本题要求编写程序,计算2个有理数的和、差、积、商。
输入格式:
输入在一行中按照“a1/b1 a2/b2”的格式给出两个分数形式的有理数,其中分子和分母全是整型范围内的整数,负号只可能出现在分子前,分母不为0。
输出格式:
分别在4行中按照“有理数1 运算符 有理数2 = 结果”的格式顺序输出2个有理数的和、差、积、商。注意输出的每个有理数必须是该有理数的最简形式“k a/b”,其中k是整数部分,a/b是最简分数部分;若为负数,则须加括号;若除法分母为0,则输出“Inf”。题目保证正确的输出中没有超过整型范围的整数。
输入样例1:2/3 -4/2输出样例1:
2/3 + (-2) = (-1 1/3) 2/3 - (-2) = 2 2/3 2/3 * (-2) = (-1 1/3) 2/3 / (-2) = (-1/3)输入样例2:
5/3 0/6输出样例2:
1 2/3 + 0 = 1 2/3 1 2/3 - 0 = 1 2/3 1 2/3 * 0 = 01 2/3 / 0 = Inf
分析:
这题要充分地考虑分式分子和分母的各种情形,分类讨论,从而按照题目要求输出结果.需要注意几个地方,其一,一个高效的求最大公约数的函数不可少,我是借鉴网上的辗转相除法
的代码(自己编写的函数超时了);其二,灵活地运用C语言的输入来简化代码(在不知道C语言的输入如此强大之前,我都是按照string型数据输入,然后循环求分子,分母,效率很
低);其三,这题的数据类型需要声明为long或者long long型.
源代码:
#include<iostream> #include<cmath> #include<iomanip> using namespace std; long long int gcd(long long int a, long long int b)//辗转相除法 { return b == 0 ? a : gcd(b, a % b); } void print(long long int a,long long int b) { if(b<0)//当输入的数做除数为负数的时候,b变成了负数,需要将符号赋给a { a=-a;b=-b; } if(a<0) { long long int k=gcd(-a,b); a=(-a)/k; b=b/k; if(a>=b) { cout<<"(-"<<a/b; if(a%b!=0) cout<<" "<<a%b<<"/"<<b<<")"; else cout<<")"; } else cout<<"(-"<<a<<"/"<<b<<")"; } else if(a==0) cout<<"0"; else { long long int k=gcd(a,b); a=a/k; b=b/k; if(a>b) { cout<<a/b; if(a%b!=0) cout<<" "<<a%b<<"/"<<b; } else if(a==b) cout<<a/b; else cout<<a<<"/"<<b; } } int main() { long long int a,b,c,d; scanf("%lld/%lld",&a,&b); scanf("%lld/%lld",&c,&d); print(a,b); cout<<" + "; print(c,d); cout<<" = "; print(a*d+b*c,b*d); cout<<endl; print(a,b); cout<<" - "; print(c,d); cout<<" = "; print(a*d-b*c,b*d); cout<<endl; print(a,b); cout<<" * "; print(c,d); cout<<" = "; print(a*c,b*d); cout<<endl; print(a,b); cout<<" / "; print(c,d); cout<<" = "; if(b*c)//进行除法之后,分母变成了0 print(a*d,b*c); else cout<<"Inf"; cout<<endl; return 0; }