百度面试题:POJ 2192

本文介绍如何使用动态规划解决POJ2192问题,即判断字符串C是否能由A和B的字符按原顺序组合而成。通过定义dp[i][j]来表示A的前i个字符与B的前j个字符是否能组成C的前(i+j)个字符,并给出DP和DFS两种实现方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

百度二面的时候有一道题目没有答上来,回来一查,原来是POJ上的原题,是一个DP问题,当时有向这方面想,但始终没有找出重叠子问题,网上看到别人定义的子问题,感觉真心简单,关键看是否能找出子问题了,这个积累不是一时半日的,自己还是太菜。刚刚到POJ上AC了这道题,附题目链接:

POJ 2192: http://poj.org/problem?id=2192

题意:就是给定三个字符串A,B,C;判断C能否由AB中的字符组成,同时这个组合后的字符顺序必须是A,B中原来的顺序,不能逆序;例如:A:mnl,B:xyz;如果C为mnxylz,就符合题意;如果C为mxnzly,就不符合题意,原因是z与y顺序不是B中顺序。

DP求解:定义dp[i][j]表示A中前i个字符与B中前j个字符是否能组成C中的前 (i+j) 个字符,如果能标记true,如果不能标记false;

有了这个定义,我们就可以找出状态转移方程了,初始状态dp[0][0] = 1:

1
2
dp[i][j] = 1 如果 dp[i-1][j] == 1 && C[i+j-1] == A[i-1]
dp[i][j] = 1 如果 dp[i][j-1] == 1 && C[i+j-1] == B[j-1]

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include<iostream>
using namespace std;
char A[201];
char B[201];
char C[401];
int N; /* 测试次数 */
/* dp[i][j] 表示A前i个字符与B前j个字符
   是否能构成C前i+j个字符
*/
short int dp[201][201];
int main()
{
    scanf("%d", &N);
    for(int k = 1; k <= N; ++k)   /* N个测试用例 */
    {
        memset(dp,0,sizeof dp);
        scanf("%s %s %s", A, B, C);
        int lenA = strlen(A);
        int lenB = strlen(B);
        dp[0][0] = 1;
        for(int i = 0; i <= lenA; ++i)
        {
            for(int j = 0; j <= lenB; ++j)
            {
                if(i > 0 && (dp[i-1][j] == 1) && (C[i+j-1] == A[i-1]))
                {
                    dp[i][j] = 1;
                }
                if(j > 0 && (dp[i][j-1] == 1) && (C[i+j-1] == B[j-1]))
                {
                    dp[i][j] = 1;
                }
            }
        }
        printf("Data set %d: %s\n", k, dp[lenA][lenB] ? "yes" : "no");
    }
    return 0;
}

参考资料中有用DFS实现这个题目的,DFS真心强大啊@HFC,sigh,修炼啊修炼。

DFS代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include<iostream>
using namespace std;
char A[201];
char B[201];
char C[401];
int N; /* 测试次数 */
int DFS(int x, int y)
{
    if(x == -1 && y == -1)
        return 1;
    if(x >= 0 && A[x] == C[x+y+1])
    {
        if(DFS(x-1,y))
            return 1;
    }
    if(y >= 0 && B[y] == C[x+y+1])
    {
        if(DFS(x,y-1))
            return 1;
    }
    return 0;
}
int main()
{
    scanf("%d", &N);
    for(int k = 1; k <= N; ++k)   /* N个测试用例 */
    {
        scanf("%s %s %s", A, B, C);
        printf("Data set %d: %s\n", k, DFS(strlen(A)-1,strlen(B)-1) ? "yes" : "no");
    }
    return 0;
}

以上代码均在POJ验证过,本文相关代码可以到这里下载

CH341A编程器是一款广泛应用的通用编程设备,尤其在电子工程和嵌入式系统开发领域中,它被用来烧录各种类型的微控制器、存储器和其他IC芯片。这款编程器的最新版本为1.3,它的一个显著特点是增加了对25Q256等32M芯片的支持。 25Q256是一种串行EEPROM(电可擦可编程只读存储器)芯片,通常用于存储程序代码、配置数据或其他非易失性信息。32M在这里指的是存储容量,即该芯片可以存储32兆位(Mbit)的数据,换算成字节数就是4MB。这种大容量的存储器在许多嵌入式系统中都有应用,例如汽车电子、工业控制、消费电子设备等。 CH341A编程器的1.3版更新,意味着它可以与更多的芯片型号兼容,特别是针对32M容量的芯片进行了优化,提高了编程效率和稳定性。26系列芯片通常指的是Microchip公司的25系列SPI(串行外围接口)EEPROM产品线,这些芯片广泛应用于各种需要小体积、低功耗和非易失性存储的应用场景。 全功能版的CH341A编程器不仅支持25Q256,还支持其他大容量芯片,这意味着它具有广泛的兼容性,能够满足不同项目的需求。这包括但不限于微控制器、EPROM、EEPROM、闪存、逻辑门电路等多种类型芯片的编程。 使用CH341A编程器进行编程操作时,首先需要将设备通过USB连接到计算机,然后安装相应的驱动程序和编程软件。在本例中,压缩包中的"CH341A_1.30"很可能是编程软件的安装程序。安装后,用户可以通过软件界面选择需要编程的芯片类型,加载待烧录的固件或数据,然后执行编程操作。编程过程中需要注意的是,确保正确设置芯片的电压、时钟频率等参数,以防止损坏芯片。 CH341A编程器1.3版是面向电子爱好者和专业工程师的一款实用工具,其强大的兼容性和易用性使其在众多编程器中脱颖而出。对于需要处理25Q256等32M芯片的项目,或者26系列芯片的编程工作,CH341A编程器是理想的选择。通过持续的软件更新和升级,它保持了与现代电子技术同步,确保用户能方便地对各种芯片进行编程和调试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值