging from 0 to 255. We confirmed that all the images
generated with our method provide larger perturbations than
the certified radii.

These results indicate that the state-of-the-art certified de-
fense might be insufficient for our method. This does not
mean that the certified defense is broken since the threat
model is different from ours.

Conclusion

We proposed a method for generating unrestricted adversar-
ial examples against face recognition systems. The method
translates the facial appearance of a source image into mul-
tiple domains to deceive target face recognition systems.

Through experiments, we demonstrated that our method
achieved about a 90% attack success rate in a white-box set-
ting with respect to several domains: hair color, makeups,
and eyeglasses. We also evaluated our method in a black-box
setting using transferability of adversarial examples and the
dynamic distillation strategy, resulting in 30 and 80% attack
success rates, respectively. We also demonstrated that per-
turbations introduced by our method were large enough to
bypass a state-of-the-art certified defense, while the transla-
tion prevented the damages in the identifiability of the indi-
vidual of a source image for human observers. We conclude
that our method is promising for improving the robustness
of face recognition systems.
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