本章我们进入了数据治理9个模块的最后一个模块【数据文化】。
文化本身就碰不到、摸不着,但是却是实实在在存在的。
如何建立数据文化?
似乎如果能够将前面说的数据治理的5个维度,数据治理的其他8个模块都能够建立好,应用好,文化反而是一个自然而然的结果了。
我们只能通过过程来塑造数据文化,而无法直接追求数据文化。
数据文化是组织内对数据的价值认知、使用习惯及管理方式的综合体现。无法被量化,更多的是沉浸在一个组织内时,很感性的体会。
我们可以通过下面几个问题,来看看组织的数据文化是否已经建立起来。
1、数据文化的五个问题
问题1:公司高管是否优先引用数据而非直觉做决策? 目的:验证数据是否被高层视为战略资产。
典型表现:
管理层讨论目标时明确要求数据支撑,起到示范作用(如“用户留存率需提升至X%,依据来自A/B测试报告”);
高管主动参与数据治理会议,而非仅关注财务指标。
警示信号:决策依赖“行业惯例”或“个人经验”,数据仅用于事后解释。
问题2:数据消费者能否在1小时内获取所需数据并用于日常工作? 目的:评估数据可访问性与工具支持度。
典型表现:
存在统一数据平台,权限开放合理;
非技术人员可通过自助工具(如拖拽式)快速查询数据。
警示信号:员工需跨部门申请数据,流程耗时超1天,或依赖IT手动导出Excel。
问题3:跨部门会议中,争议问题是否以数据而非职位高低达成共识? 目的:检验数据是否成为组织沟通的“通用语言”,达成数据驱动的共识。
典型表现:
市场与产品团队基于用户行为数据争论优先级;
会议材料包含清晰的数据对比(如“方案A转化率比方案B高15%”)。
警示信号:讨论焦点为“某总认为应该…”,数据图表仅作为装饰性附录。
问题4:员工是否信任公司数据的准确性并愿意为此承担责任? 目的:判断数据质量与文化认同。
典型表现:
数据问题可定位到具体责任人;
<