
数学园地
文章平均质量分 93
I just sensed a kind of beauty. Now, I'd like to share it with you.
cyzhou1221
学生一枚
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Lagrange Dual Problem
本文将会介绍拉格朗日对偶问题,以及如何构造线性规划问题的对偶问题,使读者对对偶问题有更深刻的认识。原创 2020-09-05 15:52:09 · 860 阅读 · 0 评论 -
对齐次线性方程组同解充要条件的新理解
这篇文章将主要介绍对齐次线性方程组充要条件的新理解,出发角度为解空间与矩阵行空间的关系.原创 2020-08-07 22:17:55 · 28043 阅读 · 9 评论 -
浅谈组合数
本文将介绍组合数的定义、性质和实际计算方法.原创 2020-07-22 16:18:00 · 1240 阅读 · 0 评论 -
Eigenvalues of Circulant Matrix
这篇文章将会介绍循环矩阵(Circulant Matrix)特征值的两种求法。原创 2020-06-07 21:49:09 · 980 阅读 · 0 评论 -
The Eigenvalues and Eigenvectors of Tridiagonal Toeplitz Matrix
一般来说,我们都是先求一个矩阵的特征值,然后再求它的特征向量。但对于某种特殊的矩阵来说,先求特征向量反而更加方便,现在就让我们一起来看下吧!原创 2020-04-03 17:34:15 · 996 阅读 · 0 评论 -
“复数”仙人
参考链接:到达什么水平才能算是学会了数学?原创 2020-03-25 16:19:44 · 420 阅读 · 0 评论 -
神奇的进制
这次我们来聊聊进制.原创 2020-03-20 15:37:16 · 1068 阅读 · 0 评论 -
斐波那契数列通项的两种求法
本文将介绍斐波那契数列通项公式的两种求法,以及如何通过计算机来计算通项.原创 2020-03-19 20:25:39 · 13546 阅读 · 4 评论 -
方向导数与拉普拉斯算子的旋转不变性
在学习数字图像处理时,知晓了拉普拉斯这样一个很重要的二阶微分算子,当时有这样的一个结论:拉普拉斯算子具有旋转不变性. 知道现在我才理解,于是有了这篇文章. 此文将会介绍什么是方向导数、旋转不变性,以及拉普拉斯算子旋转不变性的详细证明.原创 2020-03-16 22:14:24 · 2868 阅读 · 0 评论 -
n 次单位根的求法
又是一篇文如其名的文章.原创 2020-03-08 13:40:25 · 13645 阅读 · 0 评论 -
前 n 个正整数的任意次方和
文如其题.原创 2020-03-07 16:08:52 · 1266 阅读 · 0 评论 -
泰勒展式推导及算子表示
本篇文章将详细介绍一元函数和多元函数泰勒展开的推导过程,最后将会用算子对泰勒展式的形式进行简化,敬请欣赏!原创 2020-03-06 20:31:03 · 2667 阅读 · 0 评论 -
三角函数 sinx, cosx 的泰勒展开推导及两个巧妙应用
三角函数 sinx, cosx 的泰勒展开推导及两个巧妙应用,这是一篇充满数学公式却简单易懂的文章。原创 2020-03-05 17:52:48 · 128689 阅读 · 6 评论 -
Brachistochrone curve(传说中的最速降线)
本文将会对最速降线问题进行简单介绍,并给出两种浅显易懂的解法.原创 2020-02-16 15:50:52 · 6196 阅读 · 4 评论 -
奇异值分解(SVD)
奇异值分解则是特征值分解在任意矩阵上的推广,在信号处理、统计学、机器学习等领域有重要应用。下面一起来了解一下吧!原创 2020-02-11 17:40:00 · 843 阅读 · 0 评论 -
无穷积分 ∫sinx/xdx 的几种巧妙解法
狄利克雷积分 ∫sinx/xdx 是一个比较常见的无穷积分,在很多领域有着重要应用,在此介绍几种巧妙解法。原创 2020-02-06 19:55:05 · 88590 阅读 · 8 评论 -
无穷积分 ∫e^(-x^2)dx 的几种巧妙解法
广义积分 ∫e^(-x^2)dx 是一个比较常见的无穷积分,在许多领域有着重要应用。在此介绍几种巧妙的解法,供读者欣赏。原创 2020-02-05 20:05:47 · 188228 阅读 · 24 评论 -
对微分的简单理解
学了这么久的高数(或数分),至关重要的“微分”到底是什么意思呢?希望你能在这篇文章中找到答案.原创 2020-02-02 19:42:05 · 3434 阅读 · 6 评论 -
深入理解主成分分析(PCA)
本篇文章将从三个部分:降维法、最大方差、最小均方误差,分别介绍 PCA 的详细推导过程,帮助读者进一步理解主成分分析.原创 2020-01-30 15:25:21 · 2659 阅读 · 2 评论 -
