CDQ分治

CDQ分治

CDQ分治,又称基于时间的分治算法,常用于解决多维偏序问题。该算法可以通过增加log(n)的代价将偏序问题降掉一维,从而转化成更易解决的多维偏序问题。事实上,CDQ分治能解决的题目很多都可以用支持动态查询的高级数据结构完成,但是CDQ分治的思维难度和代码实现难度较于高级数据结构减小了很多,并且空间更小。
有些题目要求诸如:只有修改操作的属性值小于(或大于)某一询问操作的答案,该修改操作才能对询问产生影响。这里,我们视操作顺序为第一维,属性值为第二维,修改/询问的值为第三维,发现这就是三维偏序问题。


一、大致思路

我们拿逆序对这个二维偏序问题开始说。对于逆序对,我们可以分治排序,也可以先排序再用一个树状数组求出来。那么如果我们能用一种手段把三维偏序问题降维,就可以很容易地解决了。那么怎么降维?答案是,用分治!
于是我们的重点就转化称如何用分治降维。
值得一提的是,CDQ分治大致有两个基本形式:多维偏序降维动态修改转换成静态修改统一查询。只要问题能转化成这两个形式,那就可以考虑用CDQ分治了。


二、算法简介

CDQ分治适用于满足这两个条件的数据结构题:

  • 修改之间对于答案的贡献是独立的,修改操作之间互不影响修改效果
  • 题目可离线

我们将整个操作序列[l,r]等分成前一半操作序列(后文简称前序列)[l,mid]和后一半操作序列(简称后序列)[mid+1,r],可以发现这样两个性质:

  • 后序列中修改操作不会对前序列中操作序列产生影响

  • 后序列中每一个询问x仅受两部分影响:[l,mid]中的修改操作,[mid+1,r]中在x之前的修改。

而事实上,第二条性质中的第2个问题在分治过程中必定会转化成第1个问题,因为总会有一个分界线使得x与前面所有修改操作分列前后序列。那么我们只需要解决第1个问题就行了。
而对于第一条性质,我们可以发现,前序列中所有的修改操作都在后序列的询问操作之前。也就是说,对于后序列,前序列中的修改操作可以任意调换顺序。这样一来,我们可以将前一部分的修改全部做完再回答后一部分的询问

关于第二条性质,实际上并不是所有问题都满足该性质。但是,由于思维方式的一致,我们对于”后序列对前序列也有影响“问题的求解并不赘述,基本流程和实现没有太大差别,注意灵活变通。


三、详解分治过程

首先,我们按照开头说的那样,将问题转化成三维偏序问题。我们将问题按照第一维排序,这样重点转向二、三维。我们以属性值为第二维进行归并排序,这样前序列和后序列内部第二维都是有序的。随后用类似归并排序的方式将两个序列合并成一个新的第二维有序的序列,在这个过程中回答 后序列中的询问。
于是,整个问题就转化成了离线的、与原问题同样规模的“一开始给出所有修改”然后“回答若干询问”的更简单的问题。设 解决无动态修改操作的原问题 的复杂度为f(n),则总复杂度为O(f(n)log(n))


