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Abstract
Background  Fetal growth restriction (FGR) is a leading risk factor for stillbirth, yet the diagnosis of FGR confers 
considerable prognostic uncertainty, as most infants with FGR do not experience any morbidity. Our objective was to 
use data from a large, deeply phenotyped observational obstetric cohort to develop a probabilistic graphical model 
(PGM), a type of “explainable artificial intelligence (AI)”, as a potential framework to better understand how interrelated 
variables contribute to perinatal morbidity risk in FGR.

Methods  Using data from 9,558 pregnancies delivered at ≥ 20 weeks with available outcome data, we derived 
and validated a PGM using randomly selected sub-cohorts of 80% (n = 7645) and 20% (n = 1,912), respectively, to 
discriminate cases of FGR resulting in composite perinatal morbidity from those that did not. We also sought to 
identify context-specific risk relationships among inter-related variables in FGR. Performance was assessed as area 
under the receiver-operating characteristics curve (AUC).

Results  Feature selection identified the 16 most informative variables, which yielded a PGM with good overall 
performance in the validation cohort (AUC 0.83, 95% CI 0.79–0.87), including among “N of 1” unique scenarios (AUC 
0.81, 0.72–0.90). Using the PGM, we identified FGR scenarios with a risk of perinatal morbidity no different from that 
of the cohort background (e.g. female fetus, estimated fetal weight (EFW) 3-9th percentile, no preexisting diabetes, 
no progesterone use; RR 0.9, 95% CI 0.7–1.1) alongside others that conferred a nearly 10-fold higher risk (female fetus, 
EFW 3-9th percentile, maternal preexisting diabetes, progesterone use; RR 9.8, 7.5–11.6). This led to the recognition 
of a PGM-identified latent interaction of fetal sex with preexisting diabetes, wherein the typical protective effect of 
female fetal sex was reversed in the presence of maternal diabetes.
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Background
Fetal growth restriction (FGR) is commonly defined as 
estimated fetal weight (EFW) < 10th percentile and is 
a leading risk factor for stillbirth [1]. While FGR is an 
important indicator of stillbirth risk, most fetuses diag-
nosed with FGR do not experience any morbidity, such 
that the diagnosis of FGR confers a wide range of pos-
sible perinatal outcomes, from wellness to severe illness 
or death [2–4]. For both patients and clinicians, the high 
degree of uncertainty inherent in a prenatal diagnosis of 
FGR poses difficulties for care planning, underscoring 
the crucial importance of effective risk stratification for 
quality perinatal care. Although multivariable modeling 
has been studied as a potential means to improve predic-
tion of adverse outcomes in FGR, significant progress has 
not been made in accurately identifying risk strata [5, 6]. 

Artificial intelligence (AI)-based technologies hold 
promise to improve estimation of perinatal morbidity risk 
in FGR. However, concerns exist about the transparency 
of AI analyses [7–9]. Reverting to human risk estimation 
does not resolve these concerns, as human cognition is 
also opaque, state-dependent, and prone to bias [10–12]. 

“Explainable AI” describes a subset of AI methodolo-
gies designed to improve trustworthiness by providing 
interpretable, transparent explanations for model deci-
sions and predictions, thus allowing for human intel-
lectual oversight and critical evaluation of outputs [13]. 
Probabilistic graphical models (PGMs) are a type of 
explainable AI that are well-suited to risk stratification 
because of their ability to capture and quantify condi-
tional dependencies between interrelated variables in a 
transparent manner [14, 15]. Our objectives were (1) to 
derive a PGM for quantification of context-specific prob-
abilities of composite perinatal morbidity and mortality 
in FGR and (2) to use the PGM to identify clinical con-
texts, or combinations of variables that are associated 
with increased or reduced morbidity risk in FGR.

Methods
This study uses data from the NICHD-funded Nul-
liparous Pregnancy Outcomes Study: monitoring moth-
ers-to-be (nuMoM2b) observational cohort [16]. The 
nuMoM2b dataset consists of 10,038 nulliparous par-
ticipants with ultrasound-confirmed, viable gestations 
who were recruited between 6 weeks + 0 days and 13 
weeks + 6 days’ gestation. Recruitment took place at eight 
geographically diverse U.S. centers between October 

2010 and September 2013. Participants were eligible 
for inclusion if they had no prior pregnancies reaching 
at least 20 weeks’ gestation. Exclusion criteria included 
age < 13 years, history of ≥ 3 pregnancy losses, the pres-
ence of a likely fatal fetal malformation already evident at 
enrollment screening, known fetal aneuploidy, concep-
tion using a donor oocyte, multifetal reduction, plan to 
terminate pregnancy, or participation in an intervention 
study. Participants were followed longitudinally, under-
going four study visits at the following gestational ages: 
Visit 1, 6w0d to 13w6d; Visit 2, 16w0d to 21w6d; Visit 
3, 22w0d to 29w6d: Visit 4, after delivery. Study visits 
involved detailed interviews, questionnaires, research 
ultrasounds, maternal biometric measurements, and 
biospecimen collection. Ultrasounds were performed 
at all three study visits during pregnancy and included 
experimental as well as standard clinical assessments. 
Ultrasound estimated fetal weight (EFW) was calculated 
using the Hadlock four parameter formula [17], and EFW 
percentiles were calculated using Hadlock’s growth curve 
[18]. Details of medication use, medical history, and fam-
ily medical history were ascertained during interviews.

