codeforce -39E-What Has Dirichlet Got to Do with That?(博弈+dfs)

本文介绍了一个基于递归深度优先搜索的游戏胜负判定算法。该算法通过遍历所有可能的游戏状态来判断在给定条件下,哪一方玩家能在最优策略下赢得游戏。具体地,游戏涉及放置物品到盒子中,目标是使得放置方式的数量超过某个阈值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You all know the Dirichlet principle, the point of which is that if n boxes have no less than n + 1 items, that leads to the existence of a box in which there are at least two items.

Having heard of that principle, but having not mastered the technique of logical thinking, 8 year olds Stas and Masha invented a game. There are a different boxes and b different items, and each turn a player can either add a new box or a new item. The player, after whose turn the number of ways of putting b items into a boxes becomes no less then a certain given number n, loses. All the boxes and items are considered to be different. Boxes may remain empty.

Who loses if both players play optimally and Stas's turn is first?

Input

The only input line has three integers a, b, n (1 ≤ a ≤ 10000, 1 ≤ b ≤ 30, 2 ≤ n ≤ 109) — the initial number of the boxes, the number of the items and the number which constrains the number of ways, respectively. Guaranteed that the initial number of ways is strictly less than n.

Output

Output "Stas" if Masha wins. Output "Masha" if Stas wins. In case of a draw, output "Missing".

Examples

Input
2 2 10
Output
Masha
Input
5 5 16808
Output
Masha
Input
3 1 4
Output
Stas
Input
1 4 10
Output
Missing

Note

In the second example the initial number of ways is equal to 3125.

  • If Stas increases the number of boxes, he will lose, as Masha may increase the number of boxes once more during her turn. After that any Stas's move will lead to defeat.
  • But if Stas increases the number of items, then any Masha's move will be losing.

 

题意:(a+x)^(b+y)>n,输出败者

dfs遍历每一种情况,递归到底之后回溯。 

 

#include<bits/stdc++.h>  
using namespace std;  
#define ll long long  
bool kp(ll a,ll b,ll n)  
{  
    ll r=1;  
    while(b)  
    {  
        if(b&1)r=r*a;  
        if(r>=n||a>=n)return 0;  
        a=a*a;b=b/2;  
    }  
    return 1;  
}  
int dfs(ll a,ll b,ll n)//dfs(a,b,n)表示当参数为a,b,n时对于先手的状态。  
{  
    bool k1=kp(a+1,b,n),k2=kp(a,b+1,n);  
    if(a==1&&!k1)return 2;//平局  
    if(k2&&!dfs(a,b+1,n))return 1;//把败态转移给对方  
    if(k1&&!dfs(a+1,b,n))return 1;//同上  
    if(k1&&dfs(a+1,b,n)==2)return 2;//无法把败态转移给对方但是可以维持平局  
    if(k2&&dfs(a,b+1,n)==2)return 2;//同上  
    return 0;//无论怎样操作都把胜态留给对手  
}  
int main()  
{  
    ll a,b,n;scanf("%lld%lld%lld",&a,&b,&n);  
    int t=dfs(a,b,n);  
    if(t==1)printf("Masha\n");  
    else if(t==0)printf("Stas\n");  
    else printf("Missing\n");  
    return 0;  
}  

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蔡军帅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值