原创代码思路分享 计算机毕业设计Python+Spark+LSTM中药推荐系统 中药大数据可视化 中药数据分析 中药可视化系统 中药知识图谱

这篇博客探讨了前端技术如Vue.js和Echarts的使用,结合后端的SpringBoot,以及数据库MySQL。大数据计算框架Spark和Hadoop用于处理海量数据,实现了推荐算法(协同过滤)和LSTM情感分析。中药知识图谱展示了在医疗领域的应用,同时利用百度AI进行中药材识别。PythonSpider用于数据采集,短信接口和识别功能增加了交互性。博客亮点包括Spark大屏展示、推荐系统和中药知识的智能处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开发技术

前端:vue.js、echarts

后端:springboot、vue.js

数据库:mysql

大数据计算框架:spark、hadoop

算法(机器学习、人工智能):推荐算法(协同过滤算法,基于用户、基于物品全部实现)、lstm情感分析评论、中药知识图谱

第三方平台:百度AI中药材图片智能识别、阿里云短信接口

数据采集(数据集):python spider

创新点

短信接口、识别、情感分析、Spark大屏、推荐算法、中药知识图谱、python spider(pa虫)

运行截图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

<think>好的,用户正在寻找与大数据招聘、数据分析、预测和推荐系统相关的职位或资料,特别是职位要求和技能方面的信息。首先,我需要从提供的参考文献中提取相关信息,并结合行业常见要求来回答。 根据引用[1],系统涉及大数据技术如Spark和Hive,进行数据存储、处理、分析和预测,使用机器学习算法。引用[2]提到数学模型、算法步骤,以及薪资预测的代码实例,说明需要编程和机器学习技能。引用[3]提到行业趋势分析,可能需要统计学和数据可视化能力。引用[4]展示了数据处理流程,强调数据清洗和工具使用。 接下来要整理职位类型,比如大数据工程师、数据分析师等。然后列出每个职位的要求和技能,包括技术方面如编程语言、大数据框架、机器学习库,以及工具如Hive、Spark。同时,软技能如业务理解和沟通能力也很重要。最后,根据用户需求推荐学习资源,帮助提升相关技能。 需要确保回答结构清晰,分点明确,引用正确,并且语言自然。同时要检查是否符合之前的格式要求,比如数学公式的格式是否正确,独立公式是否单独成段。最后生成相关问题,帮助用户进一步探索。</think>### 大数据招聘与数据分析相关职位要求及技能解析 #### 一、主要职位类型及核心要求 1. **大数据工程师/架构师** - **职责**: 负责搭建数据存储与处理平台(如基于Hive的数据仓库),设计数据清洗与ETL流程,优化Spark计算性能。 - **技能要求**: - 熟悉分布式计算框架(Spark、Hadoop),掌握Hive SQL数据管理[^1][^2] - 熟练使用Python/Scala进行数据处理,熟悉Pandas、NumPy等库 - 理解数据湖、数据仓库架构,具备数据治理经验 - 数学基础要求:掌握线性代数与概率统计,例如协方差矩阵计算:$$ \Sigma = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)(X_i - \mu)^T $$ 2. **数据分析师(招聘领域)** - **职责**: 分析招聘需求趋势(如行业岗位分布、薪资水平),构建可视化看板,支持企业决策[^3] - **技能要求**: - 精通SQL与BI工具(Tableau、Power BI) - 掌握统计分析方法(如假设检验、回归分析),能解读$R^2$值等指标 - 熟悉行业分析框架,例如通过卡方检验验证行业需求变化显著性 3. **预测算法工程师** - **职责**: 开发招聘需求预测模型(如时间序列预测、机器学习模型),优化推荐系统算法 - **技能要求**: - 熟悉机器学习算法(随机森林、LSTM等),掌握TensorFlow/PyTorch框架 - 理解协同过滤、知识图谱推荐系统中的应用,例如用户-岗位相似度计算:$sim(u,i) = \frac{\sum_{j}(r_{uj} - \bar{r}_u)(r_{ij} - \bar{r}_i)}{\sqrt{\sum_{j}(r_{uj} - \bar{r}_u)^2} \sqrt{\sum_{j}(r_{ij} - \bar{r}_i)^2}}$ - 具备A/B测试设计与效果评估能力 4. **数据产品经理(招聘方向)** - **职责**: 定义招聘数据分析产品功能,设计用户画像与推荐策略[^1] - **技能要求**: - 熟悉用户行为分析(如漏斗模型、留存率计算) - 掌握Axure等原型设计工具,能撰写PRD文档 - 理解数据埋点与指标体系建设 #### 二、共性技术要求 1. **编程能力** - Python/Java/Scala至少精通一门,熟悉常用算法(如快速排序时间复杂度分析$O(n \log n)$) ```python # 示例:招聘数据预处理代码片段[^4] import pandas as pd df = pd.read_csv('recruitment_data.csv') df = df.drop_duplicates().fillna(method='ffill') ``` 2. **大数据工具链** - 数据处理:Spark SQL、Flink - 数据存储:Hive、HBase、Redis - 任务调度:Airflow、DolphinScheduler 3. **机器学习专项** - 特征工程:维度约简(如PCA算法:$$ X_{\text{reduced}} = X \cdot W_k $$) - 模型调优:网格搜索、贝叶斯优化 #### 三、进阶能力要求 1. **领域知识** - 熟悉人力资源行业指标(岗位供需比$=\frac{\text{求职者数量}}{\text{岗位数量}}$) - 了解劳动经济学基本原理 2. **软技能** - 能够将业务问题转化为数据问题(如将"员工流失预测"建模为分类问题) - 具备跨部门协作能力,能向非技术人员解释技术方案 #### 四、学习资源推荐 1. **技术体系构建** - 大数据基础:《Hive编程指南》 - 算法进阶:《机器学习实战:基于Scikit-Learn和TensorFlow》 2. **行业实践** - 参考厦门人才网招聘数据分析项目[^4],复现数据清洗到可视化的完整流程
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值