In addition to clinical parameters, data collection 
included validated instruments that assessed multiple 
psychosocial domains, such as stress, social support, 
shift-work timing, pregnancy intendedness, and expe-
riences of discrimination. After delivery, pre-specified 
obstetric, maternal, and neonatal outcomes were ascer-
tained through maternal interviews and medical record 
abstraction by centrally trained research personnel. 
Methods of the nuMoM2b study and data collection have 
been described in detail [19]. 

All nuMoM2b participants who delivered ≥ 20 weeks’ 
gestation with available birth and neonatal outcomes data 
were included in this analysis. The only exclusion crite-
ria were delivery prior to 20 weeks and missing birth and 
neonatal outcome data. The primary clinical outcome for 
this analysis was a composite of perinatal morbidity and 
mortality that was selected to reflect the consequences of 
fetal or neonatal compromise that sonographically iden-
tified FGR is supposed to identify. Composite morbidity 
was defined by the presence of any of the following fac-
tors: stillbirth, neonatal death, the need for mechanical 
ventilation, respiratory distress syndrome (RDS), necro-
tizing enterocolitis (NEC), confirmed sepsis, grade 3 or 4 
intraventricular hemorrhage (IVH), neonatal seizures, or 
NICU admission greater than seven days. These factors 

Conclusions  PGMs are able to capture and quantify context-specific risk relationships in FGR and identify latent 
variable interactions that are associated with large differences in risk. FGR scenarios that are separated by nearly 
10-fold perinatal morbidity risk would be managed similarly under current FGR clinical guidelines, highlighting the 
need for more precise approaches to risk estimation in FGR.
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were selected from the FGR core outcome set outlined 
in the COSGROVE study [20]. We used a random subset 
of 80% of the 10,038 nuMoM2b participants for model 
derivation. The remaining 20% were used for model 
validation.

Feature selection
The initial set of potentially eligible features 
included > 4000 unique variables. After expert review, 
these were pruned to a set of 907 candidate variables, 
which included variables from multiple domains: clinical 
(e.g., blood pressure, BMI, fetal sex, maternal hospitaliza-
tions during pregnancy, medication use, mode of deliv-
ery); ultrasound (visit 3 EFW percentile, visit 2 uterine 
artery pulsatility index, visit 2 cervical length); psycho-
social (poverty, education level, experiences of discrimi-
nation, Perceived Stress scale, Edinburgh Postnatal 
Depression scale, State-Trait Anxiety Index-Trait scale, 
Multidimensional Scale of Perceived Social Support); and 
multi-substance quantitative urine toxicology performed 
for research purposes [21–25]. Missingness was not used 
to exclude variables, as PGMs inherently handle missing 
data by modeling the “unknown” state for each analyzed 
variable.

When possible, continuous variables were dichoto-
mized using established clinically relevant definitions 
(e.g. blood pressure, cervical length). Continuous vari-
ables for which values may be associated with adverse 
outcomes at both upper and lower extremes (e.g. mater-
nal age, BMI) were collapsed into multiple categories 
using established definitions, which were then one-hot 
encoded such that each category was tested as a separate 
dichotomous variable (present/absent). Some variables, 
such as hypertensive disorders of pregnancy, were tested 
both as dichotomized and as one-hot encoded sub-
categories (gestational hypertension, mild preeclamp-
sia, severe preeclampsia, HELLP syndrome, eclampsia, 
unspecified) and were selected for further testing based 
on the strength of their association. Continuous vari-
ables without established thresholds were assessed for 
association with the outcome using logistic regres-
sion, and empirical thresholds were established using 
receiver operating characteristics (ROC) methodology. 
Ultimately, fetal growth was categorized as EFW < 3rd 
percentile, EFW 3–9th percentile, EFW 10–90th per-
centile, or EFW > 90th percentile by study ultrasound 
done at visit 3 (22-29w6d) and using Hadlock EFW per-
centiles. Gestational age at birth was categorized by 
standard definitions of early preterm birth (PTB, < 34 
weeks) late PTB (34–36 weeks), and term birth (≥ 37 
weeks). Hypertensive disorders of pregnancy (HDP) were 
empirically dichotomized based on association with peri-
natal morbidity, such that the dichotomized “HDP” vari-
able was ultimately defined as either having eclampsia, 

preeclampsia with severe features, or gestational hyper-
tension with onset prior to labor.

