TF32(Tensor Float 32)与FP32(单精度浮点数)是两种用于深度学习和高性能计算的浮点格式,其核心区别体现在精度、性能优化和应用场景上。以下是两者的详细对比分析:
一、位宽与结构差异
-
FP32的位宽结构
FP32遵循IEEE 754标准,总位宽为32位:- 1位符号位:表示正负。
- 8位指数位:控制数值的动态范围(范围约±10³⁸)。
- 23位尾数位:决定数值的精度(有效小数位数)。
优势:高精度适合科学计算、复杂模型训练等场景,但计算资源消耗大。
-
TF32的位宽结构
TF32由NVIDIA在Ampere架构(如A100 GPU)中提出,总位宽为19位:- 1位符号位:与FP32相同。
- 8位指数位:与FP32相同,保持相同的动态范围。
- 10位尾数位:与FP16(半精度)相同,精度低于FP32但高于BF16。
优势:通过缩减尾数位,降低数据存储和计算复杂度,提升吞吐量。
参数 | TF32 |
---|