【论文笔记】基于条件生成对抗网络(cGAN)的异质图像变化检测模型

本文介绍了一种基于条件生成对抗网络的变化检测模型,用于解决异质SAR图像变化检测问题。该模型包括翻译网络、评估网络及判别器,通过生成和评估SAR图像来检测变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是论文《A Conditional Adversarial Network for Change Detection in Heterogeneous Images》的阅读笔记。

文章针对异质SAR(合成孔径雷达)图像变化检测问题提出了一个基于条件生成对抗网络的模型,该模型包含一个翻译网络(生成器1)、一个评估网络(生成器2)和一个判别器,翻译网络用来将光学图像转换成SAR图像,评估网络用来减少SAR图像和生成的SAR图像之间的像素级的差别,判别器用来判别输入是真图像还是假图像。

一、相关工作

遥感图像分为很多种,包括合成孔径雷达(SAR)图像、极化SAR图像、多孔径图像等。根据图像来源,变化检测可以分为同质变化检测和异质变化检测,同质变化检测的图像是来自相同或相似的传感器的,而异质变化检测的图像是来自不同的传感器的。而在异质变化检测中,又可以分为两种方法:分类后比较和copula理论方法。分类后比较方法首先对图像分别分类,然后再对比分类图得到变化图,这种方法依赖于图像分类的准确率。copula理论方法是将一张图片转化成和另一张图像相同的分布,然后再做处理。

普通GAN的生成器GGG的输入为分布为pz(z)p_z(z)pz(z)的噪音zzz,输出为生成的假的图像G(z)G(z)G(z);而判别器DDD的输入是分布为pdata(x)p_{data}(x)pdata(x)的真图像xxx和生成的假图像,判别器用来判别输入的是真图像还是假图像,当判别不出来的时候说明生成器生成的假图像可以以假乱真了。而条件GAN会有一个额外的输入yyy,并根据yyy生成指定类型的图像。cGAN的目标函数如下:
min⁡Gmax⁡DV(D,G)=Ex∼pdata (x)[log⁡(D(x))]+Ey∼pdata (y),z∼pz(z)[log⁡(1−D(G(y,z)))] \begin{array}{l}\min _{G} \max _{D} V(D, G) \\\qquad \begin{aligned}=& E_{x \sim p_{\text {data }}(x)}[\log (D(x))] \\&+E_{y \sim p_{\text {data }}(y), z \sim p_{z}(z)}[\log (1-D(G(y, z)))]\end{aligned}\end{array} minGmaxDV(D,G)=Expdata (x)[log(D(x))]+Eypdata (y),zpz(z)[log(1D(G(y,z)))]

二、方法

在这里插入图片描述

网络结构如上图所示,首先翻译网络将光学图像转换成SAR图像,然后评估网络减少SAR图像和生成的SAR图像之间的像素级的差别,并根据生成的图像1和图像2得到最终的变化图CM。判别器用来判别输入是真图像还是假图像。

文章提出的模型的损失函数还加入了用来衡量像素之间差异的L1距离损失,其公式如下:
L1(G)=Ex,y∼pdata (x,y),z∼pz(z)[∥x−G(y,z)∥1] L_{1}(G)=E_{x, y \sim p_{\text {data }}(x, y), z \sim p_{z}(z)}\left[\|x-G(y, z)\|_{1}\right] L1(G)=Ex,ypdata (x,y),zpz(z)[xG(y,z)1]
因此,总的损失函数如下:
min⁡Gmax⁡DTN⁡(D,G)=V(D,G)+λL1(G) \min _{G} \max _{D} \operatorname{TN}(D, G)=V(D, G)+\lambda L_{1}(G) GminDmaxTN(D,G)=V(D,G)+λL1(G)
SAR图像中的乘性散斑噪声被认为是一个Gamma分布zSAR∼Γ(L,L−1)z_{SAR}\sim \Gamma\left(L, L^{-1}\right)zSARΓ(L,L1),其中LLL是SAR图像处理中的looks数。而光学图像的损伤被认为是一个高斯分布zopt∼N(0,σ2)z_{\mathrm{opt}} \sim \mathcal{N}\left(0, \sigma^{2}\right)zoptN(0,σ2)

评估网络的目标函数如下:
L1(AN)=Pu(x,y)∥f(x,zSAR)−G(y,zopt)∥1 L_{1}(\mathrm{AN})=P_{u}(x, y)\left\|f\left(x, z_{\mathrm{SAR}}\right)-G\left(y, z_{\mathrm{opt}}\right)\right\|_{1} L1(AN)=Pu(x,y)f(x,zSAR)G(y,zopt)1
其中x,yx,yx,y分别表示SAR图像和光学图像,fff表示评估函数,Pu(x,y)P_u(x,y)Pu(x,y)表示{x,y}\{x,y\}{x,y}是否发生改变,是否发送改变可以根据自动阈值方法——Kittler and Illingworth(GKI)阈值算法来决定,其公式如下:
{Pu(x,y)=12(1−sgn⁡(∥f(x,zSAR)−G(y,zopt)∥22−τ))τ=GKI⁡(X,Y) \left\{\begin{array}{l}P_{u}(x, y)=\frac{1}{2}\left(1-\operatorname{sgn}\left(\left\|f\left(x, z_{\mathrm{SAR}}\right)-G\left(y, z_{\mathrm{opt}}\right)\right\|_{2}^{2}-\tau\right)\right) \\\tau=\operatorname{GKI}(\mathcal{X}, \mathcal{Y})\end{array}\right. {Pu(x,y)=21(1sgn(f(x,zSAR)G(y,zopt)22τ))τ=GKI(X,Y)
其中X,Y\mathcal{X}, \mathcal{Y}X,Yx,yx,yx,y的集合,该公式表示如果{f(x,zSAR),G(y,zopt)}\{f\left(x, z_{\mathrm{SAR}}\right),G\left(y, z_{\mathrm{opt}}\right)\}{f(x,zSAR),G(y,zopt)}之间的差异小于τ\tauτ,则{x,y}\{x,y\}{x,y}将被认为是未变化,反之认为发生了变化。

翻译网络的目标函数如下:
min⁡Gmax⁡DTN∗(D,G)=Pu(x,y)TN(D,G) \min _{G} \max _{D} \mathrm{TN}^{*}(D, G)=P_{u}(x, y) \mathrm{TN}(D, G) GminDmaxTN(D,G)=Pu(x,y)TN(D,G)
差图DI可以通过计算两张生成的图像之间的欧氏距离得到,对DI使用模糊c-均值算法得到变化图。

整个算法的流程如下图所示:

在这里插入图片描述

三、实验

作为对比的模型有PCC、copulas方法、SCCN,评价指标有FPs、FNs、全体准确率OA、Kappa系数KC、AUC。使用的数据集有Shuguang数据集和Sanshui数据集。

在这里插入图片描述

上图是Shuguang数据集中的2008年的SAR图像、2012年的光学图像和ground truth。

在Shuguang数据集的实验中,为了验证不同的图像分辨率的影响,使用滑动窗口的方法对SAR和光学图像的分辨率进行降低并形成了两个子数据集。

在这里插入图片描述

上图中a ~ c分别是PCC、copulas方法、SCCN得到的DI,d ~ f分别是a ~ c对应的CM。

在这里插入图片描述

上图是不同方法在Shuguang数据集上的结果。

在这里插入图片描述

上图是不同方法在Sanshui数据集上的结果。

在这里插入图片描述

上图是文章提出的方法在两个数据集上的不同评价指标情况。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值