We chose to include all possible variables that would 
explain variation in perinatal morbidity risk, including 
those that could not be known until the time or birth, 
because there currently is no gold standard for FGR 
against which to benchmark prediction models. The 
adverse outcomes caused by FGR (stillbirth, perinatal 
morbidity, preterm birth, etc.) often occur via multiple 
other pathologies, and the lack of a diagnostic gold stan-
dard for FGR means it is unclear what proportion of such 
adverse perinatal outcomes are directly attributable to 
FGR. As a result, even an excellent FGR-focused model 
is unlikely to achieve good overall performance if it does 
not account for alternate causes of perinatal morbidity. 
This is likely the reason why studies comparing various 
diagnostic strategies for FGR, including FGR-specific 
multivariable models, have yielded statistically signifi-
cant but clinically insignificant improvements in overall 
morbidity risk stratification performance [26–32], a find-
ing our group has replicated repeatedly [2, 4, 5, 33, 34]. 
Therefore, we included all variables that might account 
for perinatal morbidity risk in order to better capture 
and understand the landscape of factors that drive risk in 
FGR.

Candidate features for a logistic regression (LR) model 
were identified with chi-square analysis and mutual 
information criterion (MIC) analysis. MIC quantifies the 
information shared between possible predictors and the 
target variable, and chi-square assesses independence 
between the possible predictor and target variable. We 
used a Jaccard similarity matrix to reduce redundancy, 
favoring variables with standard clinical definitions, 
when possible, to maximize clinical interpretability. The 
30 variables demonstrating the strongest association with 
the composite primary outcome by chi-square and MIC 
were selected. Practical computational constraints limit 
exact PGMs to less than 20 variables because the num-
ber of possible combinations with additional variables 
expands super-exponentially (faster than any exponential 
function), thus becoming too computationally expensive 
above ∼ 20 variables. To accommodate this practical con-
straint, we then created all possible combinations of 12 
variables from the top 30 and derived a logistic regres-
sion model for each. We chose the set of 12 variables with 
the best-performing LR model based on the receiver-
operating characteristics area under the curve (AUC).

The significant features identified by the best-per-
forming regression model, with four additional clinical 
variables of interest (HDP, term birth, visit 3 EFW < 3rd 
percentile, and visit 3 EFW 3-9th percentile), were 
selected as features for the PGM model. The PGM 
structure was learned with the R package bnlearn [35], 
which provides a Bayesian Information Criterion-based 
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structure search algorithm for the creation of Bayes-
ian networks [36–38]. The search algorithm explores 
the entire applicable space of conditional dependencies 
to discover the optimal network structure for the data. 
Parameter learning for this optimal network was accom-
plished using the Bayesian parameter estimation [39, 40]. 
The PGM graphical structure was also determined, allow-
ing for visualization and greater exploration of risk factor 
dependencies and the impact of multiple comorbidities 
on the outcome of composite morbidity [35, 41]. Vari-
ables within the PGM that are mutually exclusive (e.g. 
categories for gestational age at birth) were blacklisted so 
that, for example, the absence of term birth could not be 
used to predict preterm birth. Our group has previously 
published a more technical and in-depth explanation of 
methods for PGM derivation [42, 43]. Interactions were 
identified whenever a variable’s direction or magnitude 

varied according to the presence of another variable to a 
degree that the 95% confidence intervals did not overlap. 
Finally, the PGM was used to identify the “Markov blan-
ket”, or the set of variables beyond which other variables 
do not provide additional information about the proba-
bility of perinatal morbidity if all variables in the Markov 
blanket are known [44]. 

We used stratified 5-fold cross-validation (CV) within 
the 80% derivation cohort to assess performance for both 
LR and PGM analysis. The dataset was divided into five 
folds while maintaining the distribution of classes. Then, 
four folds of the data were used for training and the last 
fold was used for evaluation. This process was repeated 
five times. The metric used for evaluating the models’ 
performance was the AUC. Final validation consisted of 
applying the PGM to the validation cohort and assessing 
its performance and optimal prediction threshold using 
ROC methodology. The exact PGM was used to estimate 
the absolute risk (AR) and relative risk (RR) of compos-
ite perinatal morbidity across a range of scenarios. The 
distribution of model risk estimation was obtained using 
randomly drawn samples of the data with replacement to 
create 1000 bootstraps. Model estimates were aggregated 
for all bootstraps to determine their distribution and esti-
mate 95% confidence intervals (CI’s).

Our institutional review board designated this analy-
sis as exempt from oversight based on the definition 
of human subjects research. Participants gave written 
informed consent for the IRB approved parent study.

