卷积神经网络输出结果都一样

当卷积神经网络的输出始终相同且准确率不变化时,可能是由于过大的L2正则化权重导致参数接近0。调整L2正则化权重或将其注释掉可以解决此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

调试卷积神经网络的时候,发现准确率一直不变,且每个样本的输出都是一样的,然后依次排查发现:
1,将每个样本的输出打印出来发现,每个样本的输出是相同的;
2,然后从输出逆流依次打印每步的输出,发现中间的卷积之后的结果都是负数,然后经过relu之后,都成了0.
3,然后百思不得其解。
最后将L2正则化注释掉或者将L2正则化的权重调小一点就可以了。
因为过大的正则化权重会使得卷积神经网络中的参数都接近0,从而导致最终的结果基本上都是一样的

最后强调解决办法:将L2正则化注释掉或者将L2正则化的权重调小一点就可以了

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值