A Tutorial on Principal Component Analysis(译)
PCA 可谓是现代数据分析的中流砥柱——一个被广泛使用但是很多人都没有很好理解的“黑箱子”。这篇文章的目的在于揭开这个黑箱的神秘面纱。通过阅读这篇文章,你会直观地感受到 PCA 是怎样发挥作用的。文章会通过简单的直觉和数学推导将 PCA 背后的知识具体化。这篇文章不会避开道理的形式化阐述,也不会避开繁杂的数学推导过程。作者希望,各层次的读者都能通过这篇文章对 PCA 有更为深刻的理解,并进一步地,知道什么时候、怎样以及为什么使用这个方法。翻译 2020-01-22 20:53:45 · 1918 阅读 · 0 评论 -
矩阵乘法的简单理解
关于矩阵的乘法,学过线性代数的同学应该都知道,而且都会算. 但矩阵乘法究竟该怎么理解?不妨看看我的回答!原创 2020-01-19 10:42:32 · 1297 阅读 · 0 评论 -
标准正交基
首先,介绍内积运算,然后通过内积定义正交关系;其次,解释了什么是基以及什么是标准正交基;接着,阐明了标准正交基的一些便利性;最后,给出如何由一组基得到一组标准正交基。原创 2020-01-10 12:01:06 · 17483 阅读 · 1 评论 -
浅谈内积空间
到目前为止,已经介绍了线性空间、度量空间、赋范线性空间和内积空间,它们之间的关系如图所示。第二个运算是数乘,数乘就是用一个数去"乘",这个数从哪里来呢?赋范线性空间 = 线性空间 + 范数,即给线性空间穿上拓扑结构的外衣.空间 = 集合 + 结构,线性空间就是给集合穿上线性结构的外衣.容易验证这样定义的内积满足内积的四条性质,所以。这里仅考虑实线性空间上的内积,设。内积空间 = 线性空间 + 内积。是实线性空间,在其上定义内积运算。线性空间(Vector space)度量空间(Metric space)原创 2019-12-31 16:31:00 · 6844 阅读 · 0 评论 -
最小二乘法
高中时就听过最小二乘法的大名,当时是用来求回归直线的方程. 但如果只是求个方程的话,倒不用给方法也起个名字,后来才知道最小二乘法其实跟线性方程组有关,下面就让我们重新认识一下最小二乘法!-范数的计算较为简单,且具有良好的分析性质,如可导性,这也是为什么 “最小二乘法” 是 “最小。. 更进一步,如果向量组线性无关,则组合系数唯一,即解唯一. 若向量组线性相关,则解不唯一.-范数(范数的一种,用来表示向量长度). 为什么是。的长度最短,最符合直觉的做法就是,过。,则方程组无解,这时怎么办呢?原创 2019-12-30 15:20:19 · 563 阅读 · 1 评论 -
支持向量机(SVM)和决策树(Decision Tree)简介
选取特征,只是决策树中的 ID3 算法,这种算法倾向于选择取值较多的特征,后续提出的 C4.5 算法,以信息增益率作为特征选择指标,在一定程度上克服了这个缺点. 其他的决策树算法还有 CART,既能做分类也能做回归,感兴趣的读者可以了解一下.好的分类特征意味着对结果更精确的预测. 而预测得越准确,预测结果发生的概率也就越大. 大的概率意味着小的信息量,小的信息量会带来小的信息熵,进而使。终止条件可以这样设置:当前节点的信息熵小于给定的阈值时,就停止递归,取占比最大的类作为当前叶子节点的类别.原创 2019-12-09 09:41:57 · 8275 阅读 · 1 评论 -
圆周对称点
考虑这样一个问题:已知圆O\small OO内一点M0OM0ρ0M0OM0ρ0,求射线OM0OM0上一点M1\small M_1M1,使得对于圆周上任一点P\small PP,都有PM0PM1PM0PM1为常数.M0\small M_0M0关于圆周的对称点M1\small M_1M1的三种打开方式对于圆周O\small OO上任一点P\small PP,都有PM0。原创 2019-12-06 20:32:29 · 7051 阅读 · 0 评论 -
第一型与第二型曲线积分
设L\small LL为平面上可求长度(至于什么叫做可求长度,可参见《复变函数论》(第四版 钟玉泉 著)第25页,只需要知道连续曲线都是可求长度的)的曲线段,fxyfxy为定义在L\small LL上的函数. 对曲线L\small LL作分割T\small TT,它把L\small LL分成nnn个可求长度的小曲线段Lii12⋯nLii12⋯nLi\small L_iLi的弧长记为ΔsiΔsi,分割T。原创 2019-11-30 21:51:02 · 12906 阅读 · 1 评论 -
概率论知识要点整理
参考教材:概率论与数理统计(浙大第四版)原创 2019-09-29 16:47:55 · 2436 阅读 · 0 评论 -
柯西-施瓦兹(Cauchy-Schwarz)不等式
简要介绍柯西-施瓦兹不等式的概念、证明过程和特殊形式.原创 2019-04-29 20:29:56 · 81804 阅读 · 8 评论