Results
Of 10,038 potentially eligible participants, we excluded 
394 for missing neonatal outcome data and 86 for deliv-
ery prior to 20 weeks’ gestation, leaving 9,558 partici-
pants who were included in the analysis. Composite 
perinatal morbidity occurred in 8.2% (n = 783). Table  1 
summarizes the demographic and clinical characteristics 
of analyzed nuMoM2b participants.

Based on feature selection from the 80% derivation 
cohort (n = 7,645), the final list of variables in the PGM 
included the following (Table 2): maternal variables: pro-
gesterone use, pre-existing diabetes (type 1 or 2), and 
BP > 140/90 at visit 2 (16–21 weeks); obstetric variables: 
gestational age at birth (term, late preterm, early pre-
term), HDP (as defined above), preterm premature rup-
ture of membranes (PPROM), urgent cesarean; and fetal/
neonatal variables: sex, presence of any congenital anom-
aly, 5-minute Apgar < 7, and EFW percentile (< 3rd, 3-9th, 
10-90th, > 90th) at visit 3 (22–29 weeks).

The PGM graphical structure is shown in Fig. 1. PGM 
variables had low missingness, with all variables miss-
ing less than 2% of data points except for visit 3 EFW 
(6.4%) and visit 2 BP > 140/90 (4.9%, Supplemental Table). 
Variables with direct connections to perinatal morbidity 

Table 1  Cohort characteristics
Variable Mean ± SD or %(n)
Maternal age (years) 27.0 ± 5.6
Race
  White
  Hispanic
  Black
  Asian
  Other

60.3 (5763)
16.8 (1604)
13.8 (1321)
4.0 (385)
5.0 (481)

Household income*
  < 100% of Fed poverty rate
  100–200% Fed poverty rate
  > 200% Fed poverty rate

12.8% (1225)
11.7% (1114)
56.8% (5426)

BMI 26.3 ± 6.3
Preexisting diabetes 1.6% (151)
Hypertensive disorders
  Chronic HTN
  Gestational hypertension
  PE without severe features
  PE with severe features
  Superimposed PE
  Eclampsia

2.5% (242)
14.2% (1355)
4.0% (385)
4.1% (393)
0.5% (51)
0.05% (5)

GA at delivery
  Term
  Late preterm
  Early preterm

90.5% (8653)
5.8% (556)
2.8% (265)

Female sex 50.9% (4868)
Congenital malformation 5.9% (561)
Composite perinatal morbidity
  Stillbirth
  Neonatal death
  NICU stay > 7 days
  RDS
  Mechanical ventilation
  Confirmed sepsis
  ROP
  Seizures
  NEC
  Grade 3–4 IVH

8.2% (783)
0.6% (54)
0.3% (24)
4.6% (444)
3.2% (303)
2.7% (255)
0.4% (36)
0.4% (36)
0.2% (19)
0.1% (12)
0.1% (9)

*Out of n = 7765 with household income available
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included early preterm birth, late preterm birth, term 
birth, urgent cesarean delivery, congenital anomaly, and 
5-minute Apgar < 7. Of note, only term birth conferred 
a decreased risk of the outcome, while all other directly 
connected variables conferred an increased risk of com-
posite perinatal morbidity (Fig. 1A). The PGM variables 
in the Markov blanket for perinatal morbidity, or the set 
of variables beyond which other variables are not infor-
mative if all variables in the Markov blanket are known, 
are shown in Fig. 1B. The PGM-estimated risk relation-
ships for each variable with composite perinatal morbid-
ity are shown in Fig. 2 and were similar when assessed in 
the setting of FGR (Supplementary Fig. 1).

Model validation and applications
When applied to the validation cohort (n = 1,912), the 
PGM had good performance to identify those at risk for 
composite perinatal morbidity (AUC 0.83, 95% CI 0.79–
0.87), which was similar to the logistic regression model 
(AUC 0.82, 0.68–0.92, p = 0.8  vs the PGM, Fig.  3). Both 
were similar to the performance estimates from 5-fold 
cross-validation within the derivation cohort (PGM AUC 
0.83, 0.82–0.84; LR AUC 0.82, 0.81–0.83).

However, PGMs provide an advantage over LR 
approaches by evaluating the complete joint probability 
distribution of the graphical model, which includes all 
interdependencies among all variables included in the 
model. Leveraging this functionality, the PGM identified 
FGR scenarios in which the risk relationships varied from 
their typical pattern. In most clinical scenarios we ana-
lyzed, the EFW percentile category was associated with a 
common pattern of risk distribution, in which EFW < 3rd 
percentile conferred the highest risk, EFW 3-9th con-
ferred an elevated but lesser risk, and EFW > 90th had 

a risk that was similar to or slightly higher than the ref-
erence group of EFW 10-90th percentile (Fig.  4). How-
ever, in the setting of late PTB, EFW percentile had a 
distinct risk pattern from other scenarios, with all EFW 
percentile categories conferring a similar increase in risk 
(RR ≈ 2.0, Fig. 4) compared to EFW 10-90th percentile.

