拓展BSGS
BSGS解决像这样的问题:
对于a,p,b,求解形如ax ≡b(mod p)的问题,其中a,p要求互质
对于a,p不互质的情况,我们引入拓展BSGS算法
一.前置性质
- ax 对p的模随着x周期性变化,并且周期不大于p。根据鸽笼原理,由于 ax %p∈[0,p-1]值域大小为p,故x取1~p+1时必有两个ax 的余数是一样的,于是这两个x的差值绝对值就是周期。
- 若ax ≡b(mod p)有解 等价于 ax ≡b(mod p)在x∈[0,p-1]范围内有解,由上面的性质显然成立。这告诉我们,枚举范围为[0,p-1]即可。
二.BSGS算法流程
1.思想:分块,块大小为B=p1/2(上取整),一部分预处理出一个hash表,一部分在hash里面查找,从而将枚举复杂度降为根号级别.
2.思路:
- 首先,令x=mB-n,其中n∈[0,B),于是原问题转化成amB ≡b*an 的形式,我们接下来针对这一问题进行求解
- 接下来在[0,B)的范围内枚举n,通过hash表构造出b*an %p的值到n的映射,即Baby Step的预处理。
- 随后执行Giant Step,在[1,B]范围内枚举m,求出amB %p的值,在hash表里查找这个值是否有对应的n,如有,则x=mB-n就是一组合法的解。如果始终没有找到x,那么说明无解
3.说明
至于B的取值要是上取整,这是为了保证B2 能覆盖到[0,p-1]内的每一个数字。在hash表O(1)调取插入时,复杂度为根号级别
三.拓展BSGS
1.改进思路:我们对于a,p不互质的情况显然不能应用朴素BSGS算法,因为此时an 的逆元不一定存在,最开始的问题转化就没法保证正确性。那么我们接下来进行一些转化,使得该问题再次成为熟悉的朴素BSGS算法所能解决的问题
2.具体流程
- 首先,将原问题转化为:m* ax + n* p=b。取g=gcd(a,p),令a’=a/g ,p’=p/g,b’=b/g。将a’加入一个栈中,并将p赋值为p’,b赋值为b’。
- 重复上述过程,直至a,p互质。如果过程中b出现b%g!=0的情况,则表明原方程无解。此时,设A表示栈中元素的乘积 对p取模的结果,cnt表示栈中元素个数,则原问题转化为:mA ax-cnt + n* p = b,此时a,p互质。显然这个问题等价于ax-cnt≡b A-1 (mod p),可以使用朴素BSGS算法求解。不过,如果上述过程中出现b==A的情况,直接返回当时的cnt值就好了。
注意:
- 实际写程序的时候不需要开栈统计a’,只需要两个变量分别维护A和cnt即可。
- 由于p在每一步操作中都变化,而最后A要求对最终的p取模的余数,所以你可能对这个方式的正确性产生怀疑。不过由于p始终是那个最终的p的倍数,所以都存起来统一取模和拿每一步的p当作模数 得到的最终结果是一致的。
- 显然复杂度相较于朴素BSGS没有本质上的差别。
洛谷模板(费了好大劲才过最后一个hack测试点)
说一些坑点:
1.先把a,b对p取模,然后执行:
if(b== 1 || p==1) return 0;
hack数据:21 48 49,输出应为0
2.只有这一处需要添加特判,在做完预处理之后不需要再进行上述特判。
hack数据:18 14 16,输出应为2
3.执行BSGS后,得到的结果X是真正结果ans加上“栈中元素数量cnt”,所以不能直接输出。特别注意,得到的BSGS结果不能直接加上cnt,而需要先调正再加,因为需要保证X>cnt
hack数据:38 20 48,输出结果应为5
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
typedef long long LL;
il int read(){
int s=0,w=1;char c=getchar();
while(c<'0'||c>'9'){ if(c=='-') w=-1;c=getchar();}
while(c>='0'&&c<='9'){ s=(s<<1)+(s<<3)+c-'0';c=getchar();}
return s*w;
}
LL a,b,p;
map<LL,LL>mp;
il LL gcd(LL x,LL y){
if(x<y) swap(x,y);
return y?gcd(y,x%y):x;
}
il int exgcd(int &x,int &y,int a,int b){
if(b==0){ x=1,y=0;return a; }
int g=exgcd(x,y,b,a%b);
int z=x;x=y,y=1LL*z-1LL*(a/b)*y;
return g;
}
il int Ni(int val,int mod){
int x,y,g;
g=exgcd(x,y,val,mod);
return (x%mod+mod)%mod;
}
il LL qpow(LL a,LL x,LL mod){
LL res=1LL;
while(x){
if(x&1) res=(res*a)%mod;
a=(a*a)%mod,x>>=1;
} return res%mod;
}
il int exBSGS(){
//prework
LL A=1LL,g=0;int cnt=0;
a%=p,b%=p;
if(b==1 || p==1) return 0;//必要的特判,此时答案为0,参看下面的hack数据
for(re int g=gcd(a,p);g>1;g=gcd(a,p)){
if(b%g) return -1;
//printf("A= %lld,b= %lld,p= %lld\n",A,b,p);
p/=g,b/=g,A=a/g*A%p,++cnt;
if(A==b) return cnt;
}
b=b*Ni(A,p)%p;
//printf("a= %lld,A= %lld,b= %lld,p= %lld,cnt= %d\n",a,A,b,p,cnt);
//BSGS
mp.clear(),mp[b]=0;
LL SQ=ceil(sqrt(p)),G=qpow(a,SQ,p);
for(re int i=1;i<=SQ;++i){
b=b*a%p,mp[b]=i;
}
LL mul=1LL;
for(re int i=1;i<=SQ;++i){
mul=mul*G%p;
if(mp.count(mul)) return (i*SQ-mp[mul]+p)%p+cnt;
} return -1;
}
int main()
{
//freopen("P4195_11.in","r",stdin);
//freopen("LZ.out","w",stdout);
while(1){
a=read(),p=read(),b=read();
if(a==0 && b==0 && p==0) break;
int ans=exBSGS();
if(ans==-1) printf("No Solution\n");
else printf("%d\n",ans);
}
}
/*
源自洛谷上#11
21 48 49
18 14 16
38 20 48
0
2
5
*/