
信号与系统
文章平均质量分 53
yxriyin
因为啥都不精通,所以啥都自成一家
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
信号与系统第八章 调制解调
现实生活中 怎么去实现复指数信号 实际是用欧拉公式 拆出实部和虚部 然后相加。你会发现 实部是偶函数 而虚部是基函数 相加 负频率刚好抵消 只留下正频率。然后时分多路复用 可以根据时间不同插入不同的脉冲信号 这样不会产生重叠。而复指数信号的傅里叶变换是一个脉冲 信号 相当于对信号在频域做平移。调制利用的是用信号相乘 相当于频域卷积。所以连续信号竟然可以用离散信号表示。也可以用正弦信号 相当于两边平移。这要注意 脉冲信号可以是一些方波。这里讲了实际是怎么调制脉冲信号的。然后可以用脉冲信号进行调制。原创 2024-04-15 23:52:10 · 545 阅读 · 0 评论 -
信号与系统第六章 时域和频域特性
系统的傅里叶变换是因为每个复指数信号经过线形时不变系统 会有一个增益 这个增益是这个系统的频率响应 也就是ht的傅里叶变换。然后x 和ht的卷积就是这个系统对x的响应 而脉冲响应也可以是x本身 所以相当于脉冲响应和ht卷积 就是ht本身。这里讲了理想滤波器是不可实现的 因为他是非因果的 一个脉冲信号会影响过去时间上的结果。所以 我们看系统的频率响应 通过傅里叶逆变换可以求出原始信号 比如低通滤波器。他的原始信号就是sinc函数 也就是系统的脉冲响应。所以 一个输入信号的傅里叶变换。原创 2024-04-09 23:29:05 · 352 阅读 · 0 评论 -
信号与系统第五章 离散时间傅里叶变换
然后切入到离散函数的情况 首先周期离散函数用傅里叶级数表示 因为复指数离散下本身就是周期的 所以我们直接用一个周期内的复指数信号就可以表示这个离散函数 就是说离散函数的基是有限个的。然后我们把周期扩充到无穷大 基的个数也会变成无穷个 但是 周期性不变 这个时候在频域的离散函数也会变成连续的 但是 因为离散复指数信号是周期的 所以我们依然是在一个周期内求积分。其实频域里应该也只看一个周期内的频谱吧 因为超过的部分其实是因为定义导致的 只是为了让任何一个起点内都是可以在一个周期内求和的吧。原创 2024-04-08 00:14:39 · 513 阅读 · 0 评论 -
非周期连续函数的傅里叶变换
所以按照之前卷积的概念 我们先把输入信号分解成基的线性组合 然后根据每个基的响应求和 就会得到最终的响应 基的响应是一个脉冲响应的积分 称为系统的频率响应 而基的系数就是x的傅里叶变换 于是就可以得到全新的卷积性质 时域的卷积等于频域的乘积。周期信号不论是离散还是连续 他的傅里叶级数都是离散的 而非周期信号的傅里叶变换是连续的 对应的周期信号的傅里叶变换 则是离散的。然后周期函数的傅里叶级数的系数是离散的 但非周期函数的傅里叶变换的系数是连续的。原创 2024-04-01 00:10:56 · 2570 阅读 · 0 评论 -
信号与系统第三章 周期信号的傅里叶级数表示 连续函数
按照理论 不连续点应该要收敛到两边平均值的一半 t越靠近不连续点 需要的级数的项就必须越多 这样才能分割突起向边缘压缩 因为这个现象的存在 为了避免不连续点点误差 需要足够多的级数项。傅里叶级数收敛证明非常复杂 我们知道结论就行 就是它在一个周期内的能量是有限的 就是平方的积分是有限的 那么就是收敛的 虽然并不是处处相等 但可以是几乎处处相等。这里还说明了如果x是实偶函数 可以推出 它的级数系数也是实偶函数 如果是实奇函数 那么傅里叶系数就是纯虚函数。求的的傅里叶级数的系数 称为原函数的频谱系数。原创 2024-02-29 23:56:19 · 651 阅读 · 0 评论 -
信号与系统第二章 线性时不变
这是因果性 现在的结果只取决于过去 那么就是n小于0的时候 h(n)只能是0 不然 我们翻转h函数 x轴大于0的部分就有值了 这样算面积的时候 就会把未来的时间的x也考虑进来。本来应该脉冲函数 狄拉克{n}对应的响应是h(n)平移的话 h(n-k) 所以最后是x(k)乘积求和。但这个y是关于n的函数,k是根据x的定义域决定的。而这些求和,就是对整个函数的响应。这个是画图理解脉冲函数的筛选性质 虽然脉冲函数本身是无穷大 但后面有个无穷小的微分。这里提到了脉冲信号可以有几种不同的理解 但最终的结果是一样的。原创 2024-02-28 00:30:44 · 707 阅读 · 0 评论 -
信号与系统第一章 连续和离散 脉冲信号 系统
说白了就是把它看成一个很细的方波,这要注意,书里的写法针对的应该是离散的,连续的应该是一个积分,不然乘以一个脉冲那不就无穷大了么。但对于离散不是这样 虽然还是车轮 但因为基波频率有限 导致采样不足 ,经过一个N,就会开始新的轮回。这个挺有意思的,在后面傅立叶级数会用到。连续信号 对于每一个k都是不同的信号 它相当于一个车轮 车速不同就不同。这是一个带参数的积分表达式,要分类讨论,考虑t小于0和大于0即可。积分的因为需要再乘以一个delta x 这个是无穷小的 抵消了。最近重新看信号与系统 做个笔记。原创 2024-02-03 23:59:14 · 486 阅读 · 0 评论 -
信号与系统知识点记录(P4-P5)
时不变性:系统的当前状态和信号的起始时间无关卷积:把信号分解成一组延时脉冲信号的线性组合,来表示一个线性时不变系统傅里叶分析:把信号分解成一组复指数信号的线性组合通过延时脉冲信号的线性组合,可以根据脉冲信号的响应来获得所有其他线性组合的响应。这里很有意思:线性系统如果是时不变的,那么延时脉冲信号满足:脉冲[n-k]--->hk[n]==h0[n-k]所以上面就是我们想要的表达式,也就是卷积和。而对于连续信号,这里要注意每个小矩形的表达...原创 2021-12-11 17:55:44 · 2077 阅读 · 0 评论 -
信号与系统知识点记录(P2-P3)
P2:连续余弦信号和离散余弦信号的不同。周期不同。时移和相位关系不同。还有个有趣的性质,离散信号里面,频率相差2Π的整数倍,得到的离散信号是一样的。后面又实数的指数信号和复数的指数信号的推导过程...原创 2021-11-27 20:43:42 · 567 阅读 · 0 评论