We then used the PGM to estimate risk in several 
hypothetical scenarios involving EFW 3-9th percen-
tile in combination with multiple other variables, which 
were sequentially added to identify specific combinations 
that drive risk. We used the PGM to compute the RR 
conferred by each scenario in comparison to the cohort 
background risk (8.3%), and to EFW 3-9th percentile 
alone. These results are shown in Fig. 5. Among these, the 
lowest-risk scenario (EFW 3-9th percentile, no diabetes, 
no progesterone use, female sex) had a perinatal mor-
bidity risk estimate that was no different than the cohort 
background (RR 0.9, 0.7–1.1) but was lower than EFW 
3-9th percentile alone (RR 0.7, 0.6–0.8). The highest-risk 
of the hypothetical scenarios (EFW 3-9th percentile, pre-
existing diabetes, fetal anomaly, progesterone use, female 
sex) had a risk estimate that was nearly 10-fold higher 
than the cohort background risk (RR 9.8, 7.5–11.6) and 
8-fold higher than EFW 3-9th percentile alone (RR 7.8, 
5.6–9.9, Fig.  5). The highest risk scenario estimate was 
based on PGM modeling alone as there were no partici-
pants in the derivation cohort meeting these criteria.

Fetal sex, diabetes, and perinatal morbidity
This series of PGM queries identified unexpected inter-
actions between fetal sex, preexisting diabetes, and EFW 
percentile category. When assessed in isolation as well 
as in most other scenarios, female sex was either pro-
tective or had no association with composite morbidity 
(Supplementary Fig.  2). However, in the setting of pre-
existing diabetes, female sex was associated with greater 
risk of perinatal morbidity than male sex (RR 1.3, 1.1–1.5, 
Fig. 6). When applied to FGR, the associations also var-
ied according to EFW percentile category: in the setting 
of EFW 3-9th percentile without preexisting diabetes, 
female sex was associated with lower perinatal morbid-
ity risk compared to male sex (RR 0.8, 0.7–0.9). However, 
in the setting of EFW 3-9th percentile with preexisting 
diabetes, female sex conferred elevated risk compared to 
male sex (RR 1.6, 1.3–2.1). This diabetes-specific associa-
tion of female sex with morbidity varied by EFW percen-
tile category, constituting a three-way interaction. Female 
sex in the setting of preexisting diabetes had a similar 
association with morbidity in the setting of EFW < 3rd 
percentile (RR 1.4, 1.1–1.7), 3-9th percentile (RR 1.6, 1.3–
2.1), and EFW > 90th percentile (RR 1.8, 1.4–2.5), but not 
in EFW 10-90th percentile (RR 1.11, 1.0-2.5). The RRs 
and absolute risk differences associated with female sex 

Table 2  Summary of variables included in the PGM
Variable % (n)
Preexisting diabetes 1.6% (151)
Progesterone use 2.6% (246)
Female sex 50.9% (4868)
Congenital malformation 5.9% (561)
Visit 2 BP > 140/90 0.8% (81)
Visit 3 EFW percentile
  <3rd
  3-9th
  10-90th
  >90th

1.0% (97)
4.3% (408)
81.0% (7745)
7.3% (696)

PPROM 2.6% (246)
Hypertensive disorders of pregnancy 10.0% (952)
GA at delivery
  Term
  Late preterm
  Early preterm

90.5% (8653)
5.8% (556)
2.8% (265)

Urgent cesarean 9.1% (871)
5 min Apgar < 7 4.0% (382)
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Fig. 1 (See legend on next page.)
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compared to male sex in FGR and preexisting diabetes 
are shown in Fig. 6.

PGM probability estimation for variables other than 
perinatal morbidity
Following our identification of the interaction between 
fetal sex, preexisting diabetes, and composite perinatal 
morbidity, we leveraged the ability of PGMs to estimate 
the probability of any variable in the network without 
having to derive a new PGM. In other words, PGMs can 
treat any variable within the model as either a risk factor 
or the target outcome for probability estimation. We used 
this PGM function to estimate the probability of three 
variables initially treated as risk factors for composite 
perinatal morbidity in various clinical scenarios involving 
FGR: early preterm birth, late preterm birth, and urgent 
cesarean (Fig. 7). In the setting of EFW 3-9th percentile 
and preexisting diabetes, the combination of progester-
one use and female sex was associated with significantly 
increased risk for these four outcomes, compared to no 
progesterone use and male sex (adverse outcome RR 
range 2.9–3.23, Fig.  7). When compared to the cohort 
background, EFW 3-9th percentile alone conferred only 
a modest risk for these four outcomes (RR range 1.1–1.5), 
which was somewhat higher in the setting of preexist-
ing diabetes and male sex without progesterone use (RR 
range 0.9–2.9). However, EFW 3-9th percentile in the 
setting of a female fetus, preexisting diabetes, and pro-
gesterone use conferred much higher risks of adverse 
outcomes over the cohort background (RR range 2.5–
9.2). The combination of progesterone with these vari-
ables does not constitute an interaction (Supp. Figure 3) 
but does highlight the ability of the PGM to identify simi-
lar-appearing scenarios that are separated by large differ-
ences in risk.

