
深度学习
文章平均质量分 95
九筠
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
神经网络实验——MLP
由输出结果可见,通过 GridSearchCV 网格查到的最优参数为:隐藏层数为(100,30),最大池化层为 20,激活函数为sgd;通过观察数据结构可知,数据由 10000个样本组成,其中每一个样本是由784(28*28)个像素组成的图像,像素黑白用 0/1 进行表示,对应的label目标变量的每个字符图像的真实标签。②加载数据,数据文件保存在 mnist.gz 安装包中,因此需要对文件进行解压后对文件进行读取,且区分训练集、测试集与验证集。③构建多层感知机神经网络模型,并使用网格查找出最优参数;原创 2025-02-18 21:16:18 · 982 阅读 · 0 评论 -
【深度学习】多层感知机(MLP)
多层感知机(Multilayer Perceptron,简称MLP)是一种前向人工神经网络模型,由多个神经元组成的网络层间以全连接的方式连接。MLP由若干个神经元组成的多个层次组成,其中包括输入层、隐藏层和输出层。输入层接收输入数据,并将数据传递给隐藏层。隐藏层通过激活函数将输入值转换为输出值,并将其传递到输出层。输出层给出最终的预测结果。每个神经元在隐藏层和输出层中都有权重和偏置,可以看作一个非线性的函数,它接收来自上一层神经元的输入,并根据权重和偏置进行一系列的计算,最终产生输出。原创 2024-11-15 19:00:00 · 7619 阅读 · 0 评论 -
【深度学习】感知机模型
感知机是一种二分类的线性分类模型,属于最简单的人工神经网络之一。它基于感知机学习算法,通过调整权重和阈值来将输入的样本进行分类。它的输入是一个实例的特征向量,输出为实例的类别,属于两类之一。感知机的基本思想是通过训练数据集来学习一个判别函数,将实例空间划分为正负两个部分,从而实现分类。感知机的模型可以表示为:其中,w是权重向量,x是输入实例的特征向量,b是偏置值,sign是符号函数,当w·x + b大于零时输出为1,反之输出为-1。原创 2024-11-14 18:40:42 · 1221 阅读 · 0 评论