四、例题

P3810 【模板】三维偏序(陌上花开)
来源
模板题
自认为我的码风已经变得温和很多了

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
#define lowbit(x) (-(x)&(x))
il int read(){
	int s=0,w=1;char c=getchar();
	while(c<'0'||c>'9'){ if(c=='-') w=-1;c=getchar();}
	while(c>='0'&&c<='9'){ s=(s<<1)+(s<<3)+c-'0';c=getchar();}
	return s*w;
}
const int N=2e5+10;
int n,K,f[N],ans[N],cnt;
struct node{ int x,y,z,id,sz;}a[N],q[N];
il bool operator==(const node &c,const node &d){
	return c.x==d.x && c.y==d.y && c.z==d.z;
}
namespace FW{//Fenwick-Tree
	int tr[N];
	il void upd(int x,int val){
		while(x<=K) tr[x]+=val,x+=lowbit(x);
	}
	il int getsum(int x){
		int res=0;
		while(x>0) res+=tr[x],x-=lowbit(x);
		return res;
	}
} using namespace FW;
il bool cmp(node c,node d){
	if(c.x!=d.x) return c.x<d.x;
	if(c.y!=d.y) return c.y<d.y;
	return c.z<d.z;
}
il void CDQ(int l,int r){
	if(l==r) return;
	int mid=l+r>>1;
	CDQ(l,mid),CDQ(mid+1,r);
	int p1=l,p2=mid+1,p=l;
	while(p1<=mid && p2<=r){
		if(a[p1].y<=a[p2].y) q[p]=a[p1],upd(a[p1].z,a[p1].sz),++p1,++p;
		else q[p]=a[p2],f[a[p2].id]+=getsum(a[p2].z),++p2,++p;
	}
	while(p1<=mid) q[p]=a[p1],upd(a[p1].z,a[p1].sz),++p1,++p;
	while(p2<=r) q[p]=a[p2],f[a[p2].id]+=getsum(a[p2].z),++p2,++p;
	for(re int i=l;i<=mid;i++) upd(a[i].z,-a[i].sz),a[i]=q[i];
	for(re int i=mid+1;i<=r;i++) a[i]=q[i];
}
int main()
{
	n=read(),K=read();
	for(re int i=1;i<=n;i++) q[i]=(node){read(),read(),read(),i,0};
	sort(q+1,q+1+n,cmp);
	for(re int i=1;i<=n;i++){
		if(q[i]==q[i-1]) a[cnt].sz++;
		else a[++cnt]=q[i],a[cnt].id=cnt,a[cnt].sz=1;
	}
	CDQ(1,cnt);
	for(re int i=1;i<=cnt;i++) f[a[i].id]+=a[i].sz-1,ans[f[a[i].id]]+=a[i].sz;
	for(re int i=0;i<n;i++) printf("%d\n",ans[i]);
	return 0;
}

