[LintCode]92.背包问题

本文介绍了一个经典的背包问题解决方法,通过一维动态规划算法找出在给定物品集合中能够装入背包的最大价值。以4个不同大小的物品为例,探讨了如何在不同背包容量下选择最优组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在n个物品中挑选若干物品装入背包,最多能装多满?假设背包的大小为m,每个物品的大小为A[i]

样例

如果有4个物品[2, 3, 5, 7]

如果背包的大小为11,可以选择[2, 3, 5]装入背包,最多可以装满10的空间。

如果背包的大小为12,可以选择[2, 3, 7]装入背包,最多可以装满12的空间。

函数需要返回最多能装满的空间大小。

思路:使用一维数组 dp[i] 记录所有物品在背包大小为 j 的条件下,最多可以装满的空间

状态转移方程为:dp[j] = max(dp[j], dp[j - A[i]] + A[i])

class Solution {
public:
    /**
     * @param m: An integer m denotes the size of a backpack
     * @param A: Given n items with size A[i]
     * @return: The maximum size
     */
    int backPack(int m, vector<int> A) {
        int n = A.size(), i = 0, j = 0;
        vector<int> dp(m + 1, 0);
        for(i=0; i<n; i++) {
            for(j=m; j>=1; j--) {
                if(j >= A[i]) {
                    dp[j] = max(dp[j],dp[j-A[i]] + A[i]);
                }
            }
        }
        return dp[m];
    }
};






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值