Python查看电脑的GPU型号

本文介绍如何使用Python库pynvml来查询计算机中安装的NVIDIA GPU的数量及具体型号。通过安装pynvml并运行提供的代码示例,用户可以轻松获取到关于GPU的基本信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Step1:先安装pynvml

pip install pynvml

Step2:使用如下代码

from pynvml import *
nvmlInit()

deviceCount = nvmlDeviceGetCount()#几块显卡
print(deviceCount)

for i in range(deviceCount):
    handle = nvmlDeviceGetHandleByIndex(i)
    print ("Device", i, ":", nvmlDeviceGetName(handle)) #具体是什么显卡

### 如何在Mac上配置Python以利用GPU加速计算 对于希望在Mac设备上使用GPU进行Python开发的开发者来说,具体的方法取决于所使用的硬件型号以及目标应用领域。对于配备Apple Silicon(M1/M系列芯片)的Mac电脑而言,虽然原生支持某些形式的GPU加速,但在特定软件栈的支持方面存在差异。 #### TensorFlow GPU版本安装于Mac M1/M机器上的流程 针对TensorFlow,在较新的基于ARM架构设计的苹果产品线上,官方已经提供了初步的支持方案[^1]: - 安装Rosetta 2以便兼容更多依赖项; - 使用Homebrew管理器获取必要的编译环境和其他辅助工具; - 利用pip命令直接安装适用于macOS ARM平台优化过的tensorflow-macos包及其对应的metal插件; ```bash softwareupdate --install-rosetta /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" arch -arm64 brew install bazelisk python cmake ninja coreutils pkg-config which git curl wget protobuf jpeg giflib tiff icu4c eigen com_google_absl re2 snappy zlib bzip2 lzma openssl ncurses c-ares libuuid libtool automake autoconf swig boost numpy pybind11 flatbuffers six wheel termcolor grpcio clang-format pip3 install tensorflow-macos pip3 install tensorflow-metal ``` 这段脚本不仅涵盖了基础设置还包含了额外组件的引入,旨在确保整个过程尽可能顺畅。 #### PyTorch及其他库的选择 除了TensorFlow之外,如果考虑其他框架如PyTorch,则需注意其对Apple Metal API的支持情况。尽管目前也有社区贡献者致力于此方向的努力,但稳定性和功能性可能不及前者成熟。因此建议关注官方文档中的最新指导说明来决定最适合当前项目的解决方案[^2]。 至于像OpenCV这样的计算机视觉库,当涉及到更复杂的任务比如图像处理流水线时,可能会借助第三方扩展或自定义绑定才能更好地发挥内置图形处理器的优势[^3]。 最后提及的是cuNumeric项目,它是NumPy的一个替代品,专为分布式内存系统而设计,并能够有效调动多核CPU乃至GPU资源完成大规模数组运算操作。不过值得注意的是,由于这是面向Linux系统的产物,在跨平台移植过程中或许会遇到挑战[^4]。 综上所述,对于想要充分利用Mac自带GPU能力来进行高效科学计算或者AI建模工作的朋友们来说,现阶段最推荐的方式还是围绕着已有的良好生态链展开探索——即优先尝试由Google维护更新的TensorFlow生态系统。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值