end

<think>首先,用户的问题是关于CDQ分治算法的基本原理及其应用场景。我需要根据系统级指令来构建我的回答。 系统级指令关键点: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识。 - 回答结构清晰,帮助用户逐步解决问题,保证真实可靠。 参考站内引用: - 引用[1]:关于分治思想的描述,包括分块、递归等。 - 引用[2]:关于书籍的引用,不相关。 - 引用[3]:关于下载资源的链接,不相关。 用户真正的需求是理解CDQ分治的概念和原理,所以我需要专注于CDQ分治CDQ分治的基本原理: - CDQ分治是由陈丹琦(Chen Danqi)提出的一种算法,用于处理偏序问题,如三维偏序问题。 - 它是分治思想的一种应用,特别适合解决离线查询问题。 - 核心思想:将问题分成子问题,递归解决,然后合并结果,处理跨越子问题的部分。 应用场景: - 三维偏序问题:例如,给定点集,统计每个点满足某些条件的点数。 - 动态规划优化:如斜率优化等。 - 其他离线查询问题。 我的回答结构: 1. **介绍CDQ分治**:简要说明其背景和目的。 2. **基本原理**:解释算法步骤,使用数学表达式描述。 3. **应用场景**:列出常见应用。 4. **生成相关问题**:在最后添加相关问题。 5. **添加引用**:在引用段落末尾自然添加引用标识。 数学表达式: - 行内数学:如变量、点坐标等,使用$...$。 - 独立公式:如方程,使用$$...$$。 例如: - 行内:点$P_i = (a_i, b_i, c_i)$ - 独立:偏序关系公式。 生成相关问题: - 基于CDQ分治,如"CDQ分治如何优化三维偏序问题?"或"CDQ分治的时间复杂度分析?" 确保回答真实可靠: - 基于算法知识,CDQ分治常用于OI竞赛中处理偏序问题。 引用处理: - 参考引用[1]是关于分治思想的,我可以引用它来支持分治部分。 - 其他引用不相关,但系统说"请尽可能多的参考用户上一次的问题和你的回答",但用户没有上一次问题,所以基于当前引用。 最终回答大纲: - 开头:介绍CDQ分治。 - 原理部分:分步骤解释,使用LaTeX。 - 应用场景:列举例子。 - 相关问题:在最后添加。 - 结尾:自然结束。</think>### CDQ分治算法的基本原理及其应用场景 CDQ分治(Chen Danqi Divide and Conquer)是由中国计算机科学家陈丹琦提出的一种分治算法变体,主要用于处理离线查询问题,特别是多维偏序问题(如三维偏序)。它在算法竞赛和数据处理中应用广泛,能高效解决一些复杂问题。下面我将逐步解释其基本原理和应用场景,确保内容清晰可靠。 #### 1. CDQ分治的基本原理 CDQ分治基于经典分治思想,但针对偏序问题进行了优化。核心思路是将问题递归分解为子问题,处理子问题内部和子问题之间的影响,最后合并结果。算法主要分为三个步骤:分、治、合。以下是详细解释: - **分(Divide)**:将输入数据(如点集)按某一维度(通常是时间或索引)分成两个大致相等的子集,记为左子集$L$和右子集$R$。例如,给定点集$P = \{P_1, P_2, \dots, P_n\}$,其中每个点$P_i = (a_i, b_i, c_i)$表示三维坐标,我们按第一维$a_i$排序并分割: $$ \text{mid} = \left\lfloor \frac{n}{2} \right\rfloor $$ 这样得到$L = \{P_i \mid i \leq \text{mid}\}$和$R = \{P_i \mid i > \text{mid}\}$。递归地对$L$和$R$应用相同过程。 - **治(Conquer)**:递归处理左子集$L$和右子集$R$,解决子问题内部的偏序关系。例如,在三维偏序问题中,目标是统计每个点$P_i$满足$a_j \leq a_i, b_j \leq b_i, c_j \leq c_i$的点数$j$($j \neq i$)。递归调用确保子集内部的问题被解决。 - **合(Merge)**:合并子问题结果,并处理跨越子集$L$和$R$的影响。这是CDQ分治的关键: - 使用辅助数据结构(如树状数组或线段树)高效处理跨子集贡献。 - 例如,在三维偏序中,合并时需统计$L$中的点对$R$中点的贡献。具体做法: 1. 对$L$和$R$按第二维$b_i$排序。 2. 遍历$R$中的每个点$P_j$,同时维护一个树状数组,用于记录第三维$c_i$的累积值。 3. 对于$P_j$,查询树状数组中满足$c_k \leq c_j$的点数($k$来自$L$),并累加到结果。 这确保了跨子集贡献在$O(n \log n)$时间内完成。 整个算法的时间复杂度为$O(n \log^2 n)$,其中$n$是数据规模。递归公式可表示为: $$ T(n) = 2T\left(\frac{n}{2}\right) + O(n \log n) $$ 其中$O(n \log n)$来自合并步骤的排序和树状数组操作。CDQ分治通过“分而治之”高效处理了偏序关系[^1]。 #### 2. CDQ分治的应用场景 CDQ分治特别适合离线查询问题,其中数据点固定,查询可批量处理。常见应用包括: - **三维偏序问题**:如统计逆序对或点对关系。例如,在竞赛中,给定点集统计每个点“支配”的点数(即所有维度都小于等于该点的点)。CDQ分治能高效解决,时间复杂度优于暴力$O(n^2)$。 - **动态规划优化**:用于优化序列问题,如最长上升子序列(LIS)或斜率优化问题。通过分治处理状态转移,减少计算量。 - **离线查询处理**:在数据库或算法中,处理批量查询,如区间统计或范围查询。CDQ分治将查询排序后递归处理,避免实时开销。 - **其他领域**:在计算几何(如最近点对问题)和机器学习数据预处理中也有应用,但需结合具体算法调整。 CDQ分治的优势在于其通用性和效率,但要求问题具有“可分治性”,即子问题独立且合并步骤可高效实现。实际应用中,常结合树状数组等数据结构提升性能。 #### 相关问题 1. CDQ分治如何处理更高维度的偏序问题(如四维偏序)? 2. CDQ分治与普通分治算法的主要区别是什么? 3. CDQ分治在动态规划优化中的具体实现案例? [^1]: 分治思想的核心是递归分解问题,然后合并结果,这在CDQ分治中得到充分体现,如分割点集并递归处理子问题。 [^2]: 算法理论常参考经典书籍,但CDQ分治更常见于竞赛和算法论文。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值