N of 1 scenarios
Because several of the scenarios outlined in Figs.  4, 5, 
6 and 7 included PGM queries that were represented 
by few or no participants in the derivation cohort, we 
assessed the PGM’s performance in rare scenarios occur-
ring fewer than 10 times each in the validation cohort. 
In the entire nuMoM2b cohort, 3.0% (n = 290) of par-
ticipants experienced a “unique scenario” consisting of 
a set of variables (excluding the composite morbidity 
outcome) not found in any other participant. In the vali-
dation cohort, there were 102 such participants (5.3%). 

Among these N of 1 participants, the PGM performance 
remained good (AUC 0.81, 0.72–0.90), which remained 
the case when it was assessed among scenarios occurring 
fewer than or equal to 5 times (AUC 0.86, 0.81–0.91) or 
10 times (0.84, 0.79–0.88).

Discussion
We developed a PGM with strong performance for com-
posite perinatal morbidity risk estimation and the abil-
ity to estimate context-specific morbidity risk in FGR. 
Starting with a comprehensive assessment of clinical, 
psychosocial, and experimental ultrasound variables, we 
found that the set of variables yielding the best overall 
prediction largely consisted of variables that are routinely 
ascertained in clinical practice. When using the PGM to 
explore the risk landscape in FGR based on ultrasound 
at 22–29 weeks, we found that the PGM captured and 
quantified an unexpected interaction between preexist-
ing diabetes, fetal sex, and composite perinatal morbidity. 
The PGM was able to identify scenarios that appear simi-
lar clinically but have large differences in morbidity risk. 
Finally, it maintained good performance among the 102 
“N of 1” scenarios in the validation cohort.

The variables retained in the PGM for prediction of 
perinatal morbidity and mortality are largely consistent 
with existing literature. The association between pro-
gesterone use and increased risk of perinatal morbid-
ity was not surprising since we interpret progesterone 
use as reflecting increased clinical concern for PTB or 
miscarriage. While we expected that psychosocial fac-
tors would be more informative for risk estimation, the 
variables retained in the PGM are those most closely 
associated with composite perinatal morbidity and may 
be on the causal pathway between social determinants 
of health and adverse outcomes. If a hypothetical PGM 
were to include many more variables, psychosocial fac-
tors may be retained. However, because PGMs have a 
practical limit of < 20 variables owing to computational 
constraints, these variables were not included, reflecting 
a limitation of the PGM approach.

The inclusion of the EFW < 3rd percentile and EFW 
10-90th percentile variables within the Markov blanket 
indicates that they still provide unique information about 
the probability of morbidity, even when all other Mar-
kov blanket variables are known. However, the absence 
of direct connections between the EFW 3-9th and EFW 
>90th percentiles and perinatal morbidity suggests that 

(See figure on previous page.)
Fig. 1  Probabilistic graphical model structure. Panel A. Nodes in the model represent variables, with lines representing conditional dependencies be-
tween variables. Among variables with direct relationships to perinatal morbidity, red lines signify association with higher risk, while the green line 
signifies association with lower risk. The thickness of the colored lines reflects the strength of association with perinatal morbidity. Panel B: Variables 
highlighted in gold show the Markov blanket for perinatal morbidity, or the set of variables that, if all are known, fully explain the risk of perinatal morbid-
ity. Variables outside the Markov blanket (gray) only inform the risk of perinatal morbidity when the statuses of variables in the Markov blanket are not 
fully known. BP: blood pressure; EFW: estimated fetal weight; HDP: hypertensive disorder of pregnancy (any of: gestational hypertension, preeclampsia, 
superimposed preeclampsia eclampsia); PTB: preterm birth; PPROM: preterm premature rupture of membranes
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their relationships to morbidity are mediated by other 
variables within the PGM. Finally, our finding of a diabe-
tes-specific relationship between fetal sex and perinatal 
morbidity was striking and unexpected. This finding is 
likely robust given that it was based on a relatively large 
number of participants (Fig.  6, n = 3598 for female sex 
without diabetes, n = 58 for female sex with diabetes). In 
the PGM, this interaction appeared to vary by EFW per-
centile category, suggesting a 3-way interaction. How-
ever, the number of participants meeting those query 
criteria was low or zero, such that the estimates suggest-
ing a 3-way interaction may be less trustworthy. There 
is an emerging body of literature describing sex-specific 
responses to maternal metabolic perturbations, includ-
ing hyperglycemia and obesity, placental gene expression 
[45], fatty acid metabolism [46], protein metabolism [47], 
and fetal growth [48, 49]. Findings on the association of 
fetal sex with perinatal morbidity in gestational diabetes 
are mixed [48–50], and it is uncertain whether the inter-
action we describe would be expected to generalize to the 
context of gestational diabetes, which is the focus of most 
available studies.

