拓展域并查集

博客介绍了拓展域并查集的概念,通过举例P5937 [CEOI1999]Parity Game,阐述如何将问题转化为并查集维护的形式。通过对条件的前缀和转换,将奇偶性判断问题转化为团伙问题模型。通过拆解不同的奇偶状态,建立相应的节点,并根据奇偶性关系进行并集操作,实现对合法性的判定。拓展域并查集在此类问题中起到了关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

拓展域并查集

拓展域并查集。就是通过“拓展域”的方式,将一个点的多个情况拆解成多个仅有单一状态的点,从而将问题转化为可用并查集维护的形式。
例题:P5937 [CEOI1999]Parity Game
将条件通过前缀和(设为sum[x])转化为以下形式:
[l,r]之间1的个数为奇数/偶数 --> sum[l-1]与sum[r]的奇偶性不同/相同
这样做转化后,这个问题就转化为“团伙问题”模型。但是由于要介绍拓展域并查集,故暂且将“设立敌人集合”的做法放置,讲解拓展域并查集
将"sum[x]为奇数或偶数“拆解成”sum[x]为奇数“和"sum[x]为偶数”两个条件,对每一个情况设一个点(分别设为X[odd],X[even]),当sum[x]与sum[y]之间的关系为奇偶性不同时,将x[odd]与y[even],y[odd]与x[even]做并集。关系为奇偶性相同时,则将x[odd]与y[odd],x[even]与y[even]做并集,表明两种情况必定同时出现。当需要判定合法性时,若 x[odd]与y[odd]在同一集合,说明奇偶性相同,反之亦然。
讲解到这里就会发现,“团伙问题”中的“建立敌对集合”的方法就是一种拓展域并查集。

#include<bits/stdc++.h>
using namespace std;//拓展域并查集 
#define il inline
#define re register
il int read()
{
	int s=0,w=1;char c=getchar();
	while(c<'0'||c>'9'){ if(c=='-') w=-1;c=getchar();}
	while(c>='0'&&c<='9'){ s=(s<<1)+(s<<3)+c-'0';c=getchar();}
	return s*w;
}
const int N=5e3+10; 
int n,m;
struct node{
	int x,y,op;
}Q[N];
int b[N],bt;
int fa[N<<1];
char s[10];
il int getfa(int x){
	return (fa[x]==x)?x:fa[x]=getfa(fa[x]);
}
int main()
{
	n=read(),m=read();
	for(re int i=1;i<=m;i++){
		Q[i].x=read()-1,Q[i].y=read();
		scanf("%s",s+1);
		Q[i].op=(s[1]=='e')?0:1;
		b[i]=Q[i].x,b[i+m]=Q[i].y;
	}
	sort(b+1,b+1+(m<<1));
	bt=unique(b+1,b+1+(m<<1))-b-1;
	for(re int i=1;i<=(bt<<1);i++) fa[i]=i;
	for(re int i=1;i<=m;i++){
		int x_odd=lower_bound(b+1,b+1+bt,Q[i].x)-b,x_even=x_odd+bt;
		int y_odd=lower_bound(b+1,b+1+bt,Q[i].y)-b,y_even=y_odd+bt;
		if(Q[i].op==0){
			if(getfa(x_odd)==getfa(y_even)){
				printf("%d",i-1);return 0;
			}
			fa[getfa(x_odd)]=getfa(y_odd);
			fa[getfa(x_even)]=getfa(y_even);
		}
		if(Q[i].op==1){
			if(getfa(x_odd)==getfa(y_odd)){
				printf("%d",i-1);return 0;
			}
			fa[getfa(x_odd)]=getfa(y_even);
			fa[getfa(x_even)]=getfa(y_odd);
		}
	}
	printf("%d",m);
	return 0;
}
### 食物链问题中的拓展并查集 #### 拓展并查集简介 为了有效解决食物链问题,可以采用一种称为“拓展”的方法来增强传统的并查集。这种方法不仅能够追踪节点间的连通性,还能表达更复杂的相互关系,比如捕食者与猎物之间的关系。 #### 数据结构设计 在传统并查集中加入额外维度以支持更多种类的关系描述。对于每一个物种 \(i\) ,创建三个虚拟节点:\(i, i+n,\) 和 \(i+2n\) 。这里 \(n\) 是原始物种数量[^4]。 - 节点 \(i\) 表示该种群本身; - 节点 \(i+n\) 表示被此物种食用的对象所属类群; - 节点 \(i+2n\) 则指代那些会捕食这个物种的其他生物群体。 这种映射方式允许程序区分三种不同类型的互动——自同类、被捕食者以及捕食者的存在状态。 #### 关键操作函数 `find` 的实现 当查询某个特定个体属于哪个组别时,除了返回其所在集合外还需要计算相对于根节点的距离差值(即权重)。这一步骤确保即使经过多次合并之后仍能保持正确的相对位置信息: ```cpp int find(int x){ if (x != p[x]){ int t = p[x]; p[x] = find(p[x]); d[x] += d[t]; // 更新距离向量 } return p[x]; } ``` 此处 `p[]` 数组存储着指向父节点的信息而 `d[]` 记录了到祖先结点间累积的变化量[^5]。 #### 合并与连接规则 每当遇到新的饮食习惯声明 “A eats B”,则按照如下方式进行调整: - A 与其对应的捕食对象类别 \(B + 2 * n\) 进行联合; - 将 A 所属的食物源分类 \(A + n\) 与 B 自身相联接; - 把可能存在的天敌群体 \(A + 2 * n\) 设定为同于 B 的猎物范围 \(B + n\)[^4]。 这些动作共同作用下使得整个生态系统内各成员之间错综复杂的食物网得以清晰呈现出来,并且能够在较短时间内完成大量样本数据的一致性验证工作。 #### 完整代码实例 下面给出一段完整的 C++ 代码片段用于模拟上述过程: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 50010; int fa[MAXN*3], dis[MAXN*3]; void init(int N){ for(int i=0;i<3*N;++i){ fa[i]=i;dis[i]=0; } } // 查找根节点的同时做路径压缩优化 int getfather(int x){ if(fa[x]!=x){ int tmp=fa[x]; fa[x]=getfather(fa[x]); dis[x]=(dis[tmp]+dis[x])%3; } return fa[x]; } bool merge(int a,int b,int c){ //c表示两者关系类型 int fax=getfather(a),fby=getfather(b); if(fax==fby){ return false; }else{ fa[fax]=fby; dis[fax]=(dis[b]-dis[a]+c+3)%3; return true; } } int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); int N,M,Q,a,b,c,tot=0; string op; cin>>N>>M>>Q; init(N); while(M--){ cin>>op>>a>>b; --a;--b; if(op=="E"){ tot+=!merge(a,b,0); }else{ // D case tot+=!merge(a+N,b+2*N,1)||!merge(a+2*N,b,N,2); } } cout<<tot<<"\n"; while(Q--){ cin>>a>>b; --a;--b; int fxa=getfather(a),fyb=getfather(b); if(fxa!=fyb || abs(dis[a]-dis[b])%3!=1){ puts("-1"); }else{ printf("%lld\n",(dis[b]-dis[a]+3)%3); } } return 0; } ``` 这段代码实现了初始化、查找父亲节点、合并两个集合等功能,并通过一系列测试案例展示了如何利用拓展并查集解决问题的实际应用情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值