To date, investigations of explainable AI in reproduc-
tive science have been limited. Broader machine learning 
(ML) approaches have been used for stillbirth, FGR, and 

preeclampsia prediction as well as basic science applica-
tions such as multi-omic placental phenotyping, among 
others [51–56]. There have been other efforts to utilize 
explainable ML approaches for prediction of gestational 
diabetes [57], preterm birth [57], and composite perinatal 
morbidity [58], though these efforts consisted of develop-
ing predictive ML models using traditional approaches, 
followed by post-hoc application of a secondary approach 
to identify the most contributory variables and thereby 
explain the model’s prediction. For example, applying 
Shapley values to a model improves its explainability by 
quantifying each feature’s individual contribution to the 
model’s output (‘feature importance”), but does not pro-
vide clarity on the interdependent relationships between 
exposure variables or identify scenarios characterized by 
synergistic or non-linear changes in probability. In con-
trast, PGMs handle this explainability inherently. The 
explainability of PGMs is apparent in that a given vari-
able’s precise and context-specific statistical contribution 
to risk is transparently quantified and reported when risk 
is estimated both with and without the variable of inter-
est. The use of PGMs in reproductive medicine thus far 
has been limited to optimizing assisted reproductive 
technologies [59] and prediction of neonatal pneumonia 
in the setting of maternal diabetes [60]. 

Fig. 2  PGM-estimated composite perinatal morbidity risk conferred by individual PGM variables. The vertical gray line reflects the reference (RR = 1), 
based on the cohort’s background risk of composite perinatal morbidity. BP > 140/90 was ascertained at visit 2 (16–21 weeks). Factors known prior to de-
livery (above the horizontal line) are separated from factors only known at or after delivery (below the line). In the EFW categories, “%” denotes percentile. 
BP: blood pressure; CI: confidence interval; DM: diabetes mellitus; EFW: estimated fetal weight; HDP: hypertensive disorder of pregnancy (any of: ges-
tational hypertension, preeclampsia, superimposed preeclampsia, eclampsia); PGM: probabilistic graphical model; PTB: preterm birth; PPROM: preterm 
premature rupture of membranes; RR, relative risk
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A key advantage of PGMs is their ability to produce 
relatively precise probability estimates for low frequency 
or “N of 1” scenarios. Because PGMs can capture and 
quantify conditional dependencies between interrelated 
variables, the estimated influence of a given variable is 
adjusted based on the presence or absence of other fac-
tors linked to the given variable via such conditional 
dependencies. This allows for reproducible and rela-
tively precise probability estimations in the types of “N 
of 1” scenarios that individually are uncommon but col-
lectively are common in clinical practice. Currently, risk 
stratification in such scenarios depends on human expert 

assessment, which is highly flexible but opaque, prone 
to bias, and influenced by circumstances such as sleep 
deprivation, mood, and other factors [10–12]. In con-
trast, PGMs overcome the opaque and state-dependent 
pitfalls of human risk estimation thanks to their transpar-
ency and reproducibility. PGMs can therefore be used to 
transparently generate probability estimates, including 
for rarely occurring scenarios, while human experts can 
provide both intellectual oversight and patient-centered 
recommendations.

The U.S. clinical guidelines for management of FGR 
include the frequency of monitoring and timing of 

Fig. 3  Receiver operating characteristics curves for the PGM and logistic regression model and for prediction of composite perinatal morbidity in the 
validation cohort. ROC: receiver operating characteristics; PGM: probabilistic graphical model; LR: logistic regression; AUC: area under the curve. AUC 95% 
confidence intervals shown in parentheses
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delivery and are based on metrics of FGR severity alone. 
These guidelines do not take other clinical data into 
account, allowing clinicians to customize their recom-
mendation using clinical judgement [61, 62]. We identi-
fied several clinical scenarios, all involving non-severe 
FGR (EFW 3-9th percentile) that were separated by up to 
a 10-fold difference in perinatal morbidity risk (Fig. 5) for 
which the U.S. guidelines recommend identical manage-
ment. This reality highlights current gaps and opportuni-
ties for personalized risk estimation to reduce prognostic 
uncertainty of FGR and tailor surveillance and delivery 
timing plans accordingly.

Our study’s strengths included the comprehensive 
assessment of variables across domains, including clini-
cal, SDoH, mental health, ultrasound, and quantitative 
urine toxicology in a large and deeply phenotyped preg-
nancy cohort. We used a novel explainable AI approach 
to produce a flexible model with good prediction of 
composite perinatal morbidity and the potential for inte-
gration of genomic and other variables. The cohort is 
geographically diverse in the U.S. and utilized standard-
ized outcomes ascertainment by centrally trained and 
certified research personnel.

Limitations to generalizability include the timing of 
research ultrasounds at 22–29 weeks and the lack of other 
variables informative for risk, such as umbilical artery 
Doppler assessments and maternal biomarkers. Addi-
tionally, nuMoM2b, while diverse, is not fully represen-
tative of the U.S. population. Given that EFW percentile 
estimates used in our study were collected for investiga-
tional purposes only and were not routinely disclosed to 
clinicians or participants [19], we cannot rule out that 
clinical recognition and management of FGR may have 
introduced bias that affects our analysis of the associa-
tions between EFW percentile and perinatal morbidity. 
Progesterone use is an intervention based almost solely 
on clinical concern and thus likely includes bias, mak-
ing its associations with morbidity difficult to interpret. 
We included it because our goal was to derive a PGM 
using the most empirically informative set of factors for 
morbidity risk estimation, but the association should be 
interpreted as hypothesis-generating only and not poten-
tially causal. Also, the fact that the progesterone use vari-
able was outside the Markov blanket (Fig. 1B) means that 
it only informs perinatal morbidity risk estimates when 
other Markov blanket variables, such as gestational age at 

Fig. 4  Relative risk of perinatal morbidity conferred by EFW percentile category across a range of obstetric scenarios. The RR for each high or low EFW 
percentile category was compared against EFW 10th -90th percentile in the setting of the same clinical scenario, labeled as “Ref.” In the clinical scenarios, 
“%” denotes percentile. The vertical gray line reflects RR of 1. N’s report the number of participants in the derivation cohort with the associated clinical 
scenario. Diabetes refers to pre-gestational diabetes. Point estimates are based on the PGM’s maximum likelihood estimates rather than the mean of 
bootstrapped values, which is why they are not in the center of the confidence intervals. CI: confidence interval; EFW: estimated fetal weight; HDP: hy-
pertensive disorder of pregnancy (any of: gestational hypertension: preeclampsia: superimposed preeclampsia: eclampsia); PTB: preterm birth; PPROM: 
preterm premature rupture of membranes; RR: relative risk
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birth, are unknown. This supports our interpretation that 
it reflects clinical concern rather than having any causal 
contribution to morbidity. Finally, our inclusion of vari-
ables known only at or after delivery means this model 

is not useful prenatally. We chose this approach because 
our objective was not to develop a tool for prenatal use to 
alter clinical management, but to determine the utility of 
PGMs to capture and quantify complex risk relationships 

Fig. 6  Female sex confers lower perinatal morbidity risk except in the setting of pre-gestational diabetes. In the absence of pregestational diabetes, 
female sex is protective. In the presence of pregestational diabetes, female sex adds risk. ARD reflects the absolute risk difference (expressed as a percent) 
for perinatal composite morbidity between female and male sex in the given EFW percentile and diabetes scenarios. The vertical gray line reflects the risk 
associated with male sex in the same clinical scenario. Point estimates are based on the PGM’s maximum likelihood estimates rather than the mean of 
bootstrapped values, which is why they are not in the center of the confidence intervals. N values represent the number of participants in the derivation 
cohort who meet the query criteria. Diabetes refers to pre-gestational diabetes. ARD: absolute risk difference; CI: confidence interval; RR: relative risk; EFW: 
estimated fetal weight

 

Fig. 5  Sequential introduction of clinical factors to non-severe FGR to identify variable combinations that drive composite perinatal morbidity risk. RR 
columns are based on a given scenario’s comparison to the cohort’s background or to the risk of EFW 3-9th percentile alone (in red). The vertical gray line 
reflects the cohort’s background risk of composite perinatal morbidity (8.3%). In the clinical scenarios on the left, “%” denotes percentile. Point estimates 
are based on the PGM’s maximum likelihood estimates rather than the mean of bootstrapped values, which is why they are not in the center of the 
confidence intervals. Diabetes refers to pre-gestational diabetes. N values represent the number of participants in the derivation cohort who meet the 
query criteria. AR: absolute risk (expressed as a percent); CI: confidence interval; RR: relative risk; EFW: estimated fetal weight; PTB: preterm birth; PPROM: 
preterm premature rupture of membranes
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and identify context-specific risks in FGR. Eventually, 
this line of inquiry may lead to the development of a tool 
for prenatal use.

Conclusions
We successfully developed an explainable AI model with 
good performance for perinatal morbidity risk estima-
tion and the ability to provide context-specific risk esti-
mates across a range of FGR scenarios, including those 
that occur at a low frequency. While not yet ready for 
clinical application, this represents an important proof of 
concept and demonstration of the potential for PGMs to 
refine risk estimation